1
|
Wang W, Zhang C, Liu H, Xu C, Duan H, Tian X, Zhang D. Heritability and genome-wide association analyses of fasting plasma glucose in Chinese adult twins. BMC Genomics 2020; 21:491. [PMID: 32682390 PMCID: PMC7368793 DOI: 10.1186/s12864-020-06898-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background Currently, diabetes has become one of the leading causes of death worldwide. Fasting plasma glucose (FPG) levels that are higher than optimal, even if below the diagnostic threshold of diabetes, can also lead to increased morbidity and mortality. Here we intend to study the magnitude of the genetic influence on FPG variation by conducting structural equation modelling analysis and to further identify specific genetic variants potentially related to FPG levels by performing a genome-wide association study (GWAS) in Chinese twins. Results The final sample included 382 twin pairs: 139 dizygotic (DZ) pairs and 243 monozygotic (MZ) pairs. The DZ twin correlation for the FPG level (rDZ = 0.20, 95% CI: 0.04–0.36) was much lower than half that of the MZ twin correlation (rMZ = 0.68, 95% CI: 0.62–0.74). For the variation in FPG level, the AE model was the better fitting model, with additive genetic parameters (A) accounting for 67.66% (95% CI: 60.50–73.62%) and unique environmental or residual parameters (E) accounting for 32.34% (95% CI: 26.38–39.55%), respectively. In the GWAS, although no genetic variants reached the genome-wide significance level (P < 5 × 10− 8), 28 SNPs exceeded the level of a suggestive association (P < 1 × 10− 5). One promising genetic region (2q33.1) around rs10931893 (P = 1.53 × 10− 7) was found. After imputing untyped SNPs, we found that rs60106404 (P = 2.38 × 10− 8) located at SPATS2L reached the genome-wide significance level, and 216 SNPs exceeded the level of a suggestive association. We found 1007 genes nominally associated with the FPG level (P < 0.05), including SPATS2L, KCNK5, ADCY5, PCSK1, PTPRA, and SLC26A11. Moreover, C1orf74 (P = 0.014) and SLC26A11 (P = 0.021) were differentially expressed between patients with impaired fasting glucose and healthy controls. Some important enriched biological pathways, such as β-alanine metabolism, regulation of insulin secretion, glucagon signaling in metabolic regulation, IL-1 receptor pathway, signaling by platelet derived growth factor, cysteine and methionine metabolism pathway, were identified. Conclusions The FPG level is highly heritable in the Chinese population, and genetic variants are significantly involved in regulatory domains, functional genes and biological pathways that mediate FPG levels. This study provides important clues for further elucidating the molecular mechanism of glucose homeostasis and discovering new diagnostic biomarkers and therapeutic targets for diabetes.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, China
| | - Caixia Zhang
- The First Hospital of Yulin, Yulin, Shanxi, China
| | - Hui Liu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, China.,Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, China.,Qingdao Institute of Preventive Medicine, Qingdao, Shandong, China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, No. 38 Dengzhou Road, Shibei District, Qingdao, 266021, Shandong Province, China.
| |
Collapse
|
2
|
PTPRA Phosphatase Regulates GDNF-Dependent RET Signaling and Inhibits the RET Mutant MEN2A Oncogenic Potential. iScience 2020; 23:100871. [PMID: 32062451 PMCID: PMC7021549 DOI: 10.1016/j.isci.2020.100871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 01/15/2020] [Accepted: 01/26/2020] [Indexed: 12/17/2022] Open
Abstract
The RET proto-oncogene encodes receptor tyrosine kinase, expressed primarily in tissues of neural crest origin. De-regulation of RET signaling is implicated in several human cancers. Recent phosphatome interactome analysis identified PTPRA interacting with the neurotrophic factor (GDNF)-dependent RET-Ras-MAPK signaling-axis. Here, by identifying comprehensive interactomes of PTPRA and RET, we reveal their close physical and functional association. The PTPRA directly interacts with RET, and using the phosphoproteomic approach, we identify RET as a direct dephosphorylation substrate of PTPRA both in vivo and in vitro. The protein phosphatase domain-1 is indispensable for the PTPRA inhibitory role on RET activity and downstream Ras-MAPK signaling, whereas domain-2 has only minor effect. Furthermore, PTPRA also regulates the RET oncogenic mutant variant MEN2A activity and invasion capacity, whereas the MEN2B is insensitive to PTPRA. In sum, we discern PTPRA as a novel regulator of RET signaling in both health and cancer. PTPRA inhibits ligand (GDNF-GFRα1)-mediated RET activity on Ras-MAPK signaling axis PTPRA dephosphorylate RET on key functional phosphotyrosine sites PTPRA catalytic (PTPase) domain 1 regulates RET-driven signaling PTPRA suppresses RET oncogenic mutant MEN2A in both Ras-MAPK and cell invasion models
Collapse
|
3
|
Xu E, Schwab M, Marette A. Role of protein tyrosine phosphatases in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance. Rev Endocr Metab Disord 2014; 15:79-97. [PMID: 24264858 DOI: 10.1007/s11154-013-9282-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin resistance is a major disorder that links obesity to type 2 diabetes mellitus (T2D). It involves defects in the insulin actions owing to a reduced ability of insulin to trigger key signaling pathways in major metabolic tissues. The pathogenesis of insulin resistance involves several inhibitory molecules that interfere with the tyrosine phosphorylation of the insulin receptor and its downstream effectors. Among those, growing interest has been developed toward the protein tyrosine phosphatases (PTPs), a large family of enzymes that can inactivate crucial signaling effectors in the insulin signaling cascade by dephosphorylating their tyrosine residues. Herein we briefly review the role of several PTPs that have been shown to be implicated in the regulation of insulin action, and then focus on the Src homology 2 (SH2) domain-containing SHP1 and SHP2 enzymes, since recent reports have indicated major roles for these PTPs in the control of insulin action and glucose metabolism. Finally, the therapeutic potential of targeting PTPs for combating insulin resistance and alleviating T2D will be discussed.
Collapse
Affiliation(s)
- Elaine Xu
- Department of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Ste-Foy, Québec, Canada, G1V 4G2
| | | | | |
Collapse
|
4
|
Suh YJ, Kim S, Kim SH, Park J, Lim HA, Park HJ, Choi H, Ng D, Lee MK, Nam M. Combined genome-wide linkage and association analyses of fasting glucose level in healthy twins and families of Korea. J Korean Med Sci 2013; 28:415-23. [PMID: 23487342 PMCID: PMC3594606 DOI: 10.3346/jkms.2013.28.3.415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 01/04/2013] [Indexed: 11/20/2022] Open
Abstract
This study was undertaken to identify genetic polymorphisms that are associated with the risk of an elevated fasting glucose (FG) level using genome-wide analyses. We explored a quantitative trait locus (QTL) for FG level in a genome-wide study from a Korean twin-family cohort (the Healthy Twin Study) using a combined linkage and family-based association analysis approach. We investigated 1,754 individuals, which included 432 families and 219 pairs of monozygotic twins. Regions of chromosomes 2q23.3-2q31.1, 15q26.1-15q26.3, 16p12.1, and 20p13-20p12.2, were found to show evidence of linkage with FG level, and several markers in these regions were found to be significantly associated with FG level using family-based or general association tests. In particular, a single-nucleotide polymorphism (rs6138953) on the PTPRA gene in the 20p13 region (combined P = 1.8 × 10(-6)) was found to be associated with FG level, and the PRKCB1 gene (in 16p12.1) to be possibly associated with FG level. In conclusion, multiple regions of chromosomes 2q23.3-2q31.1, 15q26.1-15q26.3, 16p12.1, and 20p13-20p12.2 are associated with FG level in our Korean twin-family cohort. The combined approach of genome-wide linkage and family-based association analysis is useful to identify novel or known genetic regions concerning FG level in a family cohort study.
Collapse
MESH Headings
- Adult
- Aged
- Asian People/genetics
- Blood Glucose/genetics
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 16/genetics
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 20/genetics
- Cohort Studies
- Family
- Female
- Genetic Linkage
- Genome-Wide Association Study
- Genotype
- Humans
- Male
- Middle Aged
- Polymorphism, Single Nucleotide
- Protein Kinase C/genetics
- Protein Kinase C beta
- Quantitative Trait Loci
- Receptor-Like Protein Tyrosine Phosphatases, Class 4/genetics
- Republic of Korea
- Twins, Monozygotic/genetics
Collapse
Affiliation(s)
- Young Ju Suh
- Institute of Clinical Research, Inha University School of Medicine, Incheon, Korea
| | - SungHwan Kim
- Department of Biostatistics, University of Pittsburg, PA, USA
| | - So Hun Kim
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Jia Park
- Clinical Trial Center, Inha University Hospital, Incheon, Korea
| | - Hyun Ae Lim
- Clinical Trial Center, Inha University Hospital, Incheon, Korea
| | - Hyun Ju Park
- Clinical Trial Center, Inha University Hospital, Incheon, Korea
| | | | - Daniel Ng
- Department of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mi Kyeong Lee
- Department of Epidemiology and Institute of Environment and Health, Seoul National University School of Public Health, Seoul, Korea
| | - Moonsuk Nam
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
- Clinical Trial Center, Inha University Hospital, Incheon, Korea
| |
Collapse
|
5
|
Serine dephosphorylation of receptor protein tyrosine phosphatase alpha in mitosis induces Src binding and activation. Mol Cell Biol 2010; 30:2850-61. [PMID: 20385765 DOI: 10.1128/mcb.01202-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Receptor protein tyrosine phosphatase alpha (RPTPalpha) is the mitotic activator of the protein tyrosine kinase Src. RPTPalpha serine hyperphosphorylation was proposed to mediate mitotic activation of Src. We raised phosphospecific antibodies to the two main serine phosphorylation sites, and we discovered that RPTPalpha Ser204 was almost completely dephosphorylated in mitotic NIH 3T3 and HeLa cells, whereas Ser180 and Tyr789 phosphorylation were only marginally reduced in mitosis. Concomitantly, Src pTyr527 and pTyr416 were dephosphorylated, resulting in 2.3-fold activation of Src in mitosis. Using inhibitors and knockdown experiments, we demonstrated that dephosphorylation of RPTPalpha pSer204 in mitosis was mediated by PP2A. Mutation of Ser204 to Ala did not activate RPTPalpha, and intrinsic catalytic activity of RPTPalpha was not affected in mitosis. Interestingly, binding of endogenous Src to RPTPalpha was induced in mitosis. GRB2 binding to RPTPalpha, which was proposed to compete with Src binding to RPTPalpha, was only modestly reduced in mitosis, which could not account for enhanced Src binding. Moreover, we demonstrate that Src bound to mutant RPTPalpha-Y789F, lacking the GRB2 binding site, and mutant Src with an impaired Src homology 2 (SH2) domain bound to RPTPalpha, illustrating that Src binding to RPTPalpha is not mediated by a pTyr-SH2 interaction. Mutation of RPTPalpha Ser204 to Asp, mimicking phosphorylation, reduced coimmunoprecipitation with Src, suggesting that phosphorylation of Ser204 prohibits binding to Src. Based on our results, we propose a new model for mitotic activation of Src in which PP2A-mediated dephosphorylation of RPTPalpha pSer204 facilitates Src binding, leading to RPTPalpha-mediated dephosphorylation of Src pTyr527 and pTyr416 and hence modest activation of Src.
Collapse
|
6
|
Yu D, Zhang Q, Wang Z, Qi J, Wang X. Characterization on the alternative splicing, expression and gene phylogenesis of PTPR4 family in Japanese flounder, Paralichthys olivaceus. Genes Genet Syst 2008; 83:189-97. [PMID: 18506102 DOI: 10.1266/ggs.83.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
One mechanism of eukaryotic signaling is protein phosphorylation by protein tyrosine phosphatases (PTPs). Here we have identified the PTP Receptor-Type IV (PTPR4) family, including one form of PTPalpha and two forms of PTPepsilon (PTPepsilon M and PTPepsilon C) in flounder. The existence of PTPepsilon C has not been reported in non-mammalian animals. Semi-quantitative RT-PCR revealed independent expression patterns and levels of PTPalpha and the two forms of PTPepsilon in various tissues. The sequence of PTPepsilon C was identical to that of PTPepsilon M except for its 5'-terminal regions. Southern blot analysis proved that there existed only one PTPepsilon gene in flounder genome, indicating that the two isoforms of PTPepsilon might have been derived from alternative splicing of the single gene. Phylogenetic analysis of PTP domain D2 and part of D1 of PTPR4 showed that flounder was first joint with other teleost fish and then tetrapods, and also provided evidence that the gene duplication from the ancestor gene to PTPalpha and PTPepsilon occurred before the divergence of Gnathastomata and Agnatha. These results showed that the functional evolution of protein phosphorylation is promoted by not only genome duplication, but also elaborate regulation of gene expression.
Collapse
Affiliation(s)
- Dongyi Yu
- Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, P.R. China
| | | | | | | | | |
Collapse
|
7
|
Kapp K, Siemens J, Weyrich P, Schulz JB, Häring HU, Lammers R. Extracellular domain splice variants of a transforming protein tyrosine phosphatase alpha mutant differentially activate Src-kinase dependent focus formation. Genes Cells 2007; 12:63-73. [PMID: 17212655 DOI: 10.1111/j.1365-2443.2006.01034.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The extracellular domains of receptor-type protein-tyrosine phosphatases (PTPs) contain a diverse range of protein modules like fibronectin- or immunoglobulin-like structures. These are frequently expressed in a tissue- and development specific manner as splice variants. The extracellular domain of PTPalpha is rather short and heavily glycosylated. Two splice variants are known, which it differs by an exon encoding nine amino acids within the extracellular domain. We have analyzed the expression pattern of both variants and found that the smaller form is ubiquitously expressed while the larger form was found at an increased level only in brain, some skeletal muscle and differentiating cells like granule neurons, adipocytes and myotubes. The phosphatase activity of both forms was similar when tested in vitro using para-nitrophenylphosphate as a substrate and in a transient expression system with the substrates c-Fyn or c-Src. In a quantitative focus formation assay the capability of the larger form to activate Src-dependent focus formation in intact cells was increased more than twofold whereas the capability to dephosphorylate the insulin receptor in a BHK cell system was similar. We conclude that the two splice variants of PTPalpha are expressed differentially and regulate c-Src activity in different ways.
Collapse
Affiliation(s)
- Katja Kapp
- Medical Clinic IV, Otfried-Müller Str.10, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Cheng H, Straub SG, Sharp GWG. Inhibitory role of Src family tyrosine kinases on Ca2+-dependent insulin release. Am J Physiol Endocrinol Metab 2007; 292:E845-52. [PMID: 17122086 DOI: 10.1152/ajpendo.00103.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both neurotransmitter release and insulin secretion occur via regulated exocytosis and share a variety of similar regulatory mechanisms. It has been suggested that Src family tyrosine kinases inhibit neurotransmitter release from neuronal cells (H. Ohnishi, S. Yamamori, K. Ono, K. Aoyagi, S. Kondo, and M. Takahashi. Proc Natl Acad Sci USA 98: 10930-10935, 2001). Thus the potential role of Src family kinases in the regulation of insulin secretion was investigated in this study. Two structurally different inhibitors of Src family kinases, SU-6656 and PP2, but not the inactive compound, PP3, enhanced Ca2+-induced insulin secretion in both rat pancreatic islets and INS-1 cells in a concentration-dependent and time-dependent manner. Furthermore, Src family kinase-mediated insulin secretion appears to be dependent on elevated intracellular Ca2+ and independent of glucose metabolism, the ATP-dependent K+ channel, adenylyl cyclase, classical PKC isoforms, extracellular signal-regulated kinase 1/2, and insulin synthesis. The sites of action for Src family kinases seem to be distal to the elevation of intracellular Ca2+ level. These results indicate that one or more Src family tyrosine kinases exert a tonic inhibitory role on Ca2+-dependent insulin secretion.
Collapse
Affiliation(s)
- Haiying Cheng
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401, USA
| | | | | |
Collapse
|