1
|
Quilty F, Freeley M, Gargan S, Gilmer J, Long A. Deoxycholic acid induces proinflammatory cytokine production by model oesophageal cells via lipid rafts. J Steroid Biochem Mol Biol 2021; 214:105987. [PMID: 34438042 DOI: 10.1016/j.jsbmb.2021.105987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/28/2022]
Abstract
The bile acid component of gastric refluxate has been implicated in inflammation of the oesophagus including conditions such as gastro-oesophageal reflux disease (GORD) and Barrett's Oesophagus (BO). Here we demonstrate that the hydrophobic bile acid, deoxycholic acid (DCA), stimulated the production of IL-6 and IL-8 mRNA and protein in Het-1A, a model of normal oesophageal cells. DCA-induced production of IL-6 and IL-8 was attenuated by pharmacologic inhibition of the Protein Kinase C (PKC), MAP kinase, tyrosine kinase pathways, by the cholesterol sequestering agent, methyl-beta-cyclodextrin (MCD) and by the hydrophilic bile acid, ursodeoxycholic acid (UDCA). The cholesterol-interacting agent, nystatin, which binds cholesterol without removing it from the membrane, synergized with DCA to induce IL-6 and IL-8. This was inhibited by the tyrosine kinase inhibitor genistein. DCA stimulated the phosphorylation of lipid raft component Src tyrosine kinase (Src). while knockdown of caveolin-1 expression using siRNA resulted in a decreased level of IL-8 production in response to DCA. Taken together, these results demonstrate that DCA stimulates IL-6 and IL-8 production in oesophageal cells via lipid raft-associated signaling. Inhibition of this process using cyclodextrins represents a novel therapeutic approach to the treatment of inflammatory diseases of the oesophagus including GORD and BO.
Collapse
Affiliation(s)
- Francis Quilty
- School of Pharmacy and Pharmaceutical Science, Trinity College Dublin, Dublin 2, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - Michael Freeley
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Siobhan Gargan
- Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - John Gilmer
- School of Pharmacy and Pharmaceutical Science, Trinity College Dublin, Dublin 2, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - Aideen Long
- Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
2
|
Sarkar P, Chattopadhyay A. Cholesterol footprint in high-resolution structures of serotonin receptors: Where are we now and what does it mean? Chem Phys Lipids 2021; 239:105120. [PMID: 34332970 DOI: 10.1016/j.chemphyslip.2021.105120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
An emerging feature of several high-resolution GPCR structures is the presence of closely bound cholesterol molecules. In this Perspective, we share the excitement of the recent advancements in GPCR structural biology. We further highlight our laboratory's journey in comprehensively elucidating functional sensitivity of GPCRs (using the serotonin1A receptor as a representative neurotransmitter GPCR) to membrane cholesterol and validation using a variety of assays and molecular dynamics simulations. Although high-resolution structures of many GPCRs have been reported in the last few years, the structure of the serotoin1A receptor proved to be elusive for a long time. Very recently the cryo-EM structure of the serotoin1A receptor displaying 10 bound cholesterol molecules has been reported. We conclude by providing a critical analysis of caveats involved in GPCR structure determination.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
3
|
A Critical Analysis of Molecular Mechanisms Underlying Membrane Cholesterol Sensitivity of GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:21-52. [PMID: 30649754 DOI: 10.1007/978-3-030-04278-3_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and a diverse family of proteins involved in signal transduction across biological membranes. GPCRs mediate a wide range of physiological processes and have emerged as major targets for the development of novel drug candidates in all clinical areas. Since GPCRs are integral membrane proteins, regulation of their organization, dynamics, and function by membrane lipids, in particular membrane cholesterol, has emerged as an exciting area of research. Cholesterol sensitivity of GPCRs could be due to direct interaction of cholesterol with the receptor (specific effect). Alternately, GPCR function could be influenced by the effect of cholesterol on membrane physical properties (general effect). In this review, we critically analyze the specific and general mechanisms of the modulation of GPCR function by membrane cholesterol, taking examples from representative GPCRs. While evidence for both the proposed mechanisms exists, there appears to be no clear-cut distinction between these two mechanisms, and a combination of these mechanisms cannot be ruled out in many cases. We conclude that classifying the mechanism underlying cholesterol sensitivity of GPCR function merely into these two mutually exclusive classes could be somewhat arbitrary. A more holistic approach could be suitable for analyzing GPCR-cholesterol interaction.
Collapse
|
4
|
Jafurulla M, Chattopadhyay A. Structural Stringency of Cholesterol for Membrane Protein Function Utilizing Stereoisomers as Novel Tools: A Review. Methods Mol Biol 2017; 1583:21-39. [PMID: 28205164 DOI: 10.1007/978-1-4939-6875-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cholesterol is an important lipid in the context of membrane protein function. The function of a number of membrane proteins, including G protein-coupled receptors (GPCRs) and ion channels, has been shown to be dependent on membrane cholesterol. However, the molecular mechanism underlying such regulation is still being explored. In some cases, specific interaction between cholesterol and the protein has been implicated. In other cases, the effect of cholesterol on the membrane properties has been attributed for the regulation of protein function. In this article, we have provided an overview of experimental approaches that are useful for determining the degree of structural stringency of cholesterol for membrane protein function. In the process, we have highlighted the role of immediate precursors in cholesterol biosynthetic pathway in the function of membrane proteins. Special emphasis has been given to the application of stereoisomers of cholesterol in deciphering the structural stringency required for regulation of membrane protein function. A comprehensive examination of these processes would help in understanding the molecular basis of cholesterol regulation of membrane proteins in subtle details.
Collapse
Affiliation(s)
- Md Jafurulla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
5
|
Badana A, Chintala M, Varikuti G, Pudi N, Kumari S, Kappala VR, Malla RR. Lipid Raft Integrity Is Required for Survival of Triple Negative Breast Cancer Cells. J Breast Cancer 2016; 19:372-384. [PMID: 28053625 PMCID: PMC5204043 DOI: 10.4048/jbc.2016.19.4.372] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022] Open
Abstract
Purpose Lipid rafts are cholesterol enriched microdomains that colocalize signaling pathways involved in cell proliferation, metastasis, and angiogenesis. We examined the effect of methyl-β-cyclodextrin (MβCD)-mediated cholesterol extraction on the proliferation, adhesion, invasion, and angiogenesis of triple negative breast cancer (TNBC) cells. Methods We measured cholesterol and estimated cell toxicity. Detergent resistant membrane (DRM) and non-DRM fractions were separated using the OptiPrep gradient method. Cell cycles stages were analyzed by flow cytometry, apoptosis was assessed using the TdT-mediated dUTP nick end-labeling assay, and metastasis was determined using a Matrigel invasion assay. Neo-vessel pattern and levels of angiogenic modulators were determined using an in vitro angiogenesis assay and an angiogenesis array, respectively. Results The present study found that the cholesterol-depleting agent MβCD, efficiently depleted membrane cholesterol and caused concentration dependent (0.1–0.5 mM) cytotoxicity compared to nystatin and filipin III in TNBC cell lines, MDA-MB 231 and MDA-MB 468. A reduced proportion of caveolin-1 found in DRM fractions indicated a cholesterol extraction-induced disruption of lipid raft integrity. MβCD inhibited 52% of MDA-MB 231 cell adhesion on fibronectin and 56% of MDA-MB 468 cell adhesion on vitronectin, while invasiveness of these cells was decreased by 48% and 52% respectively, following MβCD treatment (48 hours). MβCD also caused cell cycle arrest at the G2M phase and apoptosis in MDA-MB 231 cells (25% and 58% cells, respectively) and in MDA-MB 468 cells (30% and 38% cells, respectively). We found that MβCD treated cells caused a 52% and 58% depletion of neovessel formation in both MDA-MB 231 and MDA-MB 468 cell lines, respectively. This study also demonstrated that MβCD treatment caused a respective 2.6- and 2.5-fold depletion of tyrosine protein kinase receptor (TEK) receptor tyrosine kinase levels in both TNBC cell lines. Conclusion MβCD-induced cholesterol removal enhances alterations in lipid raft integrity, which reduces TNBC cell survival.
Collapse
Affiliation(s)
- Anil Badana
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM University, Visakhapatnam, India
| | - Madhuri Chintala
- Department of Obstetrics & Gynecology, Andhra Medical College, Visakhapatnam, India
| | - Gayathri Varikuti
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM University, Visakhapatnam, India
| | - Nagaseshu Pudi
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM University, Visakhapatnam, India
| | - Seema Kumari
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM University, Visakhapatnam, India
| | - Vijaya Rachel Kappala
- Department of Biochemistry, GITAM Institute of Science, GITAM University, Visakhapatnam, India
| | - Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM University, Visakhapatnam, India.; Department of Biochemistry, GITAM Institute of Science, GITAM University, Visakhapatnam, India
| |
Collapse
|
6
|
Borroni MV, Vallés AS, Barrantes FJ. The lipid habitats of neurotransmitter receptors in brain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2662-2670. [PMID: 27424801 DOI: 10.1016/j.bbamem.2016.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/05/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022]
Abstract
Neurotransmitter receptors, the macromolecules specialized in decoding the chemical signals encrypted in the chemical signaling mechanism in the nervous system, occur either at the somatic cell surface of chemically excitable cells or at specialized subcellular structures, the synapses. Synapses have lipid compositions distinct from the rest of the cell membrane, suggesting that neurotransmitter receptors and their scaffolding and adaptor protein partners require specific lipid habitats for optimal operation. In this review we discuss some paradigmatic cases of neurotransmitter receptor-lipid interactions, highlighting the chemical nature of the intervening lipid species and providing examples of the receptor mechanisms affected by interaction with lipids. The focus is on the effects of cholesterol, glycerophospholipids and covalent fatty acid acylation on neurotransmitter receptors. We also briefly discuss the role of lipid phase states involving lateral heterogeneities of the host membrane known to modulate membrane transport, protein sorting and signaling. Modulation of neurotransmitter receptors by lipids occurs at multiple levels, affecting a wide span of activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, and recycling, among other important functional properties at the synapse.
Collapse
Affiliation(s)
- María Virginia Borroni
- Instituto de Tecnología en Polímeros y Nanotecnología (ITPN) Av. Las Heras 2214 C1127AAQ Buenos Aires Argentina
| | - Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, B8000FWB Bahía Blanca, Argentina
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, UCA-CONICET, Faculty of Medical Sciences, Catholic University of Argentina, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| |
Collapse
|
7
|
Chakraborty H, Chattopadhyay A. Excitements and challenges in GPCR oligomerization: molecular insight from FRET. ACS Chem Neurosci 2015; 6:199-206. [PMID: 25363209 DOI: 10.1021/cn500231d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of proteins involved in signal transduction across cell membranes, and they represent major drug targets in all clinical areas. Oligomerization of GPCRs and its implications in drug discovery constitute an exciting area in contemporary biology. In this Review, we have highlighted the application of fluorescence resonance energy transfer (FRET) in exploring GPCR oligomerization, with special emphasis on possible pitfalls and experimental complications involved. Based on FRET photophysics, we discuss some of the possible complications, and recommend that FRET results in complex cellular environments should be interpreted with caution. Although both hetero- and homo-FRET are used in measurements of GPCR oligomerization, we suggest that homo-FRET enjoys certain advantages over hetero-FRET. Given the seminal role of GPCRs as current drug targets, we envision that methodological progress in studying GPCR oligomerization would result in better therapeutic strategies.
Collapse
Affiliation(s)
- Hirak Chakraborty
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
8
|
Filgueira CS, Benod C, Lou X, Gunamalai PS, Villagomez RA, Strom A, Gustafsson JÅ, Berkenstam AL, Webb P. A screening cascade to identify ERβ ligands. NUCLEAR RECEPTOR SIGNALING 2014; 12:e003. [PMID: 25422593 PMCID: PMC4242290 DOI: 10.1621/nrs.12003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/18/2014] [Indexed: 01/23/2023]
Abstract
The establishment of effective high throughput screening cascades to identify nuclear receptor (NR) ligands that will trigger defined, therapeutically useful sets of NR activities is of considerable importance. Repositioning of existing approved drugs with known side effect profiles can provide advantages because de novo drug design suffers from high developmental failure rates and undesirable side effects which have dramatically increased costs. Ligands that target estrogen receptor β (ERβ) could be useful in a variety of diseases ranging from cancer to neurological to cardiovascular disorders. In this context, it is important to minimize cross-reactivity with ERα, which has been shown to trigger increased rates of several types of cancer. Because of high sequence similarities between the ligand binding domains of ERα and ERβ, preferentially targeting one subtype can prove challenging. Here, we describe a sequential ligand screening approach comprised of complementary in-house assays to identify small molecules that are selective for ERβ. Methods include differential scanning fluorimetry, fluorescence polarization and a GAL4 transactivation assay. We used this strategy to screen several commercially-available chemical libraries, identifying thirty ERβ binders that were examined for their selectivity for ERβ versus ERα, and tested the effects of selected ligands in a prostate cancer cell proliferation assay. We suggest that this approach could be used to rapidly identify candidates for drug repurposing.
Collapse
Affiliation(s)
- Carly S Filgueira
- Genomic Medicine, Houston Methodist Research Institute (CSF, CB, XL, PSG, RAV, ALB, PW) and Center for Nuclear Receptors and Cell Signaling, University of Houston (AS, JAG, ALB, PW), Houston, Texas, USA
| | - Cindy Benod
- Genomic Medicine, Houston Methodist Research Institute (CSF, CB, XL, PSG, RAV, ALB, PW) and Center for Nuclear Receptors and Cell Signaling, University of Houston (AS, JAG, ALB, PW), Houston, Texas, USA
| | - Xiaohua Lou
- Genomic Medicine, Houston Methodist Research Institute (CSF, CB, XL, PSG, RAV, ALB, PW) and Center for Nuclear Receptors and Cell Signaling, University of Houston (AS, JAG, ALB, PW), Houston, Texas, USA
| | - Prem S Gunamalai
- Genomic Medicine, Houston Methodist Research Institute (CSF, CB, XL, PSG, RAV, ALB, PW) and Center for Nuclear Receptors and Cell Signaling, University of Houston (AS, JAG, ALB, PW), Houston, Texas, USA
| | - Rosa A Villagomez
- Genomic Medicine, Houston Methodist Research Institute (CSF, CB, XL, PSG, RAV, ALB, PW) and Center for Nuclear Receptors and Cell Signaling, University of Houston (AS, JAG, ALB, PW), Houston, Texas, USA
| | - Anders Strom
- Genomic Medicine, Houston Methodist Research Institute (CSF, CB, XL, PSG, RAV, ALB, PW) and Center for Nuclear Receptors and Cell Signaling, University of Houston (AS, JAG, ALB, PW), Houston, Texas, USA
| | - Jan-Åke Gustafsson
- Genomic Medicine, Houston Methodist Research Institute (CSF, CB, XL, PSG, RAV, ALB, PW) and Center for Nuclear Receptors and Cell Signaling, University of Houston (AS, JAG, ALB, PW), Houston, Texas, USA
| | - Anders L Berkenstam
- Genomic Medicine, Houston Methodist Research Institute (CSF, CB, XL, PSG, RAV, ALB, PW) and Center for Nuclear Receptors and Cell Signaling, University of Houston (AS, JAG, ALB, PW), Houston, Texas, USA
| | - Paul Webb
- Genomic Medicine, Houston Methodist Research Institute (CSF, CB, XL, PSG, RAV, ALB, PW) and Center for Nuclear Receptors and Cell Signaling, University of Houston (AS, JAG, ALB, PW), Houston, Texas, USA
| |
Collapse
|
9
|
Liu X, Giguère V. Inactivation of RARβ inhibits Wnt1-induced mammary tumorigenesis by suppressing epithelial-mesenchymal transitions. NUCLEAR RECEPTOR SIGNALING 2014; 12:e004. [PMID: 25422594 PMCID: PMC4242291 DOI: 10.1621/nrs.12004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022]
Abstract
Retinoic acid receptor β (RARβ) has been proposed to act as a tumor suppressor in
breast cancer. In contrast, recent data have shown that RARβ promotes ERBB2-induced mammary
gland tumorigenesis through remodeling of the stromal compartment and activation of
cancer-associated fibroblasts. However, it is currently unknown whether RARβ oncogenic
activity is specific to ERBB2-induced tumors, or whether it influences the initiation and
progression of other breast cancer subtypes. Accordingly, we set out to investigate the involvement
of RARβ in basal-like breast cancer using mouse mammary tumor virus (MMTV)-wingless-related
integration site 1 (Wnt1)-induced mammary gland tumorigenesis as a model system. We found that
compared with wild type mice, inactivation of Rarb resulted in a lengthy delay in
Wnt1-induced mammary gland tumorigenesis and in a significantly slower tumor growth
rate. Ablation of Rarb altered the composition of the stroma, repressed the
activation of cancer-associated fibroblasts, and reduced the recruitment of inflammatory cells and
angiogenesis. Reduced expression of IGF-1 and activity of its downstream signaling pathway
contribute to attenuate EMT in the Rarb-null tumors. Our results show that, in the
absence of retinoid signaling via RARβ, reduced IGF-1 signaling results in suppression of
epithelial-mesenchymal transition and delays tumorigenesis induced by the Wnt1
oncogene. Accordingly, our work reinforces the concept that antagonizing RARβ-dependent
retinoid signaling could provide a therapeutic avenue to treat poor outcome breast cancers.
Collapse
Affiliation(s)
- Xingxing Liu
- Goodman Cancer Research Centre, 1160 Pine Avenue West, McGill University, Montréal, Québec H3A 1A3 (XL, VG) and Departments of Biochemistry, Medicine and Oncology, 3655 Promenade Sir William Osler, McGill University, Montréal, Québec H3G 1Y6 (VG), Canada
| | - Vincent Giguère
- Goodman Cancer Research Centre, 1160 Pine Avenue West, McGill University, Montréal, Québec H3A 1A3 (XL, VG) and Departments of Biochemistry, Medicine and Oncology, 3655 Promenade Sir William Osler, McGill University, Montréal, Québec H3G 1Y6 (VG), Canada
| |
Collapse
|
10
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of molecules involved in signal transduction across cell membranes and represent major targets in the development of novel drug candidates in all clinical areas. Although there have been some recent leads, structural information on GPCRs is relatively rare due to the difficulty associated with crystallization. A specific reason for this is the intrinsic flexibility displayed by GPCRs, which is necessary for their functional diversity. Since GPCRs are integral membrane proteins, interaction of membrane lipids with them constitutes an important area of research in GPCR biology. In particular, membrane cholesterol has been reported to have a modulatory role in the function of a number of GPCRs. The role of membrane cholesterol in GPCR function is discussed with specific example of the serotonin1A receptor. Recent results show that GPCRs are characterized with structural motifs that preferentially associate with cholesterol. An emerging and important concept is oligomerization of GPCRs and its role in GPCR function and signaling. The role of membrane cholesterol in GPCR oligomerization is highlighted. Future research in GPCR biology would offer novel insight in basic biology and provide new avenues for drug discovery.
Collapse
|
11
|
Singh P, Haldar S, Chattopadhyay A. Differential effect of sterols on dipole potential in hippocampal membranes: implications for receptor function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012. [PMID: 23201544 DOI: 10.1016/j.bbamem.2012.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dipole potential is the potential difference within the membrane bilayer, which originates due to the nonrandom arrangement of lipid dipoles and water molecules at the membrane interface. In this work, we have explored the possible correlation between functional modulation of a G protein-coupled receptor (the serotonin(1A) receptor) and membrane dipole potential, under conditions of altered membrane sterol composition. We have previously shown that the ligand binding activity of the hippocampal serotonin(1A) receptor is reduced upon cholesterol depletion and could be restored upon replenishment with cholesterol. Interestingly, when the replenishment was carried out with an immediate biosynthetic precursor of cholesterol (7-DHC), differing with cholesterol merely in a double bond, the ligand binding activity of the receptor was not restored. In order to understand the mechanistic framework of receptor-cholesterol interaction, we carried out dipole potential measurements of hippocampal membranes under these conditions, by the dual wavelength ratiometric approach using an electrochromic probe (di-8-ANEPPS). We show here that dipole potential of hippocampal membranes is reduced upon progressive depletion of cholesterol and is restored upon replenishment with cholesterol, but not with 7-DHC. Our results show that the recovery of ligand binding activity of the serotonin(1A) receptor upon replenishment with cholesterol (but not with 7-DHC) could be related to the differential ability of these closely related sterols to modulate membrane dipole potential. We conclude that subtle changes in membrane dipole potential could be crucial in understanding the complex interplay between membrane lipids and proteins in the cellular milieu.
Collapse
Affiliation(s)
- Pushpendra Singh
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | | | | |
Collapse
|
12
|
Jones KT, Zhen J, Reith MEA. Importance of cholesterol in dopamine transporter function. J Neurochem 2012; 123:700-15. [PMID: 22957537 DOI: 10.1111/jnc.12007] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/31/2012] [Accepted: 09/01/2012] [Indexed: 11/28/2022]
Abstract
The conformation and function of the dopamine transporter (DAT) can be affected by manipulating membrane cholesterol, yet there is no agreement as to the impact of cholesterol on the activity of lipid-raft localized DATs compared with non-raft DATs. Given the paucity of information regarding the impact of cholesterol on substrate efflux by the DAT, this study explores its influence on the kinetics of DAT-mediated DA efflux induced by dextroamphetamine, as measured by rotating disk electrode voltammetry (RDEV). Treatment with methyl-β-cyclodextrin (mβCD), which effectively depletes total membrane cholesterol--uniformly affecting cholesterol-DAT interactions in both raft and non-raft membrane domains--reduced both DA uptake and efflux rate. In contrast, disruption of raft-localized DAT by cholesterol chelation with nystatin had no effect, arguing against a vital role for raft-localized DAT in substrate uptake or efflux. Supranormal repletion of cholesterol-depleted cells with the analog desmosterol, a non-raft promoting sterol, was as effective as cholesterol itself in restoring transport rates. Further studies with Zn(2+) and the conformationally biased W84L DAT mutant supported the idea that cholesterol is important for maintaining the outward-facing DAT with normal rates of conformational interconversions. Collectively, these results point to a role for direct cholesterol-DAT interactions in regulating DAT function.
Collapse
Affiliation(s)
- Kymry T Jones
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| | | | | |
Collapse
|
13
|
Chattopadhyay A, Jafurulla M. Role of membrane cholesterol in leishmanial infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:201-13. [PMID: 22695847 DOI: 10.1007/978-1-4614-3381-1_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Paila YD, Chattopadhyay A. Membrane cholesterol in the function and organization of G-protein coupled receptors. Subcell Biochem 2010; 51:439-66. [PMID: 20213554 DOI: 10.1007/978-90-481-8622-8_16] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cholesterol is an essential component of higher eukaryotic membranes and plays a crucial role in membrane organization, dynamics and function. The G-protein coupled receptors (GPCRs) are the largest class of molecules involved in signal transduction across membranes, and represent major targets in the development of novel drug candidates in all clinical areas. Membrane cholesterol has been reported to have a modulatory role in the function of a number of GPCRs. Two possible mechanisms have been previously suggested by which membrane cholesterol could influence the structure and function of GPCRs (i) through a direct/specific interaction with GPCRs, or (ii) through an indirect way by altering membrane physical properties in which the receptor is embedded, or due to a combination of both. Recently reported crystal structures of GPCRs have shown structural evidence of cholesterol binding sites. Against this backdrop, we recently proposed a novel mechanism by which membrane cholesterol could affect structure and function of GPCRs. According to our hypothesis, cholesterol binding sites in GPCRs could represent 'nonannular' binding sites. Interestingly, previous work from our laboratory has demonstrated that membrane cholesterol is required for the function of the serotonin(1A) receptor (a representative GPCR), which could be due to specific interaction of the receptor with cholesterol. Based on these results, we envisage that there could be specific/nonannular cholesterol binding site(s) in the serotonin(1A) receptor. We have analyzed putative cholesterol binding sites from protein databases in the serotonin(1A) receptor. Our analysis shows that cholesterol binding sites are inherent characteristic features of serotonin(1A) receptors and are conserved through natural evolution. Progress in deciphering molecular details of the GPCR-cholesterol interaction in the membrane would lead to better insight into our overall understanding of GPCR function in health and disease, thereby enhancing our ability to design better therapeutic strategies to combat diseases related to malfunctioning of GPCRs.
Collapse
Affiliation(s)
- Yamuna Devi Paila
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, 500 007, India
| | | |
Collapse
|
15
|
Are specific nonannular cholesterol binding sites present in G-protein coupled receptors? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:295-302. [DOI: 10.1016/j.bbamem.2008.11.020] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 11/18/2008] [Accepted: 11/20/2008] [Indexed: 11/23/2022]
|
16
|
Paila YD, Chattopadhyay A. The function of G-protein coupled receptors and membrane cholesterol: specific or general interaction? Glycoconj J 2008; 26:711-20. [DOI: 10.1007/s10719-008-9218-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 10/29/2008] [Accepted: 11/07/2008] [Indexed: 01/21/2023]
|
17
|
Oropouche virus entry into HeLa cells involves clathrin and requires endosomal acidification. Virus Res 2008; 138:139-43. [PMID: 18840482 PMCID: PMC7114418 DOI: 10.1016/j.virusres.2008.08.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/28/2008] [Accepted: 08/30/2008] [Indexed: 11/21/2022]
Abstract
Oropouche virus (ORO), family Bunyaviridae, is the second most frequent cause of arboviral febrile illness in Brazil. Studies were conducted to understand ORO entry in HeLa cells. Chlorpromazine inhibited early steps of ORO replication cycle, consistent with entry/uncoating. The data indicate that ORO enters HeLa cells by clathrin-coated vesicles, by a mechanism susceptible to endosomal acidification inhibitors. Transmission electron microscopy and immunofluorescence indicated that ORO associates with clathrin-coated pits and can be found in association with late endosomes in a time shorter than 1 h.
Collapse
|
18
|
Kalipatnapu S, Chattopadhyay A. Membrane organization and function of the serotonin(1A) receptor. Cell Mol Neurobiol 2007; 27:1097-116. [PMID: 17710529 DOI: 10.1007/s10571-007-9189-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 07/27/2007] [Indexed: 01/02/2023]
Abstract
(1) The serotonin(1A) receptor is a G-protein coupled receptor involved in several cognitive, behavioral, and developmental functions. It binds the neurotransmitter serotonin and signals across the membrane through its interactions with heterotrimeric G-proteins. (2) Lipid-protein interactions in membranes play an important role in the assembly, stability, and function of membrane proteins. The role of membrane environment in serotonin(1A) receptor function is beginning to be addressed by exploring the consequences of lipid manipulations on the ligand binding and G-protein coupling of serotonin(1A) receptors, the ability to functionally solubilize the serotonin(1A) receptor, and the factors influencing the membrane organization of the serotonin(1A) receptor. (3) Recent developments involving the application of detergent-based and detergent-free approaches to understand the membrane organization of the serotonin(1A) receptor under conditions of ligand activation and modulation of membrane lipid content, with an emphasis on membrane cholesterol, are described.
Collapse
Affiliation(s)
- Shanti Kalipatnapu
- Divisionof Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0377, USA
| | | |
Collapse
|
19
|
Chattopadhyay A, Paila YD. Lipid-protein interactions, regulation and dysfunction of brain cholesterol. Biochem Biophys Res Commun 2007; 354:627-33. [PMID: 17254551 DOI: 10.1016/j.bbrc.2007.01.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 01/08/2007] [Indexed: 12/14/2022]
Abstract
The biosynthesis and metabolism of cholesterol in the brain is spatiotemporally and developmentally regulated. Brain cholesterol plays an important role in maintaining the function of neuronal receptors, which are key components in neural signal transduction. This is illustrated by the requirement of membrane cholesterol for the function of the serotonin(1A) receptor, a transmembrane neurotransmitter receptor. A crucial determinant for the function of neuronal receptors could be the availability of brain cholesterol. The Smith-Lemli-Optiz Syndrome, a metabolic disorder characterized by severe neurodegeneration leading to mental retardation, represents a condition in which the availability of brain cholesterol is limited. A comprehensive molecular analysis of lipid-protein interactions in healthy and diseased states could be crucial for a better understanding of the pathogenesis of psychiatric disorders.
Collapse
|
20
|
Paila YD, Chattopadhyay A. The Human Serotonin
1A
Receptor Expressed in Neuronal Cells: Toward a Native Environment for Neuronal Receptors. Cell Mol Neurobiol 2006. [DOI: 10.1007/pl00021779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Pucadyil TJ, Chattopadhyay A. Role of cholesterol in the function and organization of G-protein coupled receptors. Prog Lipid Res 2006; 45:295-333. [PMID: 16616960 DOI: 10.1016/j.plipres.2006.02.002] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cholesterol is an essential component of eukaryotic membranes and plays a crucial role in membrane organization, dynamics and function. The modulatory role of cholesterol in the function of a number of membrane proteins is well established. This effect has been proposed to occur either due to a specific molecular interaction between cholesterol and membrane proteins or due to alterations in the membrane physical properties induced by the presence of cholesterol. The contemporary view regarding heterogeneity in cholesterol distribution in membrane domains that sequester certain types of membrane proteins while excluding others has further contributed to its significance in membrane protein function. The seven transmembrane domain G-protein coupled receptors (GPCRs) are among the largest protein families in mammals and represent approximately 2% of the total proteins coded by the human genome. Signal transduction events mediated by this class of proteins are the primary means by which cells communicate with and respond to their external environment. GPCRs therefore represent major targets for the development of novel drug candidates in all clinical areas. In view of their importance in cellular signaling, the interaction of cholesterol with such receptors represents an important determinant in functional studies of such receptors. This review focuses on the effect of cholesterol on the membrane organization and function of GPCRs from a variety of sources, with an emphasis on the more contemporary role of cholesterol in maintaining a domain-like organization of such receptors on the cell surface. Importantly, the recently reported role of cholesterol in the function and organization of the neuronal serotonin(1A) receptor, a representative of the GPCR family which is present endogenously in the hippocampal region of the brain, will be highlighted.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | |
Collapse
|
22
|
Ogawa Y, Mizumoto N, Tanaka H, Matsushima H, Takashima A. Identification of novel pharmacological activities of an antifungal agent, nystatin, to promote dendritic cell maturation. J Invest Dermatol 2006; 126:349-53. [PMID: 16374455 DOI: 10.1038/sj.jid.5700081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As an unbiased functional screen to identify agents activating dendritic cells (DCs), we recently developed a DC-based biosensor system, in which a stable murine DC line XS106 was engineered to express the yellow fluorescent protein (YFP) gene under the control of the IL-1beta promoter. Here we report that nystatin (NYT), an antifungal drug of the family of polyene macrolide antibiotics, elevated YFP expression by the resulting XS106-pIL1-YFP DC biosensor clone in a dose-dependent fashion. With respect to the underlying mechanisms, NYT activated the NFkappaB p65 and c-Rel subunits in the parental XS106 DC line. Moreover, NYT dose-dependently increased the surface expression of major histocompatibility complex (MHC) class II (MHC II), CD40, CD54, CD80, and CD86 by murine bone marrow-derived DCs and triggered their robust production of IL-1beta, IL-6, IL-12, tumor necrosis factor alpha, and macrophage inflammatory protein-1alpha. Our results document previously unrecognized pharmacological activities of the most commonly used antifungal drug to promote DC maturation.
Collapse
Affiliation(s)
- Yasushi Ogawa
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
23
|
Funchal C, Schuck PF, Santos AQD, Jacques-Silva MC, Gottfried C, Pessoa-Pureur R, Wajner M. Creatine and antioxidant treatment prevent the inhibition of creatine kinase activity and the morphological alterations of C6 glioma cells induced by the branched-chain alpha-keto acids accumulating in maple syrup urine disease. Cell Mol Neurobiol 2006; 26:67-79. [PMID: 16633902 DOI: 10.1007/s10571-006-9098-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 10/14/2005] [Indexed: 11/28/2022]
Abstract
Accumulation of the branched-chain alpha-keto acids (BCKA), alpha-ketoisocaproic acid (KIC), alpha-keto-beta-methylvaleric acid (KMV), and alpha-ketoisovaleric acid (KIV) and their respective branched-chain alpha-amino acids (BCAA) in tissues and biological fluids is the biochemical hallmark of patients affected by the neurometabolic disorder known as maple syrup urine disease (MSUD). Considering that brain energy metabolism is possibly altered in MSUD, the objective of this study was to determine creatine kinase (CK) activity, a key enzyme of energy homeostasis, in C6 glioma cells exposed to BCKA. The cells were incubated with 1, 5, or 10 mM BCKA for 3 h and the CK activity measured afterwards. The results indicated that the BCKA significantly inhibited CK activity at all tested concentrations. Furthermore, the inhibition caused by the BCKA on CK activity was totally prevented by preincubation with the energetic substrate creatine and by coincubation with the N-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, indicating that deficit of energy and nitric oxide (NO) are involved in these effects. In contrast, other antioxidants such as glutathione (GSH) and trolox (soluble Vitamin E) were not able to prevent CK inhibition. In addition, we observed that the C6 cells changed their usual rounded morphology when exposed for 3 h to 10 mM BCKA and that creatine and L-NAME prevented these morphological alterations. Considering the importance of CK for brain metabolism homeostasis, it is conceivable that inhibition of this enzyme by increased levels of BCKA may contribute to the neurodegeneration of MSUD patients.
Collapse
Affiliation(s)
- Cláudia Funchal
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 anexo, 90035-003, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | |
Collapse
|
24
|
Mukherjee S, Chattopadhyay A. Monitoring the organization and dynamics of bovine hippocampal membranes utilizing Laurdan generalized polarization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1714:43-55. [PMID: 16042963 DOI: 10.1016/j.bbamem.2005.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 06/23/2005] [Accepted: 06/23/2005] [Indexed: 11/18/2022]
Abstract
Organization and dynamics of cellular membranes in the nervous system are crucial for the function of neuronal membrane receptors. The lipid composition of neuronal cells is unique and has been correlated with the increased complexity in the organization of the nervous system during evolution. Previous work from our laboratory has established bovine hippocampal membranes as a convenient natural source for studying neuronal receptors such as the G-protein coupled serotonin1A receptor. In this paper, we have explored the organization and dynamics of bovine hippocampal membranes using the amphiphilic environment-sensitive fluorescent probe Laurdan. Our results show that the emission spectra of Laurdan display an additional red shifted peak as a function of increasing temperature in native as well as cholesterol-depleted membranes and liposomes made from lipid extracts of the native membrane. Interestingly, wavelength dependence of Laurdan generalized polarization (GP) in native membranes indicates the presence of an ordered gel-like phase at low temperatures, whereas characteristics of the liquid-ordered phase are observed at high temperatures. Similar experiments performed using cholesterol-depleted membranes show fluidization of the membrane with increasing cholesterol depletion. In addition, results from fluorescence polarization of DPH indicate that the hippocampal membrane is fairly ordered even at physiological temperature. The temperature dependence of Laurdan excitation GP provides a measure of the apparent thermal transition temperature and extent of cooperativity in these membranes. Analysis of time-resolved fluorescence measurements of Laurdan shows reduction in mean fluorescence lifetime with increasing temperature due to change in environmental polarity. These results constitute novel information on the dynamics of hippocampal membranes and its modulation by cholesterol depletion monitored using Laurdan fluorescence.
Collapse
Affiliation(s)
- Soumi Mukherjee
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
25
|
Kalipatnapu S, Chattopadhyay A. Membrane Protein Solubilization: Recent Advances and Challenges in Solubilization of Serotonin1A Receptors. IUBMB Life 2005; 57:505-12. [PMID: 16081372 DOI: 10.1080/15216540500167237] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Solubilization of integral membrane proteins is a process in which the proteins and lipids that are held together in native membranes are suitably dissociated in a buffered detergent solution. The controlled dissociation of the membrane results in formation of small protein and lipid clusters that remain dissolved in the aqueous solution. Effective solubilization and purification of membrane proteins, especially heterologously-expressed proteins in mammalian cells in culture, in functionally active forms represent important steps in understanding structure-function relationship of membrane proteins. In this review, critical factors determining functional solubilization of membrane proteins are highlighted with the solubilization of the serotonin 1A receptor taken as a specific example.
Collapse
|
26
|
Kalipatnapu S, Jafurulla M, Chandrasekaran N, Chattopadhyay A. Effect of Mg2+ on guanine nucleotide sensitivity of ligand binding to serotonin1A receptors from bovine hippocampus. Biochem Biophys Res Commun 2004; 323:372-6. [PMID: 15369761 DOI: 10.1016/j.bbrc.2004.08.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Indexed: 11/22/2022]
Abstract
The serotonin1A (5-HT1A) receptor is an important member of the superfamily of seven transmembrane domain G-protein coupled receptors (GPCRs). We report here that guanine nucleotide sensitivity of agonist binding to hippocampal 5-HT1A receptors is dependent on the concentration of Mg2+. Our results show that agonist binding to 5-HT1A receptors is relatively insensitive to guanine nucleotides in the absence of Mg2+. In contrast to this, the specific antagonist binding is insensitive to guanine nucleotides, even in the presence of Mg2+. These results point out the requirement of an optimal concentration of Mg2+ which could be used in assays toward determining guanine nucleotide sensitivity of ligand binding to GPCRs such as the 5-HT1A receptor. Our results provide novel insight into the requirement and concentration dependence of Mg2+ in relation to guanine nucleotide sensitivity for the 5-HT1A receptor in particular, and GPCRs in general.
Collapse
Affiliation(s)
- Shanti Kalipatnapu
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
27
|
Kalipatnapu S, Chattopadhyay A. A GFP fluorescence-based approach to determine detergent insolubility of the human serotonin1A
receptor. FEBS Lett 2004; 576:455-60. [PMID: 15498580 DOI: 10.1016/j.febslet.2004.09.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 09/13/2004] [Indexed: 11/23/2022]
Abstract
Insolubility in non-ionic detergents such as Triton X-100 is a widely used biochemical criterion for characterization of membrane domains. We report here a novel green fluorescent protein fluorescence-based approach to directly determine detergent insolubility of specific membrane proteins. We have applied this method to explore the detergent resistance of an important G-protein coupled receptor, the serotonin1A (5-HT1A) receptor. Our results show, for the first time, that a small yet significant fraction of the 5-HT1A receptor exhibits detergent insolubility. These results are validated by control experiments involving fluorescent lipid probes and protein markers. Our results assume relevance in the context of localization of the 5-HT1A receptor in membrane domains and its significance in receptor function and signaling.
Collapse
Affiliation(s)
- Shanti Kalipatnapu
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|