1
|
Petrova TE, Boyko KM, Nikolaeva AY, Stekhanova TN, Gruzdev EV, Mardanov AV, Stroilov VS, Littlechild JA, Popov VO, Bezsudnova EY. Structural characterization of geranylgeranyl pyrophosphate synthase GACE1337 from the hyperthermophilic archaeon Geoglobus acetivorans. Extremophiles 2018; 22:877-888. [PMID: 30062607 DOI: 10.1007/s00792-018-1044-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/20/2018] [Indexed: 01/23/2023]
Abstract
A novel type 1 geranylgeranyl pyrophosphate synthase GACE1337 has been identified within the genome of a newly identified hyperthermophilic archaeon Geoglobus acetivorans. The enzyme has been cloned and over-expressed in Escherichia coli. The recombinant enzyme has been biochemically and structurally characterized. It is able to catalyze the synthesis of geranylgeranyl pyrophosphate as a major product and of farnesyl pyrophosphate in smaller amounts, as measured by gas chromatography-mass spectrometry at an elevated temperature of 60 °C. Its ability to produce two products is consistent with the fact that GACE1337 is the only short-chain isoprenyl diphosphate synthase in G. acetivorans. Attempts to crystallize the enzyme were successful only at 37 °C. The three-dimensional structure of GACE1337 was determined by X-ray diffraction to 2.5 Å resolution. A comparison of its structure with those of related enzymes revealed that the Geoglobus enzyme has the features of both type I and type III geranylgeranyl pyrophosphate synthases, which allow it to regulate the product length. The active enzyme is a dimer and has three aromatic amino acids, two Phe, and a Tyr, located in the hydrophobic cleft between the two subunits. It is proposed that these bulky residues play a major role in the synthetic reaction by controlling the product elongation.
Collapse
Affiliation(s)
- Tatiana E Petrova
- Institute of Mathematical Problems of Biology, RAS, Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Professor Vitkevich St., Pushchino, 142290, Russian Federation.
| | - Konstantin M Boyko
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow, 119071, Russian Federation.,NBICS Center, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr, 1, Moscow, 123182, Russian Federation
| | - Alena Yu Nikolaeva
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow, 119071, Russian Federation
| | - Tatiana N Stekhanova
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow, 119071, Russian Federation
| | - Eugeny V Gruzdev
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow, 119071, Russian Federation
| | - Andrey V Mardanov
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow, 119071, Russian Federation
| | - Viktor S Stroilov
- N. D. Zelinsky Institute of Organic Chemistry (ZIOC RAS), Leninsky Prospekt, 47, Moscow, 119991, Russian Federation
| | - Jennifer A Littlechild
- Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Vladimir O Popov
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow, 119071, Russian Federation.,NBICS Center, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr, 1, Moscow, 123182, Russian Federation
| | - Ekaterina Yu Bezsudnova
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow, 119071, Russian Federation
| |
Collapse
|
2
|
Eichler J, Guan Z. Lipid sugar carriers at the extremes: The phosphodolichols Archaea use in N-glycosylation. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:589-599. [PMID: 28330764 DOI: 10.1016/j.bbalip.2017.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/28/2022]
Abstract
N-glycosylation, a post-translational modification whereby glycans are covalently linked to select Asn residues of target proteins, occurs in all three domains of life. Across evolution, the N-linked glycans are initially assembled on phosphorylated cytoplasmically-oriented polyisoprenoids, with polyprenol (mainly C55 undecaprenol) fulfilling this role in Bacteria and dolichol assuming this function in Eukarya and Archaea. The eukaryal and archaeal versions of dolichol can, however, be distinguished on the basis of their length, degree of saturation and by other traits. As is true for many facets of their biology, Archaea, best known in their capacity as extremophiles, present unique approaches for synthesizing phosphodolichols. At the same time, general insight into the assembly and processing of glycan-bearing phosphodolichols has come from studies of the archaeal enzymes responsible. In this review, these and other aspects of archaeal phosphodolichol biology are addressed.
Collapse
Affiliation(s)
- Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel.
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
3
|
Piccolomini AA, Fiabon A, Borrotti M, De Lucrezia D. Optimization of thermophilictrans-isoprenyl diphosphate synthase expression inEscherichia coliby response surface methodology. Biotechnol Appl Biochem 2016; 64:70-78. [DOI: 10.1002/bab.1459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/11/2015] [Indexed: 11/10/2022]
|
4
|
Ueda D, Yamaga H, Murakami M, Totsuka Y, Shinada T, Sato T. Biosynthesis of Sesterterpenes, Head-to-Tail Triterpenes, and Sesquarterpenes inBacillus clausii: Identification of Multifunctional Enzymes and Analysis of Isoprenoid Metabolites. Chembiochem 2015; 16:1371-7. [DOI: 10.1002/cbic.201500138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Indexed: 11/08/2022]
|
5
|
Jain S, Caforio A, Driessen AJM. Biosynthesis of archaeal membrane ether lipids. Front Microbiol 2014; 5:641. [PMID: 25505460 PMCID: PMC4244643 DOI: 10.3389/fmicb.2014.00641] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/06/2014] [Indexed: 01/05/2023] Open
Abstract
A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether bond to the sn-glycerol-1-phosphate backbone. In bacteria and eukarya on the other hand, fatty acid side chains are linked via an ester bond to the sn-glycerol-3-phosphate backbone. The polar head groups are globally shared in the three domains of life. The unique membrane lipids of archaea have been implicated not only in the survival and adaptation of the organisms to extreme environments but also to form the basis of the membrane composition of the last universal common ancestor (LUCA). In nature, a diverse range of archaeal lipids is found, the most common are the diether (or archaeol) and the tetraether (or caldarchaeol) lipids that form a monolayer. Variations in chain length, cyclization and other modifications lead to diversification of these lipids. The biosynthesis of these lipids is not yet well understood however progress in the last decade has led to a comprehensive understanding of the biosynthesis of archaeol. This review describes the current knowledge of the biosynthetic pathway of archaeal ether lipids; insights on the stability and robustness of archaeal lipid membranes; and evolutionary aspects of the lipid divide and the LUCA. It examines recent advances made in the field of pathway reconstruction in bacteria.
Collapse
Affiliation(s)
- Samta Jain
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen Netherlands ; The Zernike Institute for Advanced Materials, University of Groningen, Groningen Netherlands
| | - Antonella Caforio
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen Netherlands ; The Zernike Institute for Advanced Materials, University of Groningen, Groningen Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen Netherlands ; The Zernike Institute for Advanced Materials, University of Groningen, Groningen Netherlands
| |
Collapse
|
6
|
Matsumi R, Atomi H, Driessen AJM, van der Oost J. Isoprenoid biosynthesis in Archaea--biochemical and evolutionary implications. Res Microbiol 2010; 162:39-52. [PMID: 21034816 DOI: 10.1016/j.resmic.2010.10.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Isoprenoids are indispensable for all types of cellular life in the Archaea, Bacteria, and Eucarya. These membrane-associated molecules are involved in a wide variety of vital biological functions, ranging from compartmentalization and stability, to protection and energy-transduction. In Archaea, isoprenoid compounds constitute the hydrophobic moiety of the typical ether-linked membrane lipids. With respect to stereochemistry and composition, these archaeal lipids are very different from the ester-linked, fatty acid-based phospholipids in bacterial and eukaryotic membranes. This review provides an update on isoprenoid biosynthesis pathways, with a focus on the archaeal enzymes. The black-and-white distribution of fundamentally distinct membrane lipids in Archaea on the one hand, and Bacteria and Eucarya on the other, has previously been used as a basis for hypothetical evolutionary scenarios, a selection of which will be discussed here.
Collapse
Affiliation(s)
- Rie Matsumi
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
7
|
Kamal MZ, Ahmad S, Yedavalli P, Rao NM. Stability curves of laboratory evolved thermostable mutants of a Bacillus subtilis lipase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1850-6. [PMID: 20599630 DOI: 10.1016/j.bbapap.2010.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 06/14/2010] [Accepted: 06/17/2010] [Indexed: 11/26/2022]
Abstract
Shape of the protein stability curves changes to achieve higher melting temperature. Broadly, these changes have been classified as upward shift (increased G(s)), rightward shift (increase in T(s)) and flattening of the stability curves (decrease in C(p)). Comparative studies on homologous mesophilic-thermophilic protein pairs highlighted the differential contribution of these three strategies amongst proteins. But unambiguous way of identification of the strategies, which will be preferred for a protein, is still not achieved. We have performed comparative thermodynamic studies using differential scanning calorimeter (DSC) on thermostable variants of a lipase from Bacillus subtilis. These variants are products of 1, 2, 3 and 4 rounds of directed evolution and harbor mutations having definite contribution in thermostability unlike natural thermophilic proteins. We have shown that upward and rightward shift in stability curves are prime strategies in this lipase. Our results along with that from the other study on laboratory evolved xylanase A suggest that optimization of suboptimal thermodynamic parameters is having a dominant influence in selection of thermodynamic strategies for higher thermostability.
Collapse
Affiliation(s)
- Md Zahid Kamal
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial research, Uppal Road, Hyderabad-500007, India
| | | | | | | |
Collapse
|
8
|
Vandermoten S, Haubruge E, Cusson M. New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell Mol Life Sci 2009; 66:3685-95. [PMID: 19633972 PMCID: PMC11115643 DOI: 10.1007/s00018-009-0100-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 06/28/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
Isoprenoids form an extensive group of natural products involved in a number of important biological processes. Their biosynthesis proceeds through sequential 1'-4 condensations of isopentenyl diphosphate (C5) with an allylic acceptor, the first of which is dimethylallyl diphosphate (C5). The reactions leading to the production of geranyl diphosphate (C10), farnesyl diphosphate (C15) and geranylgeranyl diphosphate (C20), which are the precursors of mono-, sesqui- and diterpenes, respectively, are catalyzed by a group of highly conserved enzymes known as short-chain isoprenyl diphosphate synthases, or prenyltransferases. In recent years, the sequences of many new prenyltransferases have become available, including those of several plant and animal geranyl diphosphate synthases, revealing novel mechanisms of product chain-length selectivity and an intricate evolutionary path from a putative common ancestor. Finally, there is considerable interest in designing inhibitors specific to short-chain prenyltransferases, for the purpose of developing new drugs or pesticides that target the isoprenoid biosynthetic pathway.
Collapse
Affiliation(s)
- Sophie Vandermoten
- Department of Functional and Evolutionary Entomology, Gembloux Agricultural University, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | | | | |
Collapse
|
9
|
Yamada Y, Fukuda W, Hirooka K, Hiromoto T, Nakayama JI, Imanaka T, Fukusaki EI, Fujiwara S. Efficient in vitro synthesis of cis-polyisoprenes using a thermostable cis-prenyltransferase from a hyperthermophilic archaeon Thermococcus kodakaraensis. J Biotechnol 2009; 143:151-6. [PMID: 19583987 DOI: 10.1016/j.jbiotec.2009.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 05/26/2009] [Accepted: 06/21/2009] [Indexed: 10/20/2022]
Abstract
The Tk-idsB encoding cis-prenyltransferase which catalyzes consecutive cis-condensation of isopentenyl diphosphate to allylic diphosphate was isolated from a hyperthermophilic archaeon Thermococcus kodakaraensis, and enzymatic characteristics of the recombinant Tk-IdsB were examined. Tk-IdsB was not fully denatured even at 90 degrees C and preferably utilizes both C(10) and C(15) allylic diphosphates to yield mainly the C(60)-C(65) products. Based on structural models, single alanine-substitution mutants at Glu68, Lys109, or Leu113 were constructed, showing that all the three produced longer chains (C(65)-C(70)) than the wild-type and the substitution at 109 (K109A) was the most effective. Tk-IdsB was applied to an organic-aqueous dual-phase system and more than 90% of the products were recovered from the organic phase when 1-butanol or 1-pentanol was overlaid. When 1-octanol was overlaid, 70% of the products were obtained from the upper organic phase. The product distributions were changed depending on the hydrophobicity of organic solvents used. Tk-IdsB was then immobilized onto silica beads to make Tk-IdsB more tolerant, showing that half-life of enzyme at 80 degrees C was prolonged by immobilization. When the immobilized Tk-IdsB was applied in the organic-aqueous dual-phase system, immobilized Tk-IdsB catalyzed consecutive condensation more efficiently than the unimmobilized one.
Collapse
Affiliation(s)
- Yosuke Yamada
- Department of Bioscience, Nanobiotechnology Research Center, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Hyogo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Targeting a Uniquely Nonspecific Prenyl Synthase with Bisphosphonates to Combat Cryptosporidiosis. ACTA ACUST UNITED AC 2008; 15:1296-306. [DOI: 10.1016/j.chembiol.2008.10.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 09/30/2008] [Accepted: 10/06/2008] [Indexed: 11/19/2022]
|
11
|
Vandermoten S, Charloteaux B, Santini S, Sen SE, Béliveau C, Vandenbol M, Francis F, Brasseur R, Cusson M, Haubruge É. Characterization of a novel aphid prenyltransferase displaying dual geranyl/farnesyl diphosphate synthase activity. FEBS Lett 2008; 582:1928-34. [DOI: 10.1016/j.febslet.2008.04.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 04/21/2008] [Accepted: 04/22/2008] [Indexed: 11/16/2022]
|
12
|
Efficient synthesis of trans-polyisoprene compounds using two thermostable enzymes in an organic–aqueous dual-liquid phase system. Biochem Biophys Res Commun 2008; 365:118-23. [DOI: 10.1016/j.bbrc.2007.10.133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 10/24/2007] [Indexed: 11/18/2022]
|
13
|
Ling Y, Li ZH, Miranda K, Oldfield E, Moreno SNJ. The farnesyl-diphosphate/geranylgeranyl-diphosphate synthase of Toxoplasma gondii is a bifunctional enzyme and a molecular target of bisphosphonates. J Biol Chem 2007; 282:30804-16. [PMID: 17724033 DOI: 10.1074/jbc.m703178200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Farnesyl-diphosphate synthase (FPPS) catalyzes the synthesis of farnesyl diphosphate, an important precursor of sterols, dolichols, ubiquinones, and prenylated proteins. We report the cloning and characterization of two Toxoplasma gondii farnesyl-diphosphate synthase (TgFPPS) homologs. A single genetic locus produces two transcripts, TgFPPS and TgFPPSi, by alternative splicing. Both isoforms were heterologously expressed in Escherichia coli, but only TgFPPS was active. The protein products predicted from the nucleotide sequences have 646 and 605 amino acids and apparent molecular masses of 69.5 and 64.5 kDa, respectively. Several conserved sequence motifs found in other prenyl-diphosphate synthases are present in both TgFPPSs. TgFPPS was also expressed in the baculovirus system and was biochemically characterized. In contrast to the FPPS of other eukaryotic organisms, TgFPPS is bifunctional, catalyzing the formation of both farnesyl diphosphate and geranylgeranyl diphosphate. TgFPPS localizes to the mitochondria, as determined by the co-localisation of the affinity-purified antibodies against the protein with MitoTracker, and in accord with the presence of an N-terminal mitochondria-targeting signal in the protein. This enzyme is an attractive target for drug development, because the order of inhibition of the enzyme by a number of bisphosphonates is the same as that for inhibition of parasite growth. In summary, we report the first bifunctional farnesyl-diphosphate/geranylgeranyl-diphosphate synthase identified in eukaryotes, which, together with previous results, establishes this enzyme as a valid target for the chemotherapy of toxoplasmosis.
Collapse
Affiliation(s)
- Yan Ling
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
14
|
Ye Y, Fujii M, Hirata A, Kawamukai M, Shimoda C, Nakamura T. Geranylgeranyl diphosphate synthase in fission yeast is a heteromer of farnesyl diphosphate synthase (FPS), Fps1, and an FPS-like protein, Spo9, essential for sporulation. Mol Biol Cell 2007; 18:3568-81. [PMID: 17596513 PMCID: PMC1951748 DOI: 10.1091/mbc.e07-02-0112] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Both farnesyl diphosphate synthase (FPS) and geranylgeranyl diphosphate synthase (GGPS) are key enzymes in the synthesis of various isoprenoid-containing compounds and proteins. Here, we describe two novel Schizosaccharomyces pombe genes, fps1(+) and spo9(+), whose products are similar to FPS in primary structure, but whose functions differ from one another. Fps1 is essential for vegetative growth, whereas, a spo9 null mutant exhibits temperature-sensitive growth. Expression of fps1(+), but not spo9(+), suppresses the lethality of a Saccharomyces cerevisiae FPS-deficient mutant and also restores ubiquinone synthesis in an Escherichia coli ispA mutant, which lacks FPS activity, indicating that S. pombe Fps1 in fact functions as an FPS. In contrast to a typical FPS gene, no apparent GGPS homologues have been found in the S. pombe genome. Interestingly, although neither fps1(+) nor spo9(+) expression alone in E. coli confers clear GGPS activity, coexpression of both genes induces such activity. Moreover, the GGPS activity is significantly reduced in the spo9 mutant. In addition, the spo9 mutation perturbs the membrane association of a geranylgeranylated protein, but not that of a farnesylated protein. Yeast two-hybrid and coimmunoprecipitation analyses indicate that Fps1 and Spo9 physically interact. Thus, neither Fps1 nor Spo9 alone functions as a GGPS, but the two proteins together form a complex with GGPS activity. Because spo9 was originally identified as a sporulation-deficient mutant, we show here that expansion of the forespore membrane is severely inhibited in spo9Delta cells. Electron microscopy revealed significant accumulation membrane vesicles in spo9Delta cells. We suggest that lack of GGPS activity in a spo9 mutant results in impaired protein prenylation in certain proteins responsible for secretory function, thereby inhibiting forespore membrane formation.
Collapse
Affiliation(s)
- Yanfang Ye
- *Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Makoto Fujii
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue 690-8504, Japan
| | - Aiko Hirata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan; and
| | - Makoto Kawamukai
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue 690-8504, Japan
| | - Chikashi Shimoda
- *Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Taro Nakamura
- *Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
15
|
Abstract
Studies that compare proteins from thermophilic and mesophilic organisms can provide insights into ability of thermophiles to function at their high habitat temperatures and may provide clues that enable us to better define the forces that stabilize all proteins. Most of the comparative studies have focused on thermal stability and show, as expected, that thermophilic proteins have higher Tm values than their mesophilic counterparts. Although these comparisons are useful, more detailed thermodynamic analyses are required to reach a more complete understanding of the mechanisms thermophilic protein employ to remain folded over a wider range of temperatures. This complete thermodynamic description allows one to generate a stability curve for a protein that defines how the conformational stability (DeltaG) varies with temperature. Here we compare stability curves for many pairs of homologous proteins from thermophilic and mesophilc organisms. Of the basic methods that can be employed to achieve enhanced thermostability, we find that most thermophilic proteins use the simple method that raises the DeltaG at all temperatures as the principal way to increase their Tm. We discuss and compare this thermodynamic method with the possible alternatives. In addition we propose ways that structural alterations and changes to the amino acid sequences might give rise to varied methods used to obtain thermostability.
Collapse
Affiliation(s)
- Abbas Razvi
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843-1114, USA
| | | |
Collapse
|
16
|
Cervantes-Cervantes M, Gallagher CE, Zhu C, Wurtzel ET. Maize cDNAs expressed in endosperm encode functional farnesyl diphosphate synthase with geranylgeranyl diphosphate synthase activity. PLANT PHYSIOLOGY 2006; 141:220-31. [PMID: 16581875 PMCID: PMC1459322 DOI: 10.1104/pp.106.077008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Isoprenoids are the most diverse and abundant group of natural products. In plants, farnesyl diphosphate (FPP) and geranylgeranyl diphosphate (GGPP) are precursors to many isoprenoids having essential functions. Terpenoids and sterols are derived from FPP, whereas gibberellins, carotenoids, casbenes, taxenes, and others originate from GGPP. The corresponding synthases (FPP synthase [FPPS] and GGPP synthase [GGPPS]) catalyze, respectively, the addition of two and three isopentenyl diphosphate molecules to dimethylallyl diphosphate. Maize (Zea mays L. cv B73) endosperm cDNAs encoding isoprenoid synthases were isolated by functional complementation of Escherichia coli cells carrying a bacterial gene cluster encoding all pathway enzymes needed for carotenoid biosynthesis, except for GGPPS. This approach indicated that the maize gene products were functional GGPPS enzymes. Yet, the predicted enzyme sequences revealed FPPS motifs and homology with FPPS enzymes. In vitro assays demonstrated that indeed these maize enzymes produced both FPP and GGPP and that the N-terminal sequence affected the ratio of FPP to GGPP. Their functionality in E. coli demonstrated that these maize enzymes can be coupled with a metabolon to provide isoprenoid substrates for pathway use, and suggests that enzyme bifunctionality can be harnessed. The maize cDNAs are encoded by a small gene family whose transcripts are prevalent in endosperm beginning mid development. These maize cDNAs will be valuable tools for assessing the critical structural properties determining prenyl transferase specificity and in metabolic engineering of isoprenoid pathways, especially in cereal crops.
Collapse
Affiliation(s)
- Miguel Cervantes-Cervantes
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York 10468, USA
| | | | | | | |
Collapse
|
17
|
Siddiqui MA, Yamanaka A, Hirooka K, Bamaba T, Kobayashi A, Imanaka T, Fukusaki EI, Fujiwara S. Enzymatic and structural characterization of type II isopentenyl diphosphate isomerase from hyperthermophilic archaeon Thermococcus kodakaraensis. Biochem Biophys Res Commun 2005; 331:1127-36. [PMID: 15882994 DOI: 10.1016/j.bbrc.2005.04.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2005] [Indexed: 11/19/2022]
Abstract
Enzymatic and thermodynamic characteristics of type II isopentenyl diphosphate (IPP):dimethylallyl diphosphate (DMAPP) isomerase (Tk-IDI) from Thermococcus kodakaraensis, which catalyzes the interconversion of IPP and DMAPP, were examined. FMN was tightly bound to Tk-IDI, and the enzyme required NADPH and Mg2+ for the isomerization in both directions. The melting temperature (Tm), the change of enthalpy (deltaH(m)), and the heat capacity change (deltaC(p)) of Tk-IDI were 88.0 degrees C, 444 kJ mol(-1), and 13.2 kJ mol(-1) K(-1), respectively, indicating that Tk-IDI is fairly thermostable. Kinetic parameters dramatically changed when the temperature crossed 80 degrees C even though its native overall structure was stably maintained up to 90 degrees C, suggesting that local conformational change would occur around 80 degrees C. This speculation was supported by the result of the circular dichroism analysis that showed the shift of the alpha-helical content occurred at 80 degrees C.
Collapse
Affiliation(s)
- Masood Ahmed Siddiqui
- Department of Bioscience, Nanobiotechnology Research Center, School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen Sanda, Hyogo 669-1337, Japan
| | | | | | | | | | | | | | | |
Collapse
|