1
|
Kwon D, Kim Y, Cho SH. Antidepressant Effects of Ginsenoside Rc on L-Alpha-Aminoadipic Acid-Induced Astrocytic Ablation and Neuroinflammation in Mice. Int J Mol Sci 2024; 25:9673. [PMID: 39273621 PMCID: PMC11396248 DOI: 10.3390/ijms25179673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Depression is a prevalent and debilitating mental disorder that affects millions worldwide. Current treatments, such as antidepressants targeting the serotonergic system, have limitations, including delayed onset of action and high rates of treatment resistance, necessitating novel therapeutic strategies. Ginsenoside Rc (G-Rc) has shown potential anti-inflammatory and neuroprotective effects, but its antidepressant properties remain unexplored. This study investigated the antidepressant effects of G-Rc in an L-alpha-aminoadipic acid (L-AAA)-induced mouse model of depression, which mimics the astrocytic pathology and neuroinflammation observed in major depressive disorder. Mice were administered G-Rc, vehicle, or imipramine orally after L-AAA injection into the prefrontal cortex. G-Rc significantly reduced the immobility time in forced swimming and tail suspension tests compared to vehicle treatment, with more pronounced effects than imipramine. It also attenuated the expression of pro-inflammatory cytokines (TNF-α, IL-6, TGF-β, lipocalin-2) and alleviated astrocytic degeneration, as indicated by increased GFAP and decreased IBA-1 levels. Additionally, G-Rc modulated apoptosis-related proteins, decreasing caspase-3 and increasing Bcl-2 levels compared to the L-AAA-treated group. These findings suggest that G-Rc exerts antidepressant effects by regulating neuroinflammation, astrocyte-microglia crosstalk, and apoptotic pathways in the prefrontal cortex, highlighting its potential as a novel therapeutic agent for depression.
Collapse
Affiliation(s)
- Dohyung Kwon
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunna Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Neuropsychiatry of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea
- Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Hun Cho
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Neuropsychiatry of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea
- Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Herman RJ, Schmidt HD. Targeting GLP-1 receptors to reduce nicotine use disorder: Preclinical and clinical evidence. Physiol Behav 2024; 281:114565. [PMID: 38663460 PMCID: PMC11128349 DOI: 10.1016/j.physbeh.2024.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Nicotine use disorder (NUD) remains a leading cause of preventable death in the U.S. Unfortunately, current FDA-approved pharmacotherapies for smoking cessation have limited efficacy and are associated with high rates of relapse. One major barrier to long-term smoking abstinence is body weight gain during withdrawal. Nicotine withdrawal-induced body weight gain can also lead to development of chronic disease states like obesity and type II diabetes mellitus. Therefore, it is critical to identify novel pharmacotherapies for NUD that decrease relapse and nicotine withdrawal symptoms including body weight gain. Recent studies demonstrate that glucagon-like peptide-1 receptor (GLP-1R) agonists attenuate voluntary nicotine taking and seeking and prevent withdrawal-induced hyperphagia and body weight gain. Emerging evidence also suggests that GLP-1R agonists improve cognitive deficits, as well as depressive- and anxiety-like behaviors, which contribute to smoking relapse during withdrawal. While further studies are necessary to fully characterize the effects of GLP-1R agonists on NUD and understand the mechanisms by which GLP-1R agonists decrease nicotine withdrawal-mediated behaviors, the current literature supports GLP-1R-based approaches to treating NUD.
Collapse
Affiliation(s)
- Rae J Herman
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Heath D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
3
|
Hong S, Kim Y, Kwon Y, Cho SH. Antidepressant Effect of Heracleum moellendorffii Extract on Behavioral Changes in Astrocyte Ablation Mouse Model of Depression by Modulating Neuroinflammation through the Inhibition of Lipocalin-2. Nutrients 2024; 16:2049. [PMID: 38999797 PMCID: PMC11243176 DOI: 10.3390/nu16132049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Astrocyte dysfunction and inflammation play a pivotal role in depression. In this study, we evaluated the antidepressant properties of Heracleum moellendorffii root extract (HME), which is traditionally used for inflammation-related diseases, in a mouse model with astrocyte depletion that resembles the prefrontal cortex pathology of depressive patients. Mice were divided into four groups, with 10 mice per group. To induce astrocyte ablation in the mice's prefrontal cortex (PFC), we used astrocytic toxin L-alpha-aminoadipic acid (L-AAA) and administered HME orally at 200 and 500 mg/kg for 22 days. We utilized the tail suspension test (TST) to assess depression-like behaviors and the open field test (OFT) to evaluate anxiety-like activities. Additionally, astrocytic and inflammatory markers in the PFC were evaluated using immunohistochemistry and ELISA. The results showed that infusion of L-AAA significantly decreased the expression of astrocytic glial fibrillary acidic protein (GFAP), which was accompanied by increased depression and anxiety-like behaviors. However, HME significantly reversed these effects by dose-dependently enhancing GFAP expression and modulating inflammatory markers, such as TNF-α, IL-6, and particularly lipocalin-2, a master proinflammatory mediator. These results imply that HME contributes to the alleviation of depression and anxiety-like behaviors by promoting astrocyte recovery and reducing neuroinflammation, especially through lipocalin-2 inhibition.
Collapse
Affiliation(s)
- Soonsang Hong
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.H.); (Y.K.)
| | - Yunna Kim
- Department of Neuropsychiatry, College of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea;
- Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - YongJu Kwon
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.H.); (Y.K.)
| | - Seung-Hun Cho
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.H.); (Y.K.)
- Department of Neuropsychiatry, College of Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea;
- Research Group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Lutfy RH, Essawy AE, Mohammed HS, Shakweer MM, Salam SA. Transcranial Irradiation Mitigates Paradoxical Sleep Deprivation Effect in an Age-Dependent Manner: Role of BDNF and GLP-1. Neurochem Res 2024; 49:919-934. [PMID: 38114728 PMCID: PMC10902205 DOI: 10.1007/s11064-023-04071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
The growing prevalence of aged sleep-deprived nations is turning into a pandemic state. Acute sleep deprivation (SD) accompanies aging, changing the hippocampal cellular pattern, neurogenesis pathway expression, and aggravating cognitive deterioration. The present study investigated the ability of Near Infra Red (NIR) light laser to ameliorate cognitive impairment induced by SD in young and senile rats. Wistar rats ≤ 2 months (young) and ≥ 14 months (senile) were sleep-deprived for 72 h with or without transcranial administration of NIR laser of 830 nm. Our results showed that NIR photobiomodulation (PBM) attenuated cognitive deterioration made by SD in young, but not senile rats, while both sleep-deprived young and senile rats exhibited decreased anxiety (mania)-like behavior in response to PBM. NIR PBM had an inhibitory effect on AChE, enhanced the production of ACh, attenuated ROS, and regulated cell apoptosis factors such as Bax and Bcl-2. NIR increased mRNA expression of BDNF and GLP-1 in senile rats, thus facilitating neuronal survival and differentiation. The present findings also revealed that age exerts an additive factor to the cellular assaults produced by SD where hippocampal damages made in 2-month rats were less severe than those of the aged one. In conclusion, NIR PBM seems to promote cellular longevity of senile hippocampal cells by combating ROS, elevating neurotrophic factors, thus improving cognitive performance. The present findings provide NIR as a possible candidate for hippocampal neuronal insults accompanying aging and SD.
Collapse
Affiliation(s)
- Radwa H Lutfy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Amina E Essawy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Haitham S Mohammed
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa M Shakweer
- Department of Pathology, Faculty of Medicine, Badr University in Cairo (BUC), Cairo, Egypt
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| |
Collapse
|
5
|
López-Ojeda W, Hurley RA. Glucagon-Like Peptide 1: An Introduction and Possible Implications for Neuropsychiatry. J Neuropsychiatry Clin Neurosci 2024; 36:A4-86. [PMID: 38616646 DOI: 10.1176/appi.neuropsych.20230226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Affiliation(s)
- Wilfredo López-Ojeda
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC) and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Department of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Department of Radiology (Hurley), Wake Forest University School of Medicine, Winston-Salem, N.C.; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| | - Robin A Hurley
- Veterans Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center (MIRECC) and Research and Academic Affairs Service Line, W.G. Hefner Veterans Affairs Medical Center, Salisbury, N.C. (López-Ojeda, Hurley); Department of Psychiatry and Behavioral Medicine (López-Ojeda, Hurley) and Department of Radiology (Hurley), Wake Forest University School of Medicine, Winston-Salem, N.C.; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston (Hurley)
| |
Collapse
|
6
|
Chen S, Shao Q, Chen J, Lv X, Ji J, Liu Y, Song Y. Bile acid signalling and its role in anxiety disorders. Front Endocrinol (Lausanne) 2023; 14:1268865. [PMID: 38075046 PMCID: PMC10710157 DOI: 10.3389/fendo.2023.1268865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Anxiety disorder is a prevalent neuropsychiatric disorder that afflicts 7.3%~28.0% of the world's population. Bile acids are synthesized by hepatocytes and modulate metabolism via farnesoid X receptor (FXR), G protein-coupled receptor (TGR5), etc. These effects are not limited to the gastrointestinal tract but also extend to tissues and organs such as the brain, where they regulate emotional centers and nerves. A rise in serum bile acid levels can promote the interaction between central FXR and TGR5 across the blood-brain barrier or activate intestinal FXR and TGR5 to release fibroblast growth factor 19 (FGF19) and glucagon-like peptide-1 (GLP-1), respectively, which in turn, transmit signals to the brain via these indirect pathways. This review aimed to summarize advancements in the metabolism of bile acids and the physiological functions of their receptors in various tissues, with a specific focus on their regulatory roles in brain function. The contribution of bile acids to anxiety via sending signals to the brain via direct or indirect pathways was also discussed. Different bile acid ligands trigger distinct bile acid signaling cascades, producing diverse downstream effects, and these pathways may be involved in anxiety regulation. Future investigations from the perspective of bile acids are anticipated to lead to novel mechanistic insights and potential therapeutic targets for anxiety disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuehan Song
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Rocha-Gomes A, Alvarenga E Castro TP, Almeida PR, Balsamão Paes Leme PS, da Silva AA, Riul TR, Bastos CP, Leite HR. High-intensity interval training improves long-term memory and increases hippocampal antioxidant activity and BDNF levels in ovariectomized Wistar rats. Behav Brain Res 2023; 453:114605. [PMID: 37517574 DOI: 10.1016/j.bbr.2023.114605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Menopause is the period in which women cease to produce the hormone estrogen, which can trigger physiological, cognitive, and behavioral changes. In this context, alternatives are needed that can reduce the effects provided by menopause, specifically in terms of cognitive and behavioral aspects. High-intensity interval training (HIIT) is an exercise protocol that has shown the potential to improve cognition by promoting an increase in antioxidant defenses and BDNF levels. Therefore, the aim of this study was to evaluate the effects of HIIT on behavior and hippocampal neurochemistry in ovariectomized adult rats. Four groups of rats were divided into: females without ovariectomy surgery and sedentary (SHAM-SED); females with ovariectomy surgery and sedentary (OVX-SED); females without ovariectomy surgery and trained (SHAM-HIIT); females with ovariectomy surgery and trained (OVX-HIIT). After the surgical procedure and the HIIT protocol, the animals underwent anxiety (elevated plus maze and open field) and memory (novel object recognition) tests. Corticosterone was measured in blood and BDNF levels and redox status were evaluated in the hippocampus. The OVX-SED group showed low BDNF levels and antioxidant enzymes, which may be linked to the observed memory impairments. The HIIT protocol (SHAM-HIIT and OVX-HIIT groups) increased the BDNF levels and antioxidant enzymes in the hippocampus, improving the animals' memory. However, HIIT also led to increased plasma corticosterone and anxiety-like behaviors. The ovariectomy procedure induced memory impairment probably due to reductions in hippocampal BDNF levels and redox imbalance. The HIIT protocol demonstrates promising results as an alternative to improve memory in ovariectomized rats.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil.
| | | | - Pedro Rodrigues Almeida
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - Paula Silveira Balsamão Paes Leme
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - Alexandre Alves da Silva
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - Tania Regina Riul
- Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG, Brazil
| | - Cristiane Perácio Bastos
- Departamento de Enfermagem, Faculdade de Ciências Humanas de Curvelo (FACIC), Curvelo, MG, Brazil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
8
|
Zaky DA, Sayed RH, Mohamed YS. Liraglutide limits the immunogenic cell death-mediated ROS propagation and PI3K/AKT inactivation after doxorubicin-induced gonadotoxicity in rats: Involvement of the canonical Hedgehog trajectory. Int Immunopharmacol 2023; 119:110212. [PMID: 37094542 DOI: 10.1016/j.intimp.2023.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
Chemotherapy-accompanied reproductive dysfunction has lately begun to draw the attention of the scientific community owing to the irreversible impact on the patient's quality of life. Here we tended to investigate the potential role of liraglutide (LRG) in modulating the canonical Hedgehog (Hh) signaling in doxorubicin (DXR)-induced gonadotoxicity in rats. Female virgin Wistar rats were divided into 4 groups; control, DXR-treated (25 mg/kg, single i.p. injection), LRG-treated (150 μg/Kg/day, s.c) and itraconazole (ITC; 150 mg/kg/day, p.o)-pretreated group, as the Hh pathway inhibitor. Treatment with LRG potentiated the PI3K/AKT/p-GSK3β cascade and relieved the oxidative burden-induced by the DXR-driven immunogenic cell death (ICD). LRG also upregulated the expression of the Desert hedgehog ligand (DHh) and the patched-1 (PTCH1) receptor and augmented the protein level of Indian hedgehog (IHh) ligand, Gli1 and cyclin-D1 (CD1). Besides, hypertranscription of IHh, DHh, Ptch1, Smo, Gli1/2 and CD1 genes along with a transcriptional recession of Gli3 gene were reported in LRG-treated group. ITC pre-administration partially abrogated this positive effect of LRG, proving the implication of the examined pathway. Microscopically, LRG ameliorated the follicular atresia noticed in the DXR group; effect that was, at least partially, declined by ITC pre-treatment. These findings end to a conclusion that LRG treatment might hinder the DXR-associated reproductive toxicity, resultant from ROS generated by the cells undergoing ICD, and trigger follicular growth and repair by the PI3K/AKT- dependent switching-on of the canonical Hh pathway.
Collapse
Affiliation(s)
- Doaa A Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Yasmin S Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Nagasawa Y, Katagiri S, Nakagawa K, Hirota T, Yoshimi K, Uchida A, Hatasa M, Komatsu K, Shiba T, Ohsugi Y, Uesaka N, Iwata T, Tohara H. Xanthan gum-based fluid thickener decreases postprandial blood glucose associated with increase of Glp1 and Glp1r expression in ileum and alteration of gut microbiome. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|