1
|
Yi LX, Tan EK, Zhou ZD. The α-Synuclein Seeding Amplification Assay for Parkinson's Disease. Int J Mol Sci 2025; 26:389. [PMID: 39796243 PMCID: PMC11720040 DOI: 10.3390/ijms26010389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Currently, PD is incurable, and the diagnosis of PD mainly relies on clinical manifestations. The central pathological event in PD is the abnormal aggregation and deposition of misfolded α-synuclein (α-Syn) protein aggregates in the Lewy body (LB) in affected brain areas. Behaving as a prion-like seeding, the misfolded α-syn protein can induce and facilitate the aggregation of native unfolded α-Syn protein to aggravate α-Syn protein aggregation, leading to PD progression. Recently, in a blood-based α-Syn seeding amplification assay (SAA), Kluge et al. identified pathological α-Syn seeding activity in PD patients with Parkin (PRKN) gene variants. Additionally, pathological α-syn seeding activity was also identified in sporadic PD and PD patients with Leucine-rich repeat kinase 2 (LRRK2) or glucocerebrosidase (GBA) gene variants. Principally, the α-Syn SAA can be used to detect pathological α-Syn seeding activity, which will significantly enhance PD diagnosis, progression monitoring, prognosis prediction, and anti-PD therapy. The significance and future strategies of α-Syn SAA protocol are highlighted and proposed, whereas challenges and limitations of the assay are discussed.
Collapse
Affiliation(s)
- Ling-Xiao Yi
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 30843, Singapore;
| | - Eng King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 30843, Singapore;
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857, Singapore
| | - Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 30843, Singapore;
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
2
|
Riegelman E, Xue KS, Wang JS, Tang L. Gut-Brain Axis in Focus: Polyphenols, Microbiota, and Their Influence on α-Synuclein in Parkinson's Disease. Nutrients 2024; 16:2041. [PMID: 38999791 PMCID: PMC11243524 DOI: 10.3390/nu16132041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
With the recognition of the importance of the gut-brain axis in Parkinson's disease (PD) etiology, there is increased interest in developing therapeutic strategies that target α-synuclein, the hallmark abhorrent protein of PD pathogenesis, which may originate in the gut. Research has demonstrated that inhibiting the aggregation, oligomerization, and fibrillation of α-synuclein are key strategies for disease modification. Polyphenols, which are rich in fruits and vegetables, are drawing attention for their potential role in this context. In this paper, we reviewed how polyphenols influence the composition and functional capabilities of the gut microbiota and how the resulting microbial metabolites of polyphenols may potentially enhance the modulation of α-synuclein aggregation. Understanding the interaction between polyphenols and gut microbiota and identifying which specific microbes may enhance the efficacy of polyphenols is crucial for developing therapeutic strategies and precision nutrition based on the microbiome.
Collapse
Affiliation(s)
| | | | | | - Lili Tang
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA; (E.R.); (K.S.X.); (J.-S.W.)
| |
Collapse
|
3
|
Xiang W, Vicente Miranda H. Unraveling the complexity of alpha-synucleinopathies: Insights from the special issue "alpha synuclein and synucleinopathies". Behav Brain Res 2024; 460:114797. [PMID: 38043676 DOI: 10.1016/j.bbr.2023.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Affiliation(s)
- Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
| | - Hugo Vicente Miranda
- iNOVA4Health, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa, Portugal.
| |
Collapse
|
4
|
Mutti C, Malagutti G, Maraglino V, Misirocchi F, Zilioli A, Rausa F, Pizzarotti S, Spallazzi M, Rosenzweig I, Parrino L. Sleep Pathologies and Eating Disorders: A Crossroad for Neurology, Psychiatry and Nutrition. Nutrients 2023; 15:4488. [PMID: 37892563 PMCID: PMC10610508 DOI: 10.3390/nu15204488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
The intricate connection between eating behaviors and sleep habits is often overlooked in clinical practice, despite their profound interdependence. Sleep plays a key role in modulating psychological, hormonal and metabolic balance and exerting an influence on food choices. Conversely, various eating disorders may affect sleep continuity, sometimes promoting the development of sleep pathologies. Neurologists, nutritionists and psychiatrists tend to focus on these issues separately, resulting in a failure to recognize the full extent of the clinical conditions. This detrimental separation can lead to underestimation, misdiagnosis and inappropriate therapeutic interventions. In this review, we aim to provide a comprehensive understanding of the tangled relationship between sleep, sleep pathologies and eating disorders, by incorporating the perspective of sleep experts, psychologists and psychiatrists. Our goal is to identify a practical crossroad integrating the expertise of all the involved specialists.
Collapse
Affiliation(s)
- Carlotta Mutti
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125 Parma, Italy
| | - Giulia Malagutti
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125 Parma, Italy
| | - Valentina Maraglino
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125 Parma, Italy
| | - Francesco Misirocchi
- Neurology Unit, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy (A.Z.)
| | - Alessandro Zilioli
- Neurology Unit, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy (A.Z.)
| | - Francesco Rausa
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125 Parma, Italy
| | - Silvia Pizzarotti
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125 Parma, Italy
| | - Marco Spallazzi
- Neurology Unit, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy (A.Z.)
| | - Ivana Rosenzweig
- Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London WC2R 2LS, UK
| | - Liborio Parrino
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125 Parma, Italy
- Neurology Unit, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy (A.Z.)
| |
Collapse
|