1
|
Seah GL, Yu JH, Yang MY, Kim WJ, Kim JH, Park K, Cho JW, Kim JS, Nam YS. Low-power and low-drug-dose photodynamic chemotherapy via the breakdown of tumor-targeted micelles by reactive oxygen species. J Control Release 2018; 286:240-253. [PMID: 30071252 DOI: 10.1016/j.jconrel.2018.07.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 12/31/2022]
Abstract
Tumor-targeted delivery of anticancer agents using nanocarriers has been explored to increase the therapeutic index of cancer chemotherapy. However, only a few nanocarriers are clinically available because the physiological complexity often compromises their ability to target, penetrate, and control the release of drugs. Here, we report a method which dramatically increases in vivo therapeutic drug efficacy levels through the photodynamic degradation of tumor-targeted nanocarriers. Folate-decorated poly(ethylene glycol)-polythioketal micelles are prepared to encapsulate paclitaxel and porphyrins. Photo-excitation generates reactive oxygen species within the micelles to cleave the polythioketal backbone efficiently and facilitate drug release only at the illuminated tumor site. Intravenous injection of a murine xenograft model with a low dose of paclitaxel within the micelles, one-milligram drug per kg (mouse), corresponding to an amount less than that of Taxol by one order of magnitude, induces dramatic tumor regression without any acute systemic inflammation responses or organ toxicity under low-power irradiation (55 mW cm-2) at 650 nm.
Collapse
Affiliation(s)
- Geok Leng Seah
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong Heon Yu
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Moon Young Yang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Woo Jin Kim
- Pathology Research Center, Department of Jeonbuk Inhalation Research, Korea Institute of Toxicology, 30 Baekhak-1-gil, Jeongup, Jeonbuk 56212, Republic of Korea
| | - Jin-Ho Kim
- Samsung Medical Center, Samsung Biomedical Research Institute, Irwon-dong, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Keunchil Park
- Samsung Medical Center, Samsung Biomedical Research Institute, Irwon-dong, Gangnam-gu, Seoul 06351, Republic of Korea; Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-dong, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Jae-Woo Cho
- Pathology Research Center, Department of Jeonbuk Inhalation Research, Korea Institute of Toxicology, 30 Baekhak-1-gil, Jeongup, Jeonbuk 56212, Republic of Korea
| | - Jee Seon Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
2
|
Diaz Y, Tundidor Y, Lopez A, Leon K. Concomitant combination of active immunotherapy and carboplatin- or paclitaxel-based chemotherapy improves anti-tumor response. Cancer Immunol Immunother 2013; 62:455-69. [PMID: 22941039 PMCID: PMC11028977 DOI: 10.1007/s00262-012-1345-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 08/16/2012] [Indexed: 12/22/2022]
Abstract
Recent preclinical evidence substantially supports the successful combination of chemotherapies and active immunotherapy for cancer treatment. These data sustain the effect of sequential combination schemes (vaccine plus chemotherapy or vice versa), which could be difficult to implement in clinical practice. Since chemotherapy is the standard treatment for most cancers, ethical issues forbid its delay and make difficult the evaluation of other treatments such as using an immunotherapeutic agent. Besides, vaccines must be applied as soon as possible to advanced cancer patients, in order to give them time to develop an effective immune response. Thus, a clinically attractive scenario is the concomitant application of treatments. However, little is known about the specific effect of different chemotherapeutic agents when combined with a cancer vaccine in such concomitant treatment. In this work, we analyze the influence of high-dose carboplatin or paclitaxel in the generation of a specific immune response when administered concomitantly with an OVA vaccine. Interestingly, neither carboplatin nor paclitaxel affects the humoral and CTL in vivo response generated by the vaccine. Moreover, an enhancement of the overall anti-tumor effect was observed in animals treated with OVA/CF vaccine combined with cytotoxic drugs. Moreover, the effect of the concomitant treatment was tested using a tumor-related antigen, the epidermal growth factor (EGF). Animals administered with EGF-P64k/Montanide and cytotoxic agents showed an antibody response similar to that from control animals. Therefore, our study suggests that carboplatin and paclitaxel can be concomitantly combined with active immunotherapies in the clinical practice of advanced cancer patients.
Collapse
Affiliation(s)
- Y Diaz
- Systems Biology Department, Center of Molecular Immunology, P.O. Box 16040, 11600, Havana, Cuba.
| | | | | | | |
Collapse
|
3
|
Tomimori K, Nakama S, Kimura R, Tamaki K, Ishikawa C, Mori N. Antitumor activity and macrophage nitric oxide producing action of medicinal herb, Crassocephalum crepidioides. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:78. [PMID: 22720874 PMCID: PMC3407475 DOI: 10.1186/1472-6882-12-78] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/21/2012] [Indexed: 11/10/2022]
Abstract
Background Crassocephalum crepidioides, a plant distributed in Okinawa Islands, is known in folk medicine; however, its anticancer activity has not been investigated. The aim of this study was to determine the in vitro and in vivo antitumor activities of C. crepidioides on murine Sarcoma 180 (S-180) and related molecular mechanisms. Methods The antitumor effect of C. crepidioides was evaluated in S-180-cell-bearing mice. Cell growth was assessed using a colorimetric assay. Nitrite and nitrate levels were measured by colorimetry. The expression levels of inducible NO synthase (iNOS) in murine RAW264.7 macrophages was assessed by reverse transcriptase-polymerase chain reaction. Activation of iNOS promoter was detected by reporter gene. Activation of nuclear factor-κB (NF-κB) was evaluated by electrophoretic mobility shift assay. The role of NF-κB signaling was analyzed using inhibitors of NF-κB and dominant-negative mutants, and Western blot analysis. Results C. crepidioides extract delayed tumor growth in S-180-bearing mice. However, it did not inhibit S-180 cell growth in vitro. Supernatant of cultured C. crepidioides-stimulated RAW264.7 macrophages was cytotoxic to S-180 cells. This cytotoxicity was associated with nitric oxide (NO) production. NF-κB signaling pathway was crucial for the transcriptional activation of iNOS gene. Isochlorogenic acid, a component of C. crepidioides, induced NF-κB activation and iNOS expression. Conclusions The results highlight the oncolytic and immunopotentiation properties of C. crepidioides mediated through NF-κB-induced release of NO from macrophages.
Collapse
|
4
|
Panis C, Lemos LGT, Victorino VJ, Herrera ACSA, Campos FC, Colado Simão AN, Pinge-Filho P, Cecchini AL, Cecchini R. Immunological effects of taxol and adryamicin in breast cancer patients. Cancer Immunol Immunother 2012; 61:481-8. [PMID: 21959683 PMCID: PMC11028662 DOI: 10.1007/s00262-011-1117-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 09/15/2011] [Indexed: 12/16/2022]
Abstract
Antineoplastic chemotherapy still consists in the major first-line therapeutics against cancer. Several reports have described the immunomodulatory effects of these drugs based on in vitro treatment, but no previous data are known about these effects in patients and its association with immunological-mediated toxicity. In this study, we first characterize the immunological profile of advanced breast cancer patients treated with doxorubicin and paclitaxel protocols, immediately after chemotherapy infusion. Our findings included an immediate plasmatic reduction in IL-1, IL-10, and TNF-α levels in doxorubicin-treated patients, as well as high levels of IL-10 in paclitaxel patients. Further, it was demonstrated that both drugs led to leukocytes oxidative burst impairment. In vitro analysis was performed exposing healthy blood to both chemotherapics in the same concentration and time of exposition of patients, resulting in low IL-10 and high IL-1β in doxorubicin exposition, as low TNF-α and high IL-1 in paclitaxel treatment. Nitric oxide levels were not altered in both in vivo and in vitro treatments. In conclusion, our data revealed for the first time that the immediate effects of chemotherapy could be mediated by cytokines signaling in patients and that the results observed in patients could be a resultant of host immune cells activation.
Collapse
Affiliation(s)
- C Panis
- Laboratory of Physiopathology and Free Radicals, Department of General Pathology-Center of Biological Science, State University of Londrina, Londrina, 86051-990, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Javeed A, Ashraf M, Riaz A, Ghafoor A, Afzal S, Mukhtar MM. Paclitaxel and immune system. Eur J Pharm Sci 2009; 38:283-90. [DOI: 10.1016/j.ejps.2009.08.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 08/29/2009] [Indexed: 12/17/2022]
|
6
|
Rajewskaya TA, Goncharova SA, Konovalova NP, Terent'ev AA, Lapshina MA. Effect of nitric oxide donor, a modulator of tumor drug resistance, on cell death and p53 protein expression. Bull Exp Biol Med 2009; 147:421-3. [PMID: 19704938 DOI: 10.1007/s10517-009-0526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exogenous NO donor 3,3-bis-(nitroxymethyl)oxetane (NMO) was synthesized at the Institute for Problems of Chemical Physics (Russian Academy of Sciences). This compound was shown to inhibit cell death (apoptosis and necrosis) in cyclophosphamide-sensitive and cyclophosphamide-resistant P388 murine tumor. p53 protein was expressed in both lines of tumor cells. NO donor NMO had little effect on p53 protein expression in cells of both stains. Our results suggest that the proapoptotic effect of NMO is mediated by the p53-independent molecular mechanisms.
Collapse
Affiliation(s)
- T A Rajewskaya
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia.
| | | | | | | | | |
Collapse
|
7
|
Kim MH, Joo HG. The role of Bcl-xL and nuclear factor-kappaB in the effect of taxol on the viability of dendritic cells. J Vet Sci 2009; 10:99-103. [PMID: 19461204 PMCID: PMC2801113 DOI: 10.4142/jvs.2009.10.2.99] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Taxol has been used effectively in cancer therapies. Our previous study demonstrated that taxol induced altered maturation and improved viability of dendritic cells (DCs). However, the effects of taxol on DC viability have not been fully elucidated. In the present study, flow cytometric analyses revealed that taxol treatment significantly increased the number of viable DCs and the expression levels of a representative anti-apoptotic protein Bcl-xL. Furthermore, mobilization of the p65 subunit of nuclear factor-κB (NF-κB) from the cytosol to the nucleus in DCs was observed by confocal microscopy. An inhibition assay using N-p-tosyl-L-phenylalanine chloromethyl ketone confirmed that NF-κB was intimately involved in the effects of taxol on DC viability. In addition, we investigated the mechanisms of taxol enhancement of DC viability. Since taxol is a popular anticancer agent used in clinic, this study may provide a rationale for the use of taxol in DC immunotherapy to treat cancer patients. Taken together, these results confirm that taxol increases DC viability, and this information may provide new insights for new clinical applications of both taxol and DCs.
Collapse
Affiliation(s)
- Mi Hyoung Kim
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju National University, Jeju, Korea
| | | |
Collapse
|
8
|
Effect of drug resistance modulator, NO donor, on membrane structure and function of membrane-bound Ca2+-activated Mg2+-dependent ATPase. Bull Exp Biol Med 2009; 146:200-2. [PMID: 19145317 DOI: 10.1007/s10517-008-0253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Exogenous NO donor 3,3-bis-(nitroxymethyl)oxetane (NMO) was synthesized at the Institute for Problems of Chemical Physics (Russian Academy of Sciences). This compound was shown to inhibit Ca2+-ATPase isolated from normal muscular cells and tumor cells. Both hydrolytic and transport functions of the enzyme were inhibited under these conditions. These changes were probably related to changes in membrane structure caused by NO donor. Our results suggest that changes in intracellular Ca2+ concentration can modulate the formation of tumor drug resistance.
Collapse
|
9
|
Saito F, Matsusaka S, Takahashi Y, Wakabayashi I. Enhancement of nitric oxide synthase induction in alveolar macrophages by in vivo administration of docetaxel. Eur J Pharmacol 2008; 580:425-30. [DOI: 10.1016/j.ejphar.2007.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Revised: 10/26/2007] [Accepted: 11/03/2007] [Indexed: 10/22/2022]
|
10
|
Marupudi NI, Han JE, Li KW, Renard VM, Tyler BM, Brem H. Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf 2007; 6:609-21. [PMID: 17877447 DOI: 10.1517/14740338.6.5.609] [Citation(s) in RCA: 329] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Better known as Taxol (Bristol-Myers Squibb), paclitaxel is the first member of the taxane family to be used in cancer chemotherapy. The taxanes exert their cytotoxic effect by arresting mitosis through microtubule stabilization, resulting in cellular apoptosis. The use of paclitaxel as a chemotherapeutic agent has become a broadly accepted option in the treatment of patients with ovarian, breast and non-small cell lung cancers, malignant brain tumors, and a variety of other solid tumors. However, significant toxicities, such as myelosuppression and peripheral neuropathy, limit the effectiveness of paclitaxel-based treatment regimens. This review addresses the toxicities associated with paclitaxel treatment and describes existing and future strategies of paclitaxel administration directed at limiting these toxicities.
Collapse
Affiliation(s)
- Neena I Marupudi
- Johns Hopkins School of Medicine, Department of Neurological Surgery, Meyer 7-113, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
11
|
Maeng HJ, Chung SJ. Toxicological Relevance of Transporters. Toxicol Res 2007. [DOI: 10.5487/tr.2007.23.1.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Lim JS, Lee SK, Jeon YJ. Inhibition of NF-kB/Rel by Paclitaxel in Mouse Macrophages. Toxicol Res 2007. [DOI: 10.5487/tr.2007.23.1.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Abstract
There have been recent, significant advances about the role of mRNA turnover in controlling gene expression in immune cells. Post‐transcriptional regulation of gene expression contributes to the characteristics of many of the processes underlying the immune response by ensuring early, rapid, and transient action. The emphasis of this review is on current work that deals with the regulation of mRNA decay during innate immunity against microbes and T cell activation as a model of the adaptive response.
Collapse
Affiliation(s)
- Khalid S A Khabar
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Center, P3354, mBC-03, Riyadh 11211, Saudi Arabia.
| |
Collapse
|