1
|
Ricciotti E, Haines PG, Chai W, FitzGerald GA. Prostanoids in Cardiac and Vascular Remodeling. Arterioscler Thromb Vasc Biol 2024; 44:558-583. [PMID: 38269585 PMCID: PMC10922399 DOI: 10.1161/atvbaha.123.320045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Prostanoids are biologically active lipids generated from arachidonic acid by the action of the COX (cyclooxygenase) isozymes. NSAIDs, which reduce the biosynthesis of prostanoids by inhibiting COX activity, are effective anti-inflammatory, antipyretic, and analgesic drugs. However, their use is limited by cardiovascular adverse effects, including myocardial infarction, stroke, hypertension, and heart failure. While it is well established that NSAIDs increase the risk of atherothrombotic events and hypertension by suppressing vasoprotective prostanoids, less is known about the link between NSAIDs and heart failure risk. Current evidence indicates that NSAIDs may increase the risk for heart failure by promoting adverse myocardial and vascular remodeling. Indeed, prostanoids play an important role in modulating structural and functional changes occurring in the myocardium and in the vasculature in response to physiological and pathological stimuli. This review will summarize current knowledge of the role of the different prostanoids in myocardial and vascular remodeling and explore how maladaptive remodeling can be counteracted by targeting specific prostanoids.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Institute for Translational Medicine and Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Philip G Haines
- Rhode Island Hospital, Department of Medicine, Warren Alpert Medical School of Brown University, Providence (P.G.H.)
| | - William Chai
- Health and Human Biology, Division of Biology and Medicine, Brown University, Providence, RI (W.C.)
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Institute for Translational Medicine and Therapeutics (E.R., G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
- Department of Medicine (G.A.F.), University of Pennsylvania Perelman School of Medicine, Philadelphia
| |
Collapse
|
2
|
Fujimori K. Prostaglandin D<sub>2</sub> and F<sub>2α</sub> as Regulators of Adipogenesis and Obesity. Biol Pharm Bull 2022; 45:985-991. [DOI: 10.1248/bpb.b22-00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| |
Collapse
|
3
|
Urade Y. Biochemical and Structural Characteristics, Gene Regulation, Physiological, Pathological and Clinical Features of Lipocalin-Type Prostaglandin D 2 Synthase as a Multifunctional Lipocalin. Front Physiol 2021; 12:718002. [PMID: 34744762 PMCID: PMC8569824 DOI: 10.3389/fphys.2021.718002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Lipocalin-type prostaglandin (PG) D2 synthase (L-PGDS) catalyzes the isomerization of PGH2, a common precursor of the two series of PGs, to produce PGD2. PGD2 stimulates three distinct types of G protein-coupled receptors: (1) D type of prostanoid (DP) receptors involved in the regulation of sleep, pain, food intake, and others; (2) chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) receptors, in myelination of peripheral nervous system, adipocyte differentiation, inhibition of hair follicle neogenesis, and others; and (3) F type of prostanoid (FP) receptors, in dexamethasone-induced cardioprotection. L-PGDS is the same protein as β-trace, a major protein in human cerebrospinal fluid (CSF). L-PGDS exists in the central nervous system and male genital organs of various mammals, and human heart; and is secreted into the CSF, seminal plasma, and plasma, respectively. L-PGDS binds retinoic acids and retinal with high affinities (Kd < 100 nM) and diverse small lipophilic substances, such as thyroids, gangliosides, bilirubin and biliverdin, heme, NAD(P)H, and PGD2, acting as an extracellular carrier of these substances. L-PGDS also binds amyloid β peptides, prevents their fibril formation, and disaggregates amyloid β fibrils, acting as a major amyloid β chaperone in human CSF. Here, I summarize the recent progress of the research on PGD2 and L-PGDS, in terms of its “molecular properties,” “cell culture studies,” “animal experiments,” and “clinical studies,” all of which should help to understand the pathophysiological role of L-PGDS and inspire the future research of this multifunctional lipocalin.
Collapse
Affiliation(s)
- Yoshihiro Urade
- Center for Supporting Pharmaceutical Education, Daiichi University of Pharmacy, Fukuoka, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Martens MD, Fernando AS, Gordon JW. A new trick for an old dog? Myocardial-specific roles for prostaglandins as mediators of ischemic injury and repair. Am J Physiol Heart Circ Physiol 2021; 320:H2169-H2184. [PMID: 33861147 DOI: 10.1152/ajpheart.00872.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The small lipid-derived paracrine signaling molecules known as prostaglandins have been recognized for their ability to modulate many facets of cardiovascular physiology since their initial discovery more than 85 years ago. Although the role of prostaglandins in the vasculature has gained significant attention across time, a handful of historical studies have also directly implicated the cardiomyocyte in both prostaglandin synthesis and release. Recently, our understanding of how prostaglandin receptor modulation impacts and contributes to myocardial structure and function has gained attention while leaving most other components of myocardial prostaglandin metabolism and signaling unexplored. This mini-review highlights both the key historical studies that underpin modern prostaglandin research in the heart, while concurrently presenting the latest findings related to how prostaglandin metabolism and signaling impact myocardial injury and repair.
Collapse
Affiliation(s)
- Matthew D Martens
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada.,The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Amy S Fernando
- The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada.,College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada.,The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
Seo MJ, Oh DK. Prostaglandin synthases: Molecular characterization and involvement in prostaglandin biosynthesis. Prog Lipid Res 2017; 66:50-68. [DOI: 10.1016/j.plipres.2017.04.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 01/30/2023]
|
6
|
Wong J, Sridharan S, Berdeprado J, Vilar E, Viljoen A, Wellsted D, Farrington K. Predicting residual kidney function in hemodialysis patients using serum β-trace protein and β2-microglobulin. Kidney Int 2016; 89:1090-1098. [PMID: 26924065 DOI: 10.1016/j.kint.2015.12.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022]
Abstract
Residual kidney function (RKF) contributes significant solute clearance in hemodialysis patients. Kidney Diseases Outcomes Quality Initiative (KDOQI) guidelines suggest that hemodialysis dose can be safely reduced in those with residual urea clearance (KRU) of 2 ml/min/1.73 m(2) or more. However, serial measurement of RKF is cumbersome and requires regular interdialytic urine collections. Simpler methods for assessing RKF are needed. β-trace protein (βTP) and β2-microglobulin (β2M) have been proposed as alternative markers of RKF. We derived predictive equations to estimate glomerular filtration rate (GFR) and KRU based on serum βTP and β2M from 191 hemodialysis patients based on standard measurements of KRU and GFR (mean of urea and creatinine clearances) using interdialytic urine collections. These modeled equations were tested in a separate validation cohort of 40 patients. A prediction equation for GFR that includes both βTP and β2M provided a better estimate than either alone and contained the terms 1/βTP, 1/β2M, 1/serum creatinine, and a factor for gender. The equation for KRU contained the terms 1/βTP, 1/β2M, and a factor for ethnicity. Mean bias between predicted and measured GFR was 0.63 ml/min and 0.50 ml/min for KRU. There was substantial agreement between predicted and measured KRU at a cut-off level of 2 ml/min/1.73 m(2). Thus, equations involving βTP and β2M provide reasonable estimates of RKF and could potentially be used to identify those with KRU of 2 ml/min/1.73 m(2) or more to follow the KDOQI incremental hemodialysis algorithm.
Collapse
Affiliation(s)
- Jonathan Wong
- Department of Nephrology, Lister Hospital, Hertfordshire, UK; University of Hertfordshire, Hertfordshire, UK
| | - Sivakumar Sridharan
- Department of Nephrology, Lister Hospital, Hertfordshire, UK; University of Hertfordshire, Hertfordshire, UK
| | | | - Enric Vilar
- Department of Nephrology, Lister Hospital, Hertfordshire, UK; University of Hertfordshire, Hertfordshire, UK
| | | | | | - Ken Farrington
- Department of Nephrology, Lister Hospital, Hertfordshire, UK; University of Hertfordshire, Hertfordshire, UK.
| |
Collapse
|
7
|
Orenes-Piñero E, Manzano-Fernández S, López-Cuenca Á, Marín F, Valdés M, Januzzi JL. β-Trace Protein: From GFR Marker to Cardiovascular Risk Predictor. Clin J Am Soc Nephrol 2013; 8:873-81. [DOI: 10.2215/cjn.08870812] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Shafi T, Parekh RS, Jaar BG, Plantinga LC, Oberai PC, Eckfeldt JH, Levey AS, Powe NR, Coresh J. Serum β-trace protein and risk of mortality in incident hemodialysis patients. Clin J Am Soc Nephrol 2012; 7:1435-45. [PMID: 22745274 DOI: 10.2215/cjn.02240312] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND OBJECTIVES Residual kidney function in dialysis patients is associated with better survival, but there are no simple methods for its assessment. β-Trace protein is a novel endogenous filtration marker of kidney function that is not removed during hemodialysis and may serve as a marker for residual kidney function similar to serum creatinine in patients not on dialysis. The objective of this study was to determine the association of serum β-trace protein with mortality in incident hemodialysis patients. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Serum β-trace protein was measured in baseline samples from 503 participants of a national prospective cohort study of incident dialysis patients with enrollment during 1995-1998 and follow-up until 2004. Outcomes were all-cause and cardiovascular disease mortality analyzed using Cox regression adjusted for demographic, clinical, and treatment factors. RESULTS Serum β-trace protein levels were higher in individuals with no urine output compared with individuals with urine output (9.0±3.5 versus 7.6±3.1 mg/L; P<0.001). There were 321 deaths (159 deaths from cardiovascular disease) during follow-up (median=3.3 years). Higher β-trace protein levels were associated with higher risk of mortality. The adjusted hazard ratio and 95% confidence interval for all-cause mortality per doubling of serum β-trace protein was 1.36 (1.09-1.69). The adjusted hazard ratios (95% confidence intervals) for all-cause mortality in the middle and highest tertiles compared with the lowest tertile were 0.95 (0.69-1.32) and 1.72 (1.25-2.37). Similar results were noted for cardiovascular disease mortality. CONCLUSIONS The serum level of β-trace protein is an independent predictor of death and cardiovascular disease mortality in incident hemodialysis patients.
Collapse
Affiliation(s)
- Tariq Shafi
- Division of Nephrology, Johns Hopkins University School of Medicine, 301 Mason Lord Drive, Suite 2500, Baltimore, MD 21224-2780, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lee S, Jang E, Kim JH, Kim JH, Lee WH, Suk K. Lipocalin-type prostaglandin D2 synthase protein regulates glial cell migration and morphology through myristoylated alanine-rich C-kinase substrate: prostaglandin D2-independent effects. J Biol Chem 2012; 287:9414-28. [PMID: 22275363 DOI: 10.1074/jbc.m111.330662] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prostaglandin D synthase (PGDS) is responsible for the conversion of PGH(2) to PGD(2). Two distinct types of PGDS have been identified: hematopoietic-type PGDS (H-PGDS) and lipocalin-type PGDS (L-PGDS). L-PGDS acts as both a PGD(2)-synthesizing enzyme and as an extracellular transporter of various lipophilic small molecules. Although L-PGDS is one of the most abundant proteins in the cerebrospinal fluid, little is known about the function of L-PGDS in the central nervous system (CNS). To better understand the role of L-PGDS in the CNS, effects of L-PGDS on the migration and morphology of glial cells were investigated. The L-PGDS protein accelerated the migration of cultured glial cells. Expression of the L-pgds gene was detected in glial cells and neurons. L-PGDS protein also induced morphological changes in glia similar to the characteristic phenotypic changes in reactive gliosis. L-PGDS-induced cell migration was associated with augmented formation of actin filaments and focal adhesion, which was accompanied by activation of AKT, RhoA, and JNK pathways. L-PGDS protein injected into the mouse brain promoted migration and accumulation of astrocytes in vivo. Furthermore, the cell migration-promoting effect of L-PGDS on glial cells was independent of the PGD(2) products. The L-PGDS protein interacted with myristoylated alanine-rich protein kinase C substrate (MARCKS) to promote cell migration. These results demonstrate the critical role of L-PGDS as a secreted lipocalin in the regulation of glial cell migration and morphology. The results also indicate that L-PGDS may participate in reactive gliosis in an autocrine or paracrine manner, and may have pathological implications in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Shinrye Lee
- Department of Pharmacology, Brain Science & Engineering Institute, CMRI, Kyungpook National University School of Medicine, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | |
Collapse
|
10
|
Smith WL, Urade Y, Jakobsson PJ. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev 2011; 111:5821-65. [PMID: 21942677 PMCID: PMC3285496 DOI: 10.1021/cr2002992] [Citation(s) in RCA: 355] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- William L Smith
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, 5301 MSRB III, Ann Arbor, Michigan 48109-5606, USA.
| | | | | |
Collapse
|
11
|
Diminished lipocalin-type prostaglandin D2 synthase expression in human lung tumors. Lung Cancer 2010; 70:103-9. [DOI: 10.1016/j.lungcan.2010.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 01/06/2010] [Accepted: 01/17/2010] [Indexed: 01/08/2023]
|
12
|
Miwa Y, Kamide K, Takiuchi S, Yoshii M, Horio T, Tanaka C, Banno M, Miyata T, Kawano Y. Association of PLA2G7 polymorphisms with carotid atherosclerosis in hypertensive Japanese. Hypertens Res 2009; 32:1112-8. [DOI: 10.1038/hr.2009.151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Abstract
Dyslipidaemias, particularly those characterized by the 'atherogenic profile' of high low-density lipoprotein-cholesterol and triglycerides and low high-density lipoprotein-cholesterol, are the major modifiable risk factor for atherosclerosis. The search for drugs to favourably alter such lipid profiles, reducing the associated morbidity and mortality, remains a major research focus. Niacin (nicotinic acid) is the most effective agent available for increasing high-density lipoprotein-cholesterol, but its use is associated with side effects that negatively affect patient compliance: these appear to arise largely as a result of production of prostaglandin D(2) and its subsequent activation of the DP(1) receptor. Desire to reduce the side effects (and improve pharmacokinetic parameters) has led to the development of a number of agonists that have differing effects, both in terms of clinical potency and the severity of adverse effects. The recent discovery of the niacin G-protein-coupled receptor HM74A (GPR109A) has clarified the distinction between the mechanism whereby niacin exerts its therapeutic effects and the mechanisms responsible for the generation of side effects. This has allowed the development of new drugs that show great potential for the treatment of dyslipidaemia. However, recent advances in understanding of the contribution of prostaglandin metabolism to vascular wall health suggest that some of the beneficial effects of niacin may well result from activation of the same pathways responsible for the adverse reactions. The purpose of this review is to emphasize that the search for agonists that show higher tolerability must take into account all aspects of signalling through this receptor.
Collapse
Affiliation(s)
- Helen Vosper
- School of Pharmacy and Life Sciences, The Robert Gordon University, Aberdeen, UK.
| |
Collapse
|
14
|
Roy H, Bhardwaj S, Yla-Herttuala S. Molecular genetics of atherosclerosis. Hum Genet 2009; 125:467-91. [DOI: 10.1007/s00439-009-0654-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/04/2009] [Indexed: 12/17/2022]
|
15
|
Saleem S, Shah ZA, Urade Y, Doré S. Lipocalin-prostaglandin D synthase is a critical beneficial factor in transient and permanent focal cerebral ischemia. Neuroscience 2009; 160:248-54. [PMID: 19254753 DOI: 10.1016/j.neuroscience.2009.02.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 02/02/2009] [Accepted: 02/15/2009] [Indexed: 12/11/2022]
Abstract
Prostaglandin D(2) (PGD(2)) is the most abundant prostaglandin produced in the brain. It is a metabolite of arachidonic acid and synthesized by prostaglandin D(2) synthases (PGDS) via the cyclooxygenase pathway. Two distinct types of PGDS have been identified: hematopoietic prostaglandin D synthase (H-PGDS) and lipocalin-type prostaglandin D synthase (L-PGDS). Because relatively little is known about the role of L-PGDS in the CNS, here we examined the outcomes in L-PGDS knockout and wild-type (WT) mice after two different cerebral ischemia models, transient middle cerebral artery (MCA) occlusion (tMCAO) and permanent distal middle cerebral artery occlusion (pMCAO). In the tMCAO model, the MCA was occluded with a monofilament for 90 min and then reperfused for 4 days. In the pMCAO model, the distal part of the MCA was permanently occluded and the mice were sacrificed after 7 days. Percent corrected infarct volume and neurological score were determined after 4 and 7 days, respectively. L-PGDS knockout mice had significantly greater infarct volume and brain edema than did WT mice after tMCAO (P<0.01). Similarly, L-PGDS knockout mice showed greater infarct volume and neurological deficits as compared to their WT counterparts after pMCAO (P<0.01). Using the two models enabled us to study the role of L-PGDS in both early (tMCAO) and delayed (pMCAO) ischemic processes. Our findings suggest that L-PGDS is beneficial for protecting the brain against transient and permanent cerebral ischemia. These results provide a better understanding of the role played by the enzymes that control eicosanoid synthesis and how they can be utilized as potential targets to prevent damage following either acute or potentially chronic neurological disorders.
Collapse
Affiliation(s)
- S Saleem
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 365, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
16
|
Miwa Y, Oda H, Shiina Y, Shikata K, Tsushima M, Nakano S, Maruyama T, Kyotani S, Eguchi N, Urade Y, Takahashi-Yanaga F, Morimoto S, Sasaguri T. Association of serum lipocalin-type prostaglandin D synthase levels with subclinical atherosclerosis in untreated asymptomatic subjects. Hypertens Res 2009; 31:1931-9. [PMID: 19015601 DOI: 10.1291/hypres.31.1931] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent studies suggest that lipocalin-type prostaglandin (PG) D synthase (L-PGDS), which converts PGH2 to PGD2, is implicated in the pathogenesis of atherosclerosis. However, clinical evidence for the association between serum L-PGDS levels and atherosclerosis has not been reported. In this study, we measured the serum L-PGDS concentration using sandwich enzyme-linked immunosorbent assay (ELISA) and investigated the association with traditional cardiovascular risk factors and surrogate atherosclerotic indices, such as the maximum score of the intima-media complex thickness of the carotid artery (C-IMT(max)) and the brachial-ankle pulse wave velocity (ba-PWV), in 500 non-treated asymptomatic subjects. The serum concentration of L-PGDS was 0.56+/-0.01 (mean+/-SEM, range 0.25-1.27, median 0.54) mg/L. Serum L-PGDS levels increased with age and were higher in men than in women. Serum L-PGDS was higher in subjects with hypertension and increased with increasing numbers of the traditional atherosclerotic risk factors. When the subjects were divided into four groups according to the levels of serum L-PGDS, the age-adjusted values of C-IMT(max) and ba-PWV were significantly increased in subjects with higher serum L-PGDS levels (quartile 3 and quartile 4) compared to those in the lowest quartile (quartile 1), for both genders. Multiple regression analysis including risk factors revealed that serum L-PGDS was an independent determinant for ba-PWV (beta=0.130, p<0.001). Serum L-PGDS tended to associate with C-IMT(max) but was not statistically significant (beta=0.084, p=0.075). In conclusion, our results suggest that an increase in serum L-PGDS concentration is associated with the progression of atherosclerosis.
Collapse
Affiliation(s)
- Yoshikazu Miwa
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tanaka R, Miwa Y, Mou K, Tomikawa M, Eguchi N, Urade Y, Takahashi-Yanaga F, Morimoto S, Wake N, Sasaguri T. Knockout of the l-pgds gene aggravates obesity and atherosclerosis in mice. Biochem Biophys Res Commun 2008; 378:851-6. [PMID: 19070593 DOI: 10.1016/j.bbrc.2008.11.152] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 11/27/2008] [Indexed: 11/25/2022]
Abstract
This study was designed to determine whether lipocalin type-prostaglandin D synthase (l-pgds) deficiency contributes to atherogenesis using gene knockout (KO) mice. A high-fat diet was given to 8-week-old C57BL/6 (wild type; WT), l-pgds KO (LKO), apolipoprotein E (apo E) KO (AKO) and l-pgds/apo E double KO (DKO) mice. The l-pgds deficient mice showed significantly increased body weight, which was accompanied by increased size of subcutaneous and visceral fat tissues. Fat deposition in the aortic wall induced by the high-fat diet was significantly increased in LKO mice compared with WT mice, although there was no significant difference between AKO and DKO mice. In LKO mice, atherosclerotic plaque in the aortic root was also increased and, furthermore, macrophage cellularity and the expression of pro-inflammatory cytokines such as interleukin-1beta and monocyte chemoattractant protein-1 were significant increased. In conclusion, l-pgds deficiency induces obesity and facilitates atherosclerosis, probably through the regulation of inflammatory responses.
Collapse
Affiliation(s)
- Reiko Tanaka
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lipocalin-type prostaglandin D(2) synthase stimulates glucose transport via enhanced GLUT4 translocation. Prostaglandins Other Lipid Mediat 2008; 87:34-41. [PMID: 18619553 DOI: 10.1016/j.prostaglandins.2008.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 06/10/2008] [Accepted: 06/13/2008] [Indexed: 12/25/2022]
Abstract
Previously, we demonstrated that lipocalin-type prostaglandin D(2) synthase (L-PGDS) knockout mice become glucose intolerant and display signs of diabetic nephropathy and accelerated atherosclerosis. In the current study we sought to explain the link between L-PGDS and glucose tolerance. Using the insulin-sensitive rat skeletal muscle cell line, L6, we showed that L-PGDS could stimulate glucose transport approximately 2-fold as well as enhance insulin-stimulated glucose transport, as measured by 2-deoxy-[(3)H]-glucose uptake. The increased glucose transport was not attributed to increased GLUT4 production but rather the stimulation of GLUT4 translocation to the plasma membrane, a phenomenon that was lost when cells were cultured under hyperglycemic (20 mM) conditions or pretreated with wortmannin. There was however, an increase in GLUT1 expression as well as a 3-fold increase in hexokinase III expression, which was increased to nearly 5-fold in the presence of insulin, in response to L-PGDS at 20 mM glucose. In addition, adipocytes isolated from L-PGDS knockout mice were significantly less sensitive to insulin-stimulated glucose transport than wild-type. We conclude that L-PGDS, via production of prostaglandin D(2), is an important mediator of muscle and adipose glucose transport which is modulated by glycemic conditions and plays a significant role in the glucose intolerance associated with type 2 diabetes.
Collapse
|
19
|
Cyclooxygenase and prostaglandin synthases in atherosclerosis: Recent insights and future perspectives. Pharmacol Ther 2008; 118:161-80. [DOI: 10.1016/j.pharmthera.2008.01.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 11/26/2007] [Accepted: 01/18/2008] [Indexed: 12/24/2022]
|
20
|
Ruano D, Macedo A, Soares MJ, Valente J, Azevedo MH, Pato C, Hutz MH, Gama CS, Lobato MI, Belmonte-de-Abreu P, Heutink P, Palha JA. Family-based and case-control studies reveal no association of lipocalin-type prostaglandin D2 synthase with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:642-6. [PMID: 17230501 DOI: 10.1002/ajmg.b.30477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several observations point to the involvement of disturbed lipid biology in schizophrenia. Reduced response to niacin flushing test, which involves vasodilatation induced by prostaglandin D2 (PGD2), is among the evidences, together with decreased CSF levels of lipocalin-type prostaglandin D2 synthase (PTGDS), the enzyme responsible for the synthesis of PGD2 in the brain. Since PTGDS is also a carrier for lipophilic molecules such as retinoids and thyroid hormones, altered PTGDS levels might influence both PGD2-mediated signaling, and vitamin A and thyroid hormone availability. To test whether genetic variants of PTGDS are involved in the etiology of schizophrenia, we searched for variants in the coding and regulatory regions of the gene. We identified four previously described polymorphisms. Using two case-control samples from Portugal and Brazil, none of the polymorphisms tested was associated with the disease. In addition, no transmission distortion was observed in an independent parents-offspring sample from the Azorean Islands. Our data do not support the involvement of the PTGDS gene in the etiology of schizophrenia.
Collapse
Affiliation(s)
- Dina Ruano
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fujimori K, Aritake K, Urade Y. A novel pathway to enhance adipocyte differentiation of 3T3-L1 cells by up-regulation of lipocalin-type prostaglandin D synthase mediated by liver X receptor-activated sterol regulatory element-binding protein-1c. J Biol Chem 2007; 282:18458-18466. [PMID: 17439953 DOI: 10.1074/jbc.m701141200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) is expressed in adipocytes and is proposed to be involved in the regulation of glucose tolerance and atherosclerosis in type 2 diabetes, because L-PGDS gene knock-out mice show abnormalities in these functions. However, the role of L-PGDS and the regulation mechanism governing its gene expression in adipocytes remain unclear. Here, we applied small interference RNA of L-PGDS to mouse 3T3-L1 cells and found that it suppressed differentiation of these cells into adipocytes. Reporter analysis of the mouse L-PGDS promoter demonstrated that a responsive element for liver receptor homolog-1 (LRH-1) at -233 plays a critical role in preadipocytic 3T3-L1 cells. Moreover, we identified two sterol regulatory elements (SREs) at -194 to be cis-elements for activation of L-PGDS gene expression in adipocytic 3T3-L1 cells. L-PGDS mRNA was induced in response to synthetic liver X receptor agonist, T0901317, through activation of the expression of SRE-binding protein-1c (SREBP-1c) in the adipocytic 3T3-L1 cells. The results of electrophoretic mobility shift assay and chromatin immunoprecipitation assay revealed that LRH-1 and SREBP-1c bound to their respective binding elements in the promoter of L-PGDS gene. Small interference RNA-mediated suppression of LRH-1 or SREBP-1c decreased L-PGDS gene expression in preadipocytic or adipocytic 3T3-L1 cells, respectively. These results indicate that L-PGDS gene expression is activated by LRH-1 in preadipocytes and by SREBP-1c in adipocytes. Liver X receptor-mediated up-regulation of L-PGDS through activation of SREBP-1c is a novel path-way to enhance adipocyte differentiation.
Collapse
Affiliation(s)
- Ko Fujimori
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Kosuke Aritake
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Yoshihiro Urade
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan.
| |
Collapse
|
22
|
Chen DY, Liu SJ, Zhu MY, Li WY, Cui YD, Huang YF. Different expression of lipocalin-type prostaglandin D synthase in rat epididymidis. Anim Reprod Sci 2007; 98:302-10. [PMID: 16730417 DOI: 10.1016/j.anireprosci.2006.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 02/18/2006] [Accepted: 03/07/2006] [Indexed: 11/26/2022]
Abstract
This study was designed to explore the different expression of L-PGDS (lipocalin-type prostaglandin D synthase) in rat epididymidis and to gain further insight into the potential function of L-PGDS in male reproduction. The expression of L-PGDS in rat epididymidis was assessed using real-time quantitative PCR and immunoblotting. The distribution of L-PGDS in rat epididymidis was explored by immunohistochemical methods. The result of immunohistochemistry displayed that L-PGDS was mainly distributed in epididymidis and localized within the cytoplasm and the cilia of the epithelial cells. Real-time quantitative PCR and immunoblotting showed that L-PGDS was strikingly expressed in the caput epididymidis, while a moderate to weak expression was observed in the corpus and cauda epididymidis, the level of mRNA was 0.52+/-0.02 in the caput, 0.48+/-0.03 in the corpus and 0.32+/-0.01 in the cauda epididymidis, the level of protein expression in caput, corpus and the cauda groups was 1, 0.89+/-0.03 and 0.62+/-0.01, which suggested that L-PGDS may play certain kind of role during the process of the spermatozoa maturation.
Collapse
Affiliation(s)
- De-Yu Chen
- Department of Biology, Fuyang Normal College, Fuyang 230632, China
| | | | | | | | | | | |
Collapse
|
23
|
Chen JM, Férec C, Cooper DN. A systematic analysis of disease-associated variants in the 3' regulatory regions of human protein-coding genes II: the importance of mRNA secondary structure in assessing the functionality of 3' UTR variants. Hum Genet 2006; 120:301-33. [PMID: 16807757 DOI: 10.1007/s00439-006-0218-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 05/29/2006] [Indexed: 12/13/2022]
Abstract
In an attempt both to catalogue 3' regulatory region (3' RR)-mediated disease and to improve our understanding of the structure and function of the 3' RR, we have performed a systematic analysis of disease-associated variants in the 3' RRs of human protein-coding genes. We have previously analysed the variants that have occurred in two specific domains/motifs of the 3' untranslated region (3' UTR) as well as in the 3' flanking region. Here we have focused upon 83 known variants within the upstream sequence (USS; between the translational termination codon and the upstream core polyadenylation signal sequence) of the 3' UTR. To place these variants in their proper context, we first performed a comprehensive survey of known cis-regulatory elements within the USS and the mechanisms by which they effect post-transcriptional gene regulation. Although this survey supports the view that RNA regulatory elements function within the context of specific secondary structures, there are no general rules governing how secondary structure might exert its influence. We have therefore addressed this question by systematically evaluating both functional and non-functional (based upon in vitro reporter gene and/or electrophoretic mobility shift assay data) USS variant-containing sequences against known cis-regulatory motifs within the context of predicted RNA secondary structures. This has allowed us not only to establish a reliable and objective means to perform secondary structure prediction but also to identify consistent patterns of secondary structural change that could potentiate the discrimination of functional USS variants from their non-functional counterparts. The resulting rules were then used to infer potential functionality in the case of some of the remaining functionally uncharacterized USS variants, from their predicted secondary structures. This not only led us to identify further patterns of secondary structural change but also several potential novel cis-regulatory motifs within the 3' UTRs studied.
Collapse
|
24
|
Abstract
EH (essential hypertension) is a major public health problem in many countries due to its high prevalence and its association with coronary heart disease, stroke, renal disease, peripheral vascular disease and other disorders. Epidemiological studies have demonstrated that EH is heritable. Owing to the fact that blood pressure is controlled by cardiac output and total peripheral resistance, many molecular pathways are believed to be involved in the disease. In this review, recent genetic studies investigating the molecular basis of EH, including different molecular pathways, will be highlighted.
Collapse
Affiliation(s)
- Maolian Gong
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | | |
Collapse
|
25
|
Abstract
Atherosclerosis is a complex disease with various intermediate phenotypes that are themselves complex and influenced by many factors. Through the use of carotid ultrasound techniques, the intermediate stages of vascular disease can be imaged and studied for association with potential genetic determinants. In this article we review the most recent available data (reports published since 2004) on the genetic determinants of atherosclerosis, as measured by one-, two-, and three-dimensional ultrasonography of the carotid arteries. In general, associations are disparate and modest. For intima-media thickness, promising associations have been found for both TNFRSF1A R92Q and PPARG P12A, but associations also differed in the same individuals depending on the specific ultrasound trait studied (eg, linear intima-media thickness versus total plaque volume in carotid arteries). Some of the challenging issues for future studies include accounting for gene-environment interactions, sex-specific associations, and the distinctiveness of different carotid ultrasound measures.
Collapse
Affiliation(s)
- Rebecca L Pollex
- Blackburn Cardiovascular Genetics Laboratory, Robarts Research Institute, 100 Perth Drive, London, Ontario, Canada
| | | |
Collapse
|
26
|
Ragolia L, Palaia T, Hall CE, Maesaka JK, Eguchi N, Urade Y. Accelerated glucose intolerance, nephropathy, and atherosclerosis in prostaglandin D2 synthase knock-out mice. J Biol Chem 2005; 280:29946-55. [PMID: 15970590 DOI: 10.1074/jbc.m502927200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type 2 diabetics have an increased risk of developing atherosclerosis, suggesting the mechanisms that cause this disease are enhanced by insulin resistance. In this study we examined the effects of gene knock-out (KO) of lipocalin-type prostaglandin D(2) synthase (L-PGDS), a protein found at elevated levels in type 2 diabetics, on diet-induced glucose tolerance and atherosclerosis. Our results show that L-PGDS KO mice become glucose-in-tolerant and insulin-resistant at an accelerated rate when compared with the C57BL/6 control strain. Adipocytes were significantly larger in the L-PGDS KO mice compared with controls on the same diets. Cell culture data revealed significant differences between insulin-stimulated mitogen-activated protein kinase phosphatase-2, protein-tyrosine phosphatase-1D, and phosphorylated focal adhesion kinase expression levels in L-PGDS KO vascular smooth muscle cells and controls. In addition, only the L-PGDS KO mice developed nephropathy and an aortic thickening reminiscent to the early stages of atherosclerosis when fed a "diabetogenic" high fat diet. We conclude that L-PGDS plays an important role regulating insulin sensitivity and atherosclerosis in type 2 diabetes and may represent a novel model of insulin resistance, atherosclerosis, and diabetic nephropathy.
Collapse
Affiliation(s)
- Louis Ragolia
- Vascular Biology Laboratory, Winthrop-University Hospital, Mineola, New York 11501, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Kamide K, Yang J, Kokubo Y, Takiuchi S, Miwa Y, Horio T, Tanaka C, Banno M, Nagura J, Okayama A, Tomoike H, Kawano Y, Miyata T. A Novel Missense Mutation, F826Y, in the Mineralocorticoid Receptor Gene in Japanese Hypertensives: Its Implications for Clinical Phenotypes. Hypertens Res 2005; 28:703-9. [PMID: 16419642 DOI: 10.1291/hypres.28.703] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A gain-of-function mutation resulting in the S810L amino acid substitution in the hormone-binding domain of the mineralocorticoid receptor (MR, locus symbol NR3C2) is responsible for early-onset hypertension that is exacerbated in pregnancy. The objective of this study was to test whether other types of missense mutations in the hormone-binding domain could be implicated in hypertension in Japanese. Here, we screened 942 Japanese patients with hypertension for the S810L mutation in exon 6 in the MR. We did not identify the S810L mutation in our hypertensive population, indicating that S810L does not play a major role in the etiology of essential hypertension in Japanese. However, we identified a novel missense mutation, F826Y, in three patients in a heterozygous state, in addition to four single nucleotide polymorphisms, including one synonymous mutation (L809L). The F826Y mutation is present in the MR hormone-binding domain and might affect the ligand affinity. The F826Y mutation was also identified in 13 individuals (5 hypertensives and 8 normotensives) in a Japanese general population (n=3,655). The allele frequency was 0.00178. The frequencies of the F826Y mutation in the hypertensive population (3/942) and in the hypertensive group (5/ 1,480) and the normotensive group (8/2,175) in the general population were not significantly different, suggesting that this mutation does not greatly affect hypertension. Although it is unclear at present whether or not the F826Y mutation makes a substantial contribution to the mineralocorticoid receptor activity, this missense mutation may contribute, to some extent, to clinical phenotypes through its effects on MR.
Collapse
Affiliation(s)
- Kei Kamide
- Division of Hypertension and Nephrology, National Cardiovascular Center, Suita, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|