1
|
Baskol G, Yetkin MÖ, Sevim DG, Guclu K, Arda H, Saracoglu H, Gahramanov K, Evereklioglu C. Serum GAS6, sAXL, IL-10, NO, and BCL-2 levels are decreased in patients with Behçet's disease. Indian J Ophthalmol 2024; 72:S468-S472. [PMID: 38648454 PMCID: PMC467006 DOI: 10.4103/ijo.ijo_2829_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE Behçet's disease (BD) is an autoimmune chronic systemic inflammatory disease characterized by a versatile clinical spectrum. Growth arrest specific protein 6 (GAS6)/soluble AXL (sAXL) signaling pathway draws attention in the resolution of inflammation, and its deficiency is associated with chronic inflammatory, autoimmune diseases, as well as clearance of apoptotic cells by phagocytes - efferocytosis. In this study, it was aimed to investigate whether GAS6/sAXL, interleukin (IL)-10, nitric oxide (NO), and BCL-2 levels were associated with inflammation and efferocytosis contributes to the pathogenesis of BD. METHODS A total of 37 Behçet patients with ocular involvement and 30 healthy control subjects were included in this study. GAS6, sAXL, IL-10, NO, and BCL-2 levels were quantified using enzyme-linked immunosorbent assay (ELISA) method. RESULTS Serum GAS6, sAXL, IL-10, NO, and BCL-2 levels were significantly lower in patients with BD compared to the controls (P < 0.005, P < 0.001, P < 0.001, P < 0.001, and P < 0.001, respectively). In correlation analysis, research parameters decreased in patients with BD was significantly correlated with each other: GAS6-IL-10 (r = 0.585, P < 0.001), GAS6-BCL-2 (r = 0.541, P < 0.001), sAXL-BCL-2 (r = 0.696, P < 0.001), IL-10-NO (r = 0.717, P < 0.001), IL-10-BCL-2 (r = 0.759, P < 0.001), and NO-BCL-2 (r = 0.541, P < 0.001). CONCLUSION In conclusion, decreased serum BCL-2 level may be an indicator of increased apoptosis in these patients and decreased levels of GAS6/sAXL, IL-10, and NO may indicate insufficient clearance of apoptotic bodies released as a result of increased apoptosis in BD patients.
Collapse
Affiliation(s)
- Gulden Baskol
- Department of Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Merve Ö. Yetkin
- Department of Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Duygu G Sevim
- Department of Ophthalmology, Division of Uvea-Behçet Unit, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Kenan Guclu
- Department of Biochemistry, Kayseri State Hospital, Kayseri, Turkey
| | - Hatice Arda
- Department of Ophthalmology, Division of Uvea-Behçet Unit, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Hatice Saracoglu
- Department of Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Kamran Gahramanov
- Department of Ophthalmology, Division of Uvea-Behçet Unit, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Cem Evereklioglu
- Department of Ophthalmology, Division of Uvea-Behçet Unit, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
2
|
Wang L, Liu C, Wang X, Ma S, Liu F, Zhang Y, Wang Y, Shen M, Wu X, Wu Q, Gong C. Tumor-specific activated nano-domino-CRISPR to amplify intrinsic oxidative and activate endogenous apoptosis for spatiotemporally specific therapy. Biomaterials 2023; 295:122056. [PMID: 36805243 DOI: 10.1016/j.biomaterials.2023.122056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/29/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
As a non-invasive modality with unique spatiotemporal selectivity, photodynamic therapy (PDT) is emerging as a candidate in cancer treatment. Nevertheless, intrinsic anti-oxidative stress factors represented by the up-regulated B cell lymphoma/leukemia-2 (Bcl-2) and the attenuated-PDT activity along the light path are still the major concerns, therefore exploring the PDT-based synergistic and augmented strategies is challenging but imperative. Here, a tumor-specific activated nano-domino-CRISPR (TAN) is fabricated and coloaded with chlorins e6 (Ce6) and CRISPR/Cas9 plasmid targeting Bcl-2 gene to amplify intrinsic oxidative and activate endogenous apoptosis for spatiotemporally specific therapy. Inert TAN acting as the first domino is activated in enzyme-abundant intracellular environment to strip the shell. The activated TAN pushes the subsequent dominos, encompassing orderly efficient lysosomal escape, gene delivery, precise disruption of Bcl-2 protein and PDT effect induced by the shell containing Ce6 with light to trigger further domino effects. For tumor cells located superficial sites, down-regulated Bcl-2 reduces cellular GSH content and potentiates oxidative stress of PDT. Cells located deep sites are triggered endogenous apoptosis by disruption of Bcl-2. The high anti-tumor efficacy of TAN is demonstrated both in vitro and in vivo. Overall, our work offers a valuable emerging approach for conquering the therapeutical deficiency of PDT.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Chao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xinxin Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Shuang Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Furong Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yi Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Yan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Meiling Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xinyue Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
3
|
Zhang L, Dong R, Wang Y, Wang L, Zhou T, Jia D, Meng Z. The anti-breast cancer property of physcion via oxidative stress-mediated mitochondrial apoptosis and immune response. PHARMACEUTICAL BIOLOGY 2021; 59:303-310. [PMID: 33715588 PMCID: PMC7971271 DOI: 10.1080/13880209.2021.1889002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CONTEXT Physcion (Phy) exerts several pharmacological effects including anti-inflammatory, antioxidant, and antitumor properties. OBJECTIVE This study investigates the cytotoxicity and its underlying mechanisms of Phy on breast cancer. MATERIALS AND METHODS Human breast cancer cell MCF-7 was treated with 5-400 µM Phy for 24 h, MCF-7-xenografted BALB/c nude mice and immunosuppressive mice model induced by cyclophosphamide were intraperitoneally injected with 0.1 mL/mouse normal saline (control group) and 30 mg/kg Phy every other day for 14 or 28 days, and pathological examination, ELISA and western blot were employed to investigate the Phy anti-breast cancer property in vitro and in vivo. RESULTS In MCF-7 cells, Phy 24 h treatment significantly reduced the cell viability at dose of 50-400 µM and 24 h, with an IC50 of 203.1 µM, and 200 µM Phy induced 56.9, 46.9, 36.9, and 46.9% increment on LDH and caspase-3, -8 and -9. In MCF-7-xenograft tumour nude mice and immunosuppressive mice, 30 mg/kg Phy treatment inhibited tumour growth from the 8th day, and reduced Bcl-2 and Bcl-xL >50%, HO-1 and SOD-1 > 70% in tumour tissues of immunosuppressive mice. In addition, Phy reduced nuclear factor erythroid 2-related factor 2 > 30% and its downstream proteins, and enhanced the phosphorylation of nuclear factor-kappa B > 110% and inhibitor of NF-кB α > 80% in the tumour tissues of BALB/c mice. DISCUSSION AND CONCLUSIONS This research demonstrated that Phy has an anti-breast cancer property via the modulation of oxidative stress-mediated mitochondrial apoptosis and immune response, which provides a scientific basis for further research on its clinical applications.
Collapse
Affiliation(s)
- Luping Zhang
- The Gastroenterology & Endoscopy Center, First Hospital, Jilin University, Changchun, Jilin, China
| | - Ruitao Dong
- School of Life Sciences, Jilin University, Changchun, China
| | - Yu Wang
- The Gastroenterology & Endoscopy Center, First Hospital, Jilin University, Changchun, Jilin, China
| | - Longxiang Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Tian Zhou
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, China
| | - Dongxu Jia
- School of Life Sciences, Jilin University, Changchun, China
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, China
- CONTACT Dongxu Jia School of Life Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Zhaoli Meng
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, China
- Zhaoli Meng Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun City, Jilin Province, P. R. China
| |
Collapse
|
4
|
Abo El-Maali N, Badr G, Sayed D, Adam R, Abd El Wahab G. Enhanced susceptibility to apoptosis and growth arrest of human breast carcinoma cells treated with silica nanoparticles loaded with monohydroxy flavone compounds. Biochem Cell Biol 2019; 97:513-525. [PMID: 30640511 DOI: 10.1139/bcb-2018-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The treatment of drug-resistant cancer is a clinical challenge, hence screening for novel anticancer drugs is critically important. In this study, we investigated the anti-tumor potential of three plant-derived flavone compounds: 3-hydroxy flavone (3-HF), 6-hydroxy flavone (6-HF), and 7-hydroxy flavone (7-HF), either alone or combined with silica nanoparticles (3-HF + NP, 6-HF + NP, and 7-HF + NP), on the human breast carcinoma cell lines MDA-MB-231 and MCF-7, as well as on non-tumorigenic normal breast epithelial cells (MCF-10). The IC50 values of these flavone compounds loaded with NP (flavones + NP) in these cell lines were determined to be 1.5 μg/mL without affecting the viability of normal MCF-10 cells. Additionally, using annexin V - propidium iodide double-staining followed by flow cytometry analysis, we found that the combination of flavones with NP significantly induced apoptosis in MCF-7 and MDA-MB-231 cancer cells. Furthermore, flavones + NP increased the expression of cytochrome c and caspase-9, mediating the growth arrest of these cancer cells. Most importantly, the combination of flavones with NP significantly abolished the expression of ATF-3, which is responsible for the proliferation and invasion of bone-metastatic breast cancer cells. Our data revealed the potential therapeutic effects of these flavones in fighting breast cancer cells, and provide the first insights concerning the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Nagwa Abo El-Maali
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt.,Multidisciplinary Research Centre of Excellence, Assiut University, Egypt
| | - Gamal Badr
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Douaa Sayed
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Randa Adam
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Gamal Abd El Wahab
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
5
|
Yavaşoğlu İ, Sargın G, Kadıköylü G, Karul A, Bolaman Z. Serum Bcl-2 Levels in Patients with β-Thalassemia Minor: A Pilot Study. Turk J Haematol 2015; 31:363-6. [PMID: 25541652 PMCID: PMC4454050 DOI: 10.4274/tjh.2013.0152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: Anti-apoptotic proteins such as Bcl-2 and Bcl-xL may play a role in the survival of erythroid progenitor cells. Information about these proteins in patients with β-thalassemia minor is limited. We aimed to determine the levels of serum Bcl-2 in patients with β-thalassemia minor. Materials and Methods: Ninety-seven patients (60 females and 37 males with mean age of 29±21 years) with β-thalassemia minor were enrolled in this study. The diagnosis of β-thalassemia minor was based on whole blood counts, family history, and HbA2 levels estimated by high-performance liquid chromatography. The control group comprised 23 healthy adults (17 females and 6 males with mean age of 58±9 years) without anemia. The levels of serum Bcl-2 were measured by enzyme-linked immunosorbent assay. Mann-Whitney U tests were used in statistical evaluation and p<0.05 was accepted as statistically significant. Results: Although there was no statistically significant difference between patients with β-thalassemia minor and the control group for the level of serum Bcl-2 (p>0.05), these levels were higher in β-thalassemia minor patients than controls. Conclusion: There are damaged beta chains in β-thalassemia minor. Therefore, it is expected that premature death of red blood cells may occur due to apoptosis. The mean age of the control group was higher than that of the β-thalassemia minor group; this may be why Bcl-2 levels were higher in the β-thalassemia minor group. It is known that older age constitutes a risk for increased apoptosis. Other proteins (Bad, Bax, etc.) and pathways [CD95 (Fas) ligand] associated with apoptosis should be evaluated in future studies including more patients.
Collapse
Affiliation(s)
- İrfan Yavaşoğlu
- Adnan Menderes University Faculty of Medicine, Department of Internal Medicine, Aydın, Turkey. E-ma-il:
| | | | | | | | | |
Collapse
|
6
|
Liu B, Shang H, Li D. General peroxidase activity of a parallel G-quadruplex-hemin DNAzyme formed by Pu39WT - a mixed G-quadruplex forming sequence in the Bcl-2 P1 promoter. Chem Cent J 2014; 8:43. [PMID: 25050134 PMCID: PMC4094600 DOI: 10.1186/1752-153x-8-43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/24/2014] [Indexed: 11/30/2022] Open
Abstract
Background A 39-base-pair sequence (Pu39WT) located 58 to 19 base pairs upstream of the Bcl-2 P1 promoter has been implicated in the formation of an intramolecular mixed G-quadruplex structure and is believed to play a major role in the regulation of bcl-2 transcription. However, an extensive functional exploration requires further investigation. To further exploit the structure–function relationship of the Pu39WT-hemin DNAzyme, the secondary structure and peroxidase activity of the Pu39WT-hemin complex were investigated. Results Experimental results showed that when Pu39WT was incubated with hemin, it formed a uniparallel G-quadruplex-hemin complex in K+ or Na+ solution, rather than a mixed hybrid without bound hemin. Also, Pu39WT-hemin showed peroxidase activity (ABTS2−) in the presence of H2O2 to produce the colored radical anion (ABTS•-), which could then be used to determine the parameters governing the catalytic efficiency and reveal the peroxidase activity of the Pu39WT-hemin DNAzyme. Conclusions These results demonstrate the general peroxidase activity of Pu39WT-hemin DNAzyme, which is an intramolecular parallel G-quadruplex structure. This peroxidase activity of hemin complexed with the G-quadruplex-forming sequence in the Bcl-2 gene promoter may imply a potential mechanism of hemin-mediated cellular injury.
Collapse
Affiliation(s)
- Bo Liu
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang 110001, China
| | - Hong Shang
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang 110001, China
| | - Da Li
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
7
|
Kocic G, Sokolovic D, Jevtovic T, Veljkovic A, Kocic R, Nikolic G, Basic J, Stojanovic D, Cencic A, Stojanovic S. Hyperglycemia, oxidative and nitrosative stress affect antiviral, inflammatory and apoptotic signaling of cultured thymocytes. Redox Rep 2010; 15:179-84. [PMID: 20663294 DOI: 10.1179/174329210x12650506623564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A high prevalence of various infectious diseases is reported in diabetic patients, which may suggest impaired innate immunity against different pathogen-associated molecular patterns. This study investigated the effects of hyperglycemia, oxidative stress (H(2)O(2)), nitric oxide (NO) and peroxynitrite (ONOO(-)) on the modulation of antiviral (MDA-5, IRF-3 and phospho-IRF-3), inflammatory (NF-kappaB) and pro/anti-apoptotic molecules (Bax and Bcl-2) in BALB/c mice thymocytes. Each of the experimental conditions, except the weakest NO concentration, resulted in down-regulation of MDA-5, IRF-3 and phospho-IRF-3. In contrast, each of the experimental conditions elicited up-regulation of NF-kappaB, Bcl-2 and Bax. These results suggest that hyperglycemia, oxidative and nitrosative stress may contribute to the reduced immunity of the host by altering the MDA-5/IRF-3/phosphoIRF-3 axis, as well as contributing to the mechanisms of inflammatory reaction via increased NF-kappaB, and to augmented turnover rate of thymocyte cells via Bcl2/Bax up-regulation.
Collapse
Affiliation(s)
- G Kocic
- Institute of Biochemistry, University of Nis, Serbia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Caspase-independent apoptosis in Friend's erythroleukemia cells: role of mitochondrial ATP synthesis impairment in relocation of apoptosis-inducing factor and endonuclease G. J Bioenerg Biomembr 2009; 41:49-59. [PMID: 19184384 DOI: 10.1007/s10863-009-9196-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 01/09/2009] [Indexed: 02/07/2023]
Abstract
Mitochondria have emerged as the central components of both caspase-dependent and independent apoptosis signalling pathways through release of different apoptogenic proteins. We previously documented that parental and differentiated Friend's erythroleukemia cells were induced to apoptosis by oligomycin and H(2)O(2) exposure, showing that the energy impairment occurring in both cases as a consequence of a severe mitochondrial F(0)F(1)ATPsynthase inactivation was a common early feature. Here we provide evidence for AIF and Endo G mitochondrio-nuclear relocation in both cases, as a component of caspase-independent apoptosis pathways. No detectable change in mitochondrial transmembrane potential and no variation in mitochondrial levels of Bcl-2 and Bax are observed. These results point to the osmotic rupture of the mitochondrial outer membrane as occurring in response to cell exposure to the two energy-impairing treatments under conditions preserving the mitochondrial inner membrane. A critical role of the mitochondrial F(0)F(1)ATP synthase inhibition in this process is also suggested.
Collapse
|
9
|
Li N, Liu JH, Zhang J, Yu BY. Comparative evaluation of cytotoxicity and antioxidative activity of 20 flavonoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:3876-3883. [PMID: 18433100 DOI: 10.1021/jf073520n] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Flavonoids are common dietary components with many health benefits shown through epidemiological studies. However, the fact that flavonoids also act as pro-oxidants and mutagens makes the safety of flavonoids uncertain when used at higher doses. To give a preliminary evaluation on the correlation between beneficial and harmful effects of flavonoids, the antioxidative activity and cytotoxicity of 20 flavonoids from food and herbs were investigated in vitro. The results indicated that luteolin, hydroxygenkwanin, and kaempferol possessed significant dual properties, whereas flavokawain B, flavokawain C, cardamonin, and uvangoletin showed a marked cytotoxicity. The relationships between structure and antioxidant and cytotoxic activity are intensively discussed. In view of the toxicity, the intake of flavonoids in large amounts should not yet be encouraged.
Collapse
Affiliation(s)
- Na Li
- Department of Complex Prescription of TCM, China Pharmaceutical University, 1 Shennong Road, Nanjing 210038, People's Republic of China
| | | | | | | |
Collapse
|
10
|
Wu JY, Chung KT, Liu YW, Lu FJ, Tsai RS, Chen CH, Chen CH. Synthesis and biological evaluation of novel C(6) modified baicalein derivatives as antioxidative agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:2838-2845. [PMID: 18348528 DOI: 10.1021/jf073224a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Baicalein, one of the major flavones, was found to be responsible for the antioxidative activity of the traditional Chinese medicinal herb Huang-Qin ( Scutellaria baicalensis Georgi), which is widely used as an antioxidative, anti-inflammatory, and antitumor agent. The hydroxyl group of the A ring of the baicalein was alkylated at position 6 with terpenoids such as prenyl, geranyl, and farnesyl groups, and their free radical scavenging activities and glutathione (GSH) depletion capacities were examined. Their free radical scavenging activity was measured according to the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(*+)) scavenging method. Baicalein and newly synthesized baicalein derivatives were found to be good free radical scavengers. Flow cytometrical method was employed to measure the intracellular antioxidative activity and GSH depletion capacity of these derivatives in human acute monocytic leukemia cell line (THP-1). It was also found that baicalein and its derivatives could decrease the levels of exogenous cumene hydroperoxide and H2O2 in THP-1 cells. These compounds also could significantly inhibit the intracellular GSH depletion induced by cumene hydroperoxide in THP-1 cells. The production of cumene hydroperoxide-induced Bax, a pro-apoptotic related protein, could also be inhibited by baicalein and its derivatives. These results suggested that baicalein and its derivatives could be beneficial to human health.
Collapse
Affiliation(s)
- Jin-Yi Wu
- Graduate Institute of Biomedical and Biopharmaceutical Sciences, College of Life Sciences, National Chiayi University, 300 University Road, Chiayi 60004, Taiwan
| | | | | | | | | | | | | |
Collapse
|
11
|
Hwang SH, Kim MJ, Lim JA, Woo JH, Kim HS. Identification of hexapeptides that render C2 myoblasts the resistant to menadione‐induced cell death. Anim Cells Syst (Seoul) 2008. [DOI: 10.1080/19768354.2008.9647151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
12
|
Yamada T, Iwasaki Y, Nagata K, Fushiki S, Nakamura H, Marunaka Y, Yodoi J. Thioredoxin-1 protects against hyperoxia-induced apoptosis in cells of the alveolar walls. Pulm Pharmacol Ther 2007; 20:650-9. [PMID: 17045827 DOI: 10.1016/j.pupt.2006.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/21/2006] [Accepted: 07/31/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND The mechanisms of hyperoxia-induced lung injury remain poorly defined. Thioredoxin-1 (TRX-1) is a small ubiquitous protein that acts as an important radical scavenger. We investigated the effect of TRX-1 on apoptosis in hyperoxia-induced lung injury. METHODS Mice were exposed to 98% O(2) to produce a model of hyperoxia-induced lung injury. Using transgenic mice overexpressing human TRX-1 (hTRX-1), we assessed lung structure (n=4 per group), immunohistochemical staining for 8-hydroxy-deoxyguanosine (n=4 per group), TUNEL staining (n=5 per group), cytokine (n=5 per group) of IL-1beta and IL-6, and protein (n=6 per group) and m-RNA levels (n=4 per group) (or both) of cytochrome c, Bcl-2, Bax, p21, and p53 in the lungs. RESULTS After exposure to hyperoxia, hTRX-1 transgenic mice had significantly decreased alveolar damage. The apoptotic index was significantly lower in hTRX-1 transgenic mice than in wild-type (WT) mice after exposure to hyperoxia. Protein expression of cytochrome c in the lung was significantly lower in hTRX-1 transgenic mice than in WT mice after exposure to hyperoxia. Protein expression and m-RNA levels of Bcl-2 in the lung were significantly higher in hTRX-1 transgenic mice than in WT mice after exposure to hyperoxia. TRX-1 had no effect on the protein and m-RNA levels of Bax and p21. The protein and m-RNA levels of p53 was unaffected by hyperoxia in hTRX-1 transgenic mice. The cytokine level of IL-6 was significantly higher in hTRX-1 transgenic mice than in WT mice after exposure to hyperoxia. TRX-1 had no effect on cytokine level of IL-1beta. CONCLUSIONS These findings suggest that overexpression of hTRX-1 protects against hyperoxia-induced apoptosis in cells of the alveolar walls. The up-regulating Bcl-2 protein is considered to be one of antiapoptotic effects of TRX-1 in hyperoxia-induced lung injury.
Collapse
Affiliation(s)
- Tadaaki Yamada
- Department of Respiratory Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
A Three Stage Integrative Pathway Search (TIPS) framework to identify toxicity relevant genes and pathways. BMC Bioinformatics 2007; 8:202. [PMID: 17570844 PMCID: PMC1906836 DOI: 10.1186/1471-2105-8-202] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 06/14/2007] [Indexed: 03/31/2023] Open
Abstract
Background The ability to obtain profiles of gene expressions, proteins and metabolites with the advent of high throughput technologies has advanced the study of pathway and network reconstruction. Genome-wide network reconstruction requires either interaction measurements or large amount of perturbation data, often not available for mammalian cell systems. To overcome these shortcomings, we developed a Three Stage Integrative Pathway Search (TIPS©) approach to reconstruct context-specific active pathways involved in conferring a specific phenotype, from limited amount of perturbation data. The approach was tested on human liver cells to identify pathways that confer cytotoxicity. Results This paper presents a systems approach that integrates gene expression and cytotoxicity profiles to identify a network of pathways involved in free fatty acid (FFA) and tumor necrosis factor-α (TNF-α) induced cytotoxicity in human hepatoblastoma cells (HepG2/C3A). Cytotoxicity relevant genes were first identified and then used to reconstruct a network using Bayesian network (BN) analysis. BN inference was used subsequently to predict the effects of perturbing a gene on the other genes in the network and on the cytotoxicity. These predictions were subsequently confirmed through the published literature and further experiments. Conclusion The TIPS© approach is able to reconstruct active pathways that confer a particular phenotype by integrating gene expression and phenotypic profiles. A web-based version of TIPS© that performs the analysis described herein can be accessed at .
Collapse
|
14
|
Sun GY, Horrocks LA, Farooqui AA. The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases. J Neurochem 2007; 103:1-16. [PMID: 17561938 DOI: 10.1111/j.1471-4159.2007.04670.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reactive oxygen species (ROS) are produced in mammalian cells through enzymic and non-enzymic mechanisms. Although some ROS production pathways are needed for specific physiological functions, excessive production is detrimental and is regarded as the basis of numerous neurodegenerative diseases. Among enzymes producing superoxide anions, NADPH oxidase is widespread in mammalian cells and is an important source of ROS in mediating physiological and pathological processes in the cardiovascular and the CNS. ROS production is linked to the alteration of intracellular calcium homeostasis, activation of Ca(2+)-dependent enzymes, alteration of cytoskeletal proteins, and degradation of membrane glycerophospholipids. There is evolving evidence that ROS produced by NADPH oxidase regulate neuronal functions and degrade membrane phospholipids through activation of phospholipases A(2) (PLA(2)). This review is intended to cover recent studies describing ROS generation from NADPH oxidase in the CNS and its downstream activation of PLA(2), namely, the group IV cytosolic cPLA(2) and the group II secretory sPLA(2). A major focus is to elaborate the dual role of NADPH oxidase and PLA(2) in mediating the oxidative and inflammatory responses in neurodegenerative diseases, including cerebral ischemia and Alzheimer's disease. Elucidation of the signaling pathways linking NADPH oxidase with the multiple forms of PLA(2) will be important in understanding the oxidative and degradative mechanisms that underline neuronal damage and glial activation and will facilitate development of therapeutic intervention for prevention and treatment of these and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA.
| | | | | |
Collapse
|
15
|
Takahashi N, Kobayashi S, Kajino S, Imai K, Tomoda K, Shimizu S, Okamoto T. Inhibition of the 53BP2S-mediated apoptosis by nuclear factor kappaB and Bcl-2 family proteins. Genes Cells 2005; 10:803-11. [PMID: 16098144 DOI: 10.1111/j.1365-2443.2005.00878.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The p53 binding protein 2 (53BP2) has been identified independently as the interacting protein to p53, Bcl-2, and p65 subunit of nuclear factor kappaB (NF-kappaB). It was demonstrated that over-expression of 53BP2 (renamed as 53BP2S) induces apoptotic cell death. In this study we explored the effect of NF-kappaB activation elicited by a physiological NF-kappaB inducer, interleukin-1beta (IL-1beta), and anti-apoptotic Bcl-2 family proteins on the 53BP2S-mediated apoptosis. We found that both NF-kappaB activation and Bcl-2 family proteins could prevent the 53BP2S-mediated depression of mitochondrial transmembrane potential, activation of caspase-9, cleavage of poly ADP ribose polymerase (PARP), and cell death. These observations suggested that 53BP2S/Bbp and its directly or indirectly interacting proteins might play crucial roles in the regulation of apoptosis and contribute to carcinogenesis. It is also suggested that 53BP2S/Bbp induces apoptosis through the mitochondrial death pathway presumably by counteracting the actions of anti-apoptotic Bcl-2 family proteins. The regulatory network of the 53BP2S-mediated apoptosis cascade including its interacting proteins is discussed.
Collapse
Affiliation(s)
- Naoko Takahashi
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Radical Scavengers Suppress Low Frequency EMF Enhanced Proliferation in Cultured Cells and Stress Effects in Higher Plants. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/s10669-005-4272-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Haddad JJ. Hypoxia and the regulation of mitogen-activated protein kinases: gene transcription and the assessment of potential pharmacologic therapeutic interventions. Int Immunopharmacol 2005; 4:1249-85. [PMID: 15313426 DOI: 10.1016/j.intimp.2004.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2004] [Revised: 06/09/2004] [Accepted: 06/15/2004] [Indexed: 12/20/2022]
Abstract
Oxygen is an environmental/developmental signal that regulates cellular energetics, growth, and differentiation processes. Despite its central role in nearly all higher life processes, the molecular mechanisms for sensing oxygen levels and the pathways involved in transducing this information are still being elucidated. Altering gene expression is the most fundamental and effective way for a cell to respond to extracellular signals and/or changes in its microenvironment. During development, the expression of specific sets of genes is regulated spatially (by position/morphogenetic gradients) and temporally, presumably via the sensing of molecular oxygen available within the microenvironment. Regulation of signaling responses is governed by transcription factors that bind to control regions (consensus sequences) of target genes and alter their expression in response to specific signals. Complex signal transduction during hypoxia (deficiency of oxygen in inspired gases or in arterial blood and/or in tissues) involves the coupling of ligand-receptor interactions to many intracellular events. These events basically include phosphorylations by tyrosine kinases and/or serine/threonine kinases, such as those of mitogen-activated protein kinases (MAPKs), a superfamily of kinases responsive to stress nonhomeostatic conditions. Protein phosphorylations imposed during hypoxia change enzyme activities and protein conformations, and the eventual outcome is rather complex, comprising of an alteration in cellular activity and changes in the programming of genes expressed within the responding cells. These molecular changes serve as signals that are crucial for cell survival under contingent conditions imposed during hypoxia. This review correlates current concepts of hypoxic sensing pathways with hypoxia-related phosphorylation mechanisms mediated by MAPKs via the genetic and pharmacologic regulation/manipulation of specific transcription factors and related cofactors.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, University of California, San Francisco, CA, USA.
| |
Collapse
|
18
|
Jung C, Schünemann V, Lendzian F, Trautwein AX, Contzen J, Galander M, Böttger LH, Richter M, Barra AL. Spectroscopic characterization of the iron-oxo intermediate in cytochrome P450. Biol Chem 2005; 386:1043-53. [PMID: 16218876 DOI: 10.1515/bc.2005.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
From analogy to chloroperoxidase from Caldariomyces fumago, it is believed that the electronic structure of the intermediate iron-oxo species in the catalytic cycle of cytochrome P450 corresponds to an iron(IV) porphyrin-pi-cation radical (compound I). However, our recent studies on P450cam revealed that after 8 ms a tyrosine radical and iron(IV) were formed in the reaction of ferric P450 with external oxidants in the shunt pathway. The present study on the heme domain of P450BM3 (P450BMP) shows a similar result. In addition to a tyrosine radical, a contribution from a tryptophan radical was found in the electron paramagnetic resonance (EPR) spectra of P450BMP. Here we present comparative multi-frequency EPR (9.6, 94 and 285 GHz) and Mössbauer spectroscopic studies on freeze-quenched intermediates produced using peroxy acetic acid as oxidant for both P450 cytochromes. After 8 ms in both systems, amino acid radicals occurred instead of the proposed iron(IV) porphyrin-pi-cation radical, which may be transiently formed on a much faster time scale. These findings are discussed with respect to other heme thiolate proteins. Our studies demonstrate that intramolecular electron transfer from aromatic amino acids is a common feature in these enzymes. The electron transfer quenches the presumably transiently formed porphyrin-pi-cation radical, which makes it extremely difficult to trap compound I.
Collapse
Affiliation(s)
- Christiane Jung
- Max-Delbrück-Center for Molecular Medicine, D-13125 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Haddad JJ, Harb HL. L-gamma-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)? Mol Immunol 2004; 42:987-1014. [PMID: 15829290 DOI: 10.1016/j.molimm.2004.09.029] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 09/29/2004] [Indexed: 12/17/2022]
Abstract
Of the antioxidant/prooxidant mechanisms mediating the regulation of inflammatory mediators, particularly cytokines, oxidative stress-related pathways remain a cornerstone. It is conspicuous that there is a strong association between free radical accumulation (ROS/RNS; oxidative stress) and the evolution of inflammation and inflammatory-related responses. The scenario that upholds a consensus on the aforementioned is still evolving to unravel, from an immunologic perspective, the molecular mechanisms associated with ROS/RNS-dependent inflammation. Cytokines are keynote players when it comes to defining an intimate relationship among reduction-oxidation (redox) signals, oxidative stress and inflammation. How close we are to identifying the molecular basis of this intricate association should be weighed against the involvement of specific signaling molecules and, potentially, transcription factors. L-gamma-Glutamyl-L-cysteinyl-glycine, or glutathione (GSH), an antioxidant thiol, has shaped, and still is refining, the face of oxidative signaling in terms of regulating the milieu of inflammatory mediators, ostensibly via the modulation (expression/repression) of oxygen- and redox-responsive transcription factors, hence termed redox(y)-sensitive cofactors. When it comes to the arena of oxygen sensing, oxidative stress and inflammation, nuclear factor-kappaB (NF-kappaB) and hypoxia-inducible factor-1alpha (HIF-1alpha) are key players that determine antioxidant/prooxidant responses with oxidative challenge. It is the theme therein to underlie current understanding of the molecular association hanging between oxidative stress and the evolution of inflammation, walked through an elaborate discussion on the role of transcription factors and cofactors. Would that classify glutathione and other redox signaling cofactors as potential anti-inflammatory molecules emphatically remains of particular interest, especially in the light of identifying upstream and downstream molecular pathways for conceiving therapeutic, alleviating strategy for oxidant-mediated, inflammatory-related disease conditions.
Collapse
Affiliation(s)
- John J Haddad
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| | | |
Collapse
|
20
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:2171-2173. [DOI: 10.11569/wcjd.v12.i9.2171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|