1
|
Wu Y, Han C, Luo R, Cai W, Xia Q, Jiang R, Ferdek PE, Liu T, Huang W. Molecular mechanisms of pain in acute pancreatitis: recent basic research advances and therapeutic implications. Front Mol Neurosci 2023; 16:1331438. [PMID: 38188196 PMCID: PMC10771850 DOI: 10.3389/fnmol.2023.1331438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
Although severe abdominal pain is the main symptom of acute pancreatitis, its mechanisms are poorly understood. An emerging body of literature evidence indicates that neurogenic inflammation might play a major role in modulating the perception of pain from the pancreas. Neurogenic inflammation is the result of a crosstalk between injured pancreatic tissue and activated neurons, which leads to an auto-amplification loop between inflammation and pain during the progression of acute pancreatitis. In this review, we summarize recent findings on the role of neuropeptides, ion channels, and the endocannabinoid system in acute pancreatitis-related pain. We also highlight potential therapeutic strategies that could be applied for managing severe pain in this disease.
Collapse
Affiliation(s)
- Yongzi Wu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxia Han
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Luo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenhao Cai
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Pawel E. Ferdek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
- Institutes for Systems Genetics and Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- West China Biobank, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Zhu Z, Bhatia M. Inflammation and Organ Injury the Role of Substance P and Its Receptors. Int J Mol Sci 2023; 24:ijms24076140. [PMID: 37047113 PMCID: PMC10094202 DOI: 10.3390/ijms24076140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Tightly controlled inflammation is an indispensable mechanism in the maintenance of cellular and organismal homeostasis in living organisms. However, aberrant inflammation is detrimental and has been suggested as a key contributor to organ injury with different etiologies. Substance P (SP) is a neuropeptide with a robust effect on inflammation. The proinflammatory effects of SP are achieved by activating its functional receptors, namely the neurokinin 1 receptor (NK1R) receptor and mas-related G protein-coupled receptors X member 2 (MRGPRX2) and its murine homolog MRGPRB2. Upon activation, the receptors further signal to several cellular signaling pathways involved in the onset, development, and progression of inflammation. Therefore, excessive SP-NK1R or SP-MRGPRX2/B2 signals have been implicated in the pathogenesis of inflammation-associated organ injury. In this review, we summarize our current knowledge of SP and its receptors and the emerging roles of the SP-NK1R system and the SP-MRGPRX2/B2 system in inflammation and injury in multiple organs resulting from different pathologies. We also briefly discuss the prospect of developing a therapeutic strategy for inflammatory organ injury by disrupting the proinflammatory actions of SP via pharmacological intervention.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
3
|
Kumar A, Bhatia M. Role of Hydrogen Sulfide, Substance P and Adhesion Molecules in Acute Pancreatitis. Int J Mol Sci 2021; 22:ijms222212136. [PMID: 34830018 PMCID: PMC8622943 DOI: 10.3390/ijms222212136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/02/2023] Open
Abstract
Inflammation is a natural response to tissue injury. Uncontrolled inflammatory response leads to inflammatory disease. Acute pancreatitis is one of the main reasons for hospitalization amongst gastrointestinal disorders worldwide. It has been demonstrated that endogenous hydrogen sulfide (H2S), a gasotransmitter and substance P, a neuropeptide, are involved in the inflammatory process in acute pancreatitis. Cell adhesion molecules (CAM) are key players in inflammatory disease. Immunoglobulin (Ig) gene superfamily, selectins, and integrins are involved at different steps of leukocyte migration from blood to the site of injury. When the endothelial cells get activated, the CAMs are upregulated which leads to them interacting with leukocytes. This review summarizes our current understanding of the roles H2S, substance P and adhesion molecules play in acute pancreatitis.
Collapse
|
4
|
Li G, Chen H, Liu L, Xiao P, Xie Y, Geng X, Zhang T, Zhang Y, Lu T, Tan H, Li L, Sun B. Role of Interleukin-17 in Acute Pancreatitis. Front Immunol 2021; 12:674803. [PMID: 34594321 PMCID: PMC8476864 DOI: 10.3389/fimmu.2021.674803] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
Acute pancreatitis (AP) is a leading cause of death and is commonly accompanied by systemic manifestations that are generally associated with a poor prognosis. Many cytokines contribute to pancreatic tissue damage and cause systemic injury. Interleukin-17 (IL-17) is a cytokine that may play a vital role in AP. Specifically, IL-17 has important effects on the immune response and causes interactions between different inflammatory mediators in the AP-related microenvironment. In this literature review, we will discuss the existing academic understanding of IL-17 and the impacts of IL-17 in different cells (especially in acinar cells and immune system cells) in AP pathogenesis. The clinical significance and potential mechanisms of IL-17 on AP deterioration are emphasized. The evidence suggests that inhibiting the IL-17 cytokine family could alleviate the pathogenic process of AP, and we highlight therapeutic strategies that directly or indirectly target IL-17 cytokines in acute pancreatitis.
Collapse
Affiliation(s)
- Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liwei Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Xiao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Xie
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Geng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianqi Lu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongtao Tan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| |
Collapse
|
5
|
Manandhar S, Sinha P, Ejiwale G, Bhatia M. Hydrogen Sulfide and its Interaction with Other Players in Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:129-159. [PMID: 34302691 DOI: 10.1007/978-981-16-0991-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) plays a vital role in human physiology and in the pathophysiology of several diseases. In addition, a substantial role of H2S in inflammation has emerged. This chapter will discuss the involvement of H2S in various inflammatory diseases. Furthermore, the contribution of reactive oxygen species (ROS), adhesion molecules, and leukocyte recruitment in H2S-mediated inflammation will be discussed. The interrelationship of H2S with other gasotransmitters in inflammation will also be examined. There is mixed literature on the contribution of H2S to inflammation due to studies reporting both pro- and anti-inflammatory actions. These apparent discrepancies in the literature could be resolved with further studies.
Collapse
Affiliation(s)
- Sumeet Manandhar
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Priyanka Sinha
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Grace Ejiwale
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
6
|
Li B, Han X, Ye X, Ni J, Wu J, Dai J, Wu Z, Chen C, Wan R, Wang X, Hu G. Substance P-regulated leukotriene B4 production promotes acute pancreatitis-associated lung injury through neutrophil reverse migration. Int Immunopharmacol 2018; 57:147-156. [PMID: 29482159 DOI: 10.1016/j.intimp.2018.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/01/2018] [Accepted: 02/20/2018] [Indexed: 01/01/2023]
Abstract
Leukotriene B4 (LTB4) is a potent chemoattractant and inflammatory mediator involved in multiple inflammatory diseases. Substance P (SP) has been reported to promote production of LTB4 in itch-associated response in vivo and in some immune cells in vitro. Here, we investigated the role of LTB4 in acute pancreatitis (AP), AP-associated acute lung injury (ALI) and the related mechanisms of LTB4 production in AP. In vivo, murine AP model was induced by caerulein and lipopolysaccharide or L-arginine. The levels of LTB4 and its specific receptor BLT1 were markedly upregulated in both AP models. Blockade of BLT1 by LY293111 attenuated the severity of AP, decreased neutrophil reverse transendothelial cell migration (rTEM) into the circulation and alleviated the severity of ALI. In vitro, treatment of pancreatic acinar cells with SP increased LTB4 production. Furthermore, SP treatment increased phosphorylation of protein kinase C (PKC) α and mitogen activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), p-38 MAPK and c-Jun NH2-terminal kinase (JNK). Finally, blockade of neurokinin-1 receptor by CP96345 significantly attenuated the severity of AP and decreased the level of LTB4 when compared to AP group. In summary, these results show that SP regulates the production of LTB4 via PKCα/MAPK pathway, which further promotes AP-associated ALI through neutrophil rTEM.
Collapse
Affiliation(s)
- Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Han
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Ye
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianghong Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Dai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengkai Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congying Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Tsukamoto A, Ohgoda M, Haruki N, Hori M, Inomata T. The anti-inflammatory action of maropitant in a mouse model of acute pancreatitis. J Vet Med Sci 2018; 80:492-498. [PMID: 29343664 PMCID: PMC5880832 DOI: 10.1292/jvms.17-0483] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The neurokinin 1 receptor (NK1R) plays an important role in the pathogenesis of acute pancreatitis (AP). Maropitant is an NK1R antagonist that is widely used as an antiemetic in dogs and cats. In the present study, we investigated the anti-inflammatory action of maropitant in a mouse model of AP. AP was induced in BALB/c mice by intraperitoneal administration of cerulein, and maropitant was administered subcutaneously at a dose of 8 mg/kg. We assessed the mRNA expression levels of NK1R and substance P (SP) in the pancreatic tissue via real-time reverse transcription polymerase chain reaction. In addition, the effect of maropitant on plasma amylase, lipase, and interleukin-6 (IL-6) levels was measured in each mouse. Inflammatory cell infiltration in the pancreas was assessed by myeloperoxidase (MPO) staining. Our results showed that AP induction significantly elevated the mRNA expression of SP in the pancreatic tissue. Treatment with maropitant significantly lowered plasma amylase and IL-6 levels. In addition, treatment with maropitant inhibited the infiltration of MPO-positive cells in the pancreas. The present study suggests that maropitant possesses an anti-inflammatory activity, in addition to its antiemetic action.
Collapse
Affiliation(s)
- Atsushi Tsukamoto
- Laboratory of Laboratory Animal Science, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Minami Ohgoda
- Laboratory of Laboratory Animal Science, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Nozomi Haruki
- Laboratory of Laboratory Animal Science, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomo Inomata
- Laboratory of Laboratory Animal Science, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
8
|
Weitz JR, Makhmutova M, Almaça J, Stertmann J, Aamodt K, Brissova M, Speier S, Rodriguez-Diaz R, Caicedo A. Mouse pancreatic islet macrophages use locally released ATP to monitor beta cell activity. Diabetologia 2018; 61:182-192. [PMID: 28884198 PMCID: PMC5868749 DOI: 10.1007/s00125-017-4416-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/14/2017] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Tissue-resident macrophages sense the microenvironment and respond by producing signals that act locally to maintain a stable tissue state. It is now known that pancreatic islets contain their own unique resident macrophages, which have been shown to promote proliferation of the insulin-secreting beta cell. However, it is unclear how beta cells communicate with islet-resident macrophages. Here we hypothesised that islet macrophages sense changes in islet activity by detecting signals derived from beta cells. METHODS To investigate how islet-resident macrophages respond to cues from the microenvironment, we generated mice expressing a genetically encoded Ca2+ indicator in myeloid cells. We produced living pancreatic slices from these mice and used them to monitor macrophage responses to stimulation of acinar, neural and endocrine cells. RESULTS Islet-resident macrophages expressed functional purinergic receptors, making them exquisite sensors of interstitial ATP levels. Indeed, islet-resident macrophages responded selectively to ATP released locally from beta cells that were physiologically activated with high levels of glucose. Because ATP is co-released with insulin and is exclusively secreted by beta cells, the activation of purinergic receptors on resident macrophages facilitates their awareness of beta cell secretory activity. CONCLUSIONS/INTERPRETATION Our results indicate that islet macrophages detect ATP as a proxy signal for the activation state of beta cells. Sensing beta cell activity may allow macrophages to adjust the secretion of factors to promote a stable islet composition and size.
Collapse
Affiliation(s)
- Jonathan R Weitz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL, 33136, USA
- Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Madina Makhmutova
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL, 33136, USA
- Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL, 33136, USA
| | - Julia Stertmann
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
- DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Kristie Aamodt
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Speier
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
- DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Rayner Rodriguez-Diaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL, 33136, USA.
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, 1580 NW 10th Ave, Miami, FL, 33136, USA.
- Molecular Cell and Developmental Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
9
|
Pierce AA, Duwaerts CC, Siao K, Mattis AN, Goodsell A, Baron JL, Maher JJ. CD18 deficiency improves liver injury in the MCD model of steatohepatitis. PLoS One 2017; 12:e0183912. [PMID: 28873429 PMCID: PMC5584926 DOI: 10.1371/journal.pone.0183912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023] Open
Abstract
Neutrophils and macrophages are important constituents of the hepatic inflammatory infiltrate in non-alcoholic steatohepatitis. These innate immune cells express CD18, an adhesion molecule that facilitates leukocyte activation. In the context of fatty liver, activation of infiltrated leukocytes is believed to enhance hepatocellular injury. The objective of this study was to determine the degree to which activated innate immune cells promote steatohepatitis by comparing hepatic outcomes in wild-type and CD18-mutant mice fed a methionine-choline-deficient (MCD) diet. After 3 weeks of MCD feeding, hepatocyte injury, based on serum ALT elevation, was 40% lower in CD18-mutant than wild-type mice. Leukocyte infiltration into the liver was not impaired in CD18-mutant mice, but leukocyte activation was markedly reduced, as shown by the lack of evidence of oxidant production. Despite having reduced hepatocellular injury, CD18-mutant mice developed significantly more hepatic steatosis than wild-type mice after MCD feeding. This coincided with greater hepatic induction of pro-inflammatory and lipogenic genes as well as a modest reduction in hepatic expression of adipose triglyceride lipase. Overall, the data indicate that CD18 deficiency curbs MCD-mediated liver injury by limiting the activation of innate immune cells in the liver without compromising intrahepatic cytokine activation. Reduced liver injury occurs at the expense of increased hepatic steatosis, which suggests that in addition to damaging hepatocytes, infiltrating leukocytes may influence lipid homeostasis in the liver.
Collapse
Affiliation(s)
- Andrew A. Pierce
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
- Liver Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Caroline C. Duwaerts
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
- Liver Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Kevin Siao
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
- Liver Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Aras N. Mattis
- Liver Center, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Amanda Goodsell
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
- Liver Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Jody L. Baron
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
- Liver Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Jacquelyn J. Maher
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
- Liver Center, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Shamoon M, Deng Y, Chen YQ, Bhatia M, Sun J. Therapeutic implications of innate immune system in acute pancreatitis. Expert Opin Ther Targets 2015; 20:73-87. [PMID: 26565751 DOI: 10.1517/14728222.2015.1077227] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Acute pancreatitis (AP) is an inflammatory disorder of the pancreas encompassing a cascade of cellular and molecular events. It starts from premature activation of zymogens with the involvement of innate immune system to a potential systemic inflammatory response and multiple organ failure. Leukocytes are the major cell population that participate in the propagation of the disease. Current understanding of the course of AP is still far from complete, limiting treatment options mostly to conservative supportive care. Emerging evidence has pointed to modulation of the immune system for strategic therapeutic development, by mitigating the inflammatory response and severity of AP. In the current review, we have focused on the role of innate immunity in the condition and highlighted therapeutics targeting it for treatment of this challenging disease. AREAS COVERED The current review has aimed to elaborate in-depth understanding of specific roles of innate immune cells, derived mediators and inflammatory pathways that are involved in AP. Summarizing the recent therapeutics and approaches applied experimentally that target immune responses to attenuate AP. EXPERT OPINION The current state of knowledge on AP, limitations of presently available therapeutic approaches and the promise of therapeutic implications of innate immune system in AP are discussed.
Collapse
Affiliation(s)
- Muhammad Shamoon
- a 1 Jiangnan University, School of Food Science and Technology, The Synergetic Innovation Center of Food Safety and Nutrition, State Key Laboratory of Food Science and Technology , Wuxi, Jiangsu, China
| | - Yuanyuan Deng
- a 1 Jiangnan University, School of Food Science and Technology, The Synergetic Innovation Center of Food Safety and Nutrition, State Key Laboratory of Food Science and Technology , Wuxi, Jiangsu, China
| | - Yong Q Chen
- a 1 Jiangnan University, School of Food Science and Technology, The Synergetic Innovation Center of Food Safety and Nutrition, State Key Laboratory of Food Science and Technology , Wuxi, Jiangsu, China
| | - Madhav Bhatia
- b 2 University of Otago, Inflammation Research Group, Department of Pathology , Christchurch, 2 Riccarton Avenue, P.O. Box 4345, Christchurch 8140, New Zealand
| | - Jia Sun
- a 1 Jiangnan University, School of Food Science and Technology, The Synergetic Innovation Center of Food Safety and Nutrition, State Key Laboratory of Food Science and Technology , Wuxi, Jiangsu, China
| |
Collapse
|
11
|
|
12
|
Therapeutic effect of human clonal bone marrow-derived mesenchymal stem cells in severe acute pancreatitis. Arch Pharm Res 2014; 38:742-51. [PMID: 25142942 DOI: 10.1007/s12272-014-0465-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/30/2014] [Indexed: 01/15/2023]
Abstract
Severe acute pancreatitis (SAP), a common necroinflammatory disease initiated by the premature activation of digestive enzymes within the pancreatic acinar cells, is associated with significant morbidity and mortality. In this study, we investigated whether human bone marrow-derived clonal mesenchymal stem cells (hcMSCs), isolated from human bone marrow aspirate according to our newly established isolation protocol, have potential therapeutic effects in SAP. SAP was induced by three intraperitoneal (i.p.) injections of cerulein (100 μg/kg) and sequential LPS (10 mg/kg) in Sprague-Dawley (SD) rats. hcMSCs (1 × 10(6)/head) were infused on 24 h after LPS injection via the tail vein. The rats were sacrificed 3 days after infusion of hcMSCs. We observed that infused hcMSCs reduced the levels of serum amylase and lipase. Infused hcMSCs ameliorated acinar cell necrosis, pancreatic edema, and inflammatory infiltration. Also, infused hcMSCs decreased the level of malondialdehyde, and increased the levels of glutathione peroxidase and superoxide dismutase. The number of TUNEL positive acinar cells was reduced after hcMSCs infusion. In addition, hcMSCs reduced the expression levels of pro-inflammation mediators and cytokines, and increased the expression of SOX9 in SAP. Taken together, hcMSCs could effectively relieve injury of pancreatitis as a promising therapeutics for SAP.
Collapse
|
13
|
Song Y, Stål PS, Yu JG, Lorentzon R, Backman C, Forsgren S. Inhibitors of endopeptidase and angiotensin-converting enzyme lead to an amplification of the morphological changes and an upregulation of the substance P system in a muscle overuse model. BMC Musculoskelet Disord 2014; 15:126. [PMID: 24725470 PMCID: PMC3992129 DOI: 10.1186/1471-2474-15-126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 04/04/2014] [Indexed: 12/16/2022] Open
Abstract
Background We have previously observed, in studies on an experimental overuse model, that the tachykinin system may be involved in the processes of muscle inflammation (myositis) and other muscle tissue alterations. To further evaluate the significance of tachykinins in these processes, we have used inhibitors of neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE), substances which are known to terminate the activity of various endogenously produced substances, including tachykinins. Methods Injections of inhibitors of NEP and ACE, as well as the tachykinin substance P (SP), were given locally outside the tendon of the triceps surae muscle of rabbits subjected to marked overuse of this muscle. A control group was given NaCl injections. Evaluations were made at 1 week, a timepoint of overuse when only mild inflammation and limited changes in the muscle structure are noted in animals not treated with inhibitors. Both the soleus and gastrocnemius muscles were examined morphologically and with immunohistochemistry and enzyme immunoassay (EIA). Results A pronounced inflammation (myositis) and changes in the muscle fiber morphology, including muscle fiber necrosis, occurred in the overused muscles of animals given NEP and ACE inhibitors. The morphological changes were clearly more prominent than for animals subjected to overuse and NaCl injections (NaCl group). A marked SP-like expression, as well as a marked expression of the neurokinin-1 receptor (NK-1R) was found in the affected muscle tissue in response to injections of NEP and ACE inhibitors. The concentration of SP in the muscles was also higher than that for the NaCl group. Conclusions The observations show that the local injections of NEP and ACE inhibitors led to marked SP-like and NK-1R immunoreactions, increased SP concentrations, and an amplification of the morphological changes in the tissue. The injections of the inhibitors thus led to a more marked myositis process and an upregulation of the SP system. Endogenously produced substances, out of which the tachykinins conform to one substance family, may play a role in mediating effects in the tissue in a muscle that is subjected to pronounced overuse.
Collapse
Affiliation(s)
| | | | | | | | | | - Sture Forsgren
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
14
|
Ang AD, Rivers-Auty J, Hegde A, Ishii I, Bhatia M. The effect of CSE gene deletion in caerulein-induced acute pancreatitis in the mouse. Am J Physiol Gastrointest Liver Physiol 2013; 305:G712-21. [PMID: 24008358 DOI: 10.1152/ajpgi.00044.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) has been reported to be involved in the signaling of the inflammatory response; however, there are differing views as to whether it is pro- or anti-inflammatory. In this study, we sought to determine whether endogenously synthesized H2S via cystathionine-γ-lyase (CSE) plays a pro- or anti-inflammatory role in caerulein-induced pancreatitis. To investigate this, we used mice genetically deficient in CSE to elucidate the function of CSE in caerulein-induced acute pancreatitis. We compared the inflammatory response and tissue damage of wild-type (WT) and CSE knockout (KO) mice following 10 hourly administrations of 50 μg/kg caerulein or saline control. From this, we found that the CSE KO mice showed significantly less local pancreatic damage as well as acute pancreatitis-associated lung injury compared with the WT mice. There were also lower levels of pancreatic eicosanoid and cytokines, as well as reduced acinar cell NF-κB activation in the CSE KO mice compared with WT mice. Additionally, in WT mice, there was a greater level of pancreatic CSE expression and sulfide-synthesizing activity in caerulein-induced pancreatitis compared with the saline control. When comparing the two saline-treated control groups, we noted that the CSE KO mice showed significantly less pancreatic H2S-synthesizing activity relative to the WT mice. These results indicate that endogenous H2S generated by CSE plays a key proinflammatory role via NF-κB activation in caerulein-induced pancreatitis, and its genetic deletion affords significant protection against acute pancreatitis and associated lung injury.
Collapse
Affiliation(s)
- Abel D Ang
- Dept. of Pathology, Univ. of Otago, Christchurch, 2 Riccarton Ave., PO Box 4345, Christchurch 8140, New Zealand.
| | | | | | | | | |
Collapse
|
15
|
Nakamura M, Inoh Y, Nakanishi M, Furuno T. Substance P plays an important role in cell adhesion molecule 1-mediated nerve–pancreatic islet α cell interaction. Biochem Biophys Res Commun 2013; 438:563-7. [DOI: 10.1016/j.bbrc.2013.07.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 01/08/2023]
|
16
|
Marked Effects of Tachykinin in Myositis Both in the Experimental Side and Contralaterally: Studies on NK-1 Receptor Expressions in an Animal Model. ISRN INFLAMMATION 2013; 2013:907821. [PMID: 24049666 PMCID: PMC3765760 DOI: 10.1155/2013/907821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/18/2012] [Indexed: 01/16/2023]
Abstract
Muscle injury and inflammation (myositis) in a rabbit model of an unilateral muscle overuse were examined. It is unknown if the tachykinin system has a functional role in this situation. In this study, therefore, the neurokinin-1 receptor (NK-1R) expression patterns were evaluated. White blood cells, nerve fascicles, fine nerve fibers, and blood vessel walls in myositis areas showed NK-1R immunoreaction. NK-1R mRNA reactions were observable for white blood cells and blood vessel walls of these areas. NK-1R immunoreaction and NK-1R mRNA reactions were also seen for muscle fibers showing degenerative and regenerative features. There were almost no NK-1R immunoreactions in normal muscle tissue. Interestingly, marked NK-1R expressions were seen for myositis areas of both the experimental side and the contralateral nonexperimental side. EIA analyses showed that the concentration of substance P in the muscle tissue was clearly increased bilaterally at the experimental end stage, as compared to the situation for normal muscle tissue. These observations show that the tachykinin system is very much involved in the processes that occur in muscle injury/myositis. The effects can be related to proinflammatory effects and/or tissue repair. The fact that there are also marked NK-1R expressions contralaterally indicate that the tachykinin system has crossover effects.
Collapse
|
17
|
Koh YH, Moochhala S, Bhatia M. Activation of neurokinin-1 receptors up-regulates substance P and neurokinin-1 receptor expression in murine pancreatic acinar cells. J Cell Mol Med 2012; 16:1582-92. [PMID: 22040127 PMCID: PMC3823226 DOI: 10.1111/j.1582-4934.2011.01475.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acute pancreatitis (AP) has been associated with an up-regulation of substance P (SP) and neurokinin-1 receptor (NK1R) in the pancreas. Increased SP-NK1R interaction was suggested to be pro-inflammatory during AP. Previously, we showed that caerulein treatment increased SP/NK1R expression in mouse pancreatic acinar cells, but the effect of SP treatment was not evaluated. Pancreatic acinar cells were obtained from pancreas of male swiss mice (25–30 g). We measured mRNA expression of preprotachykinin-A (PPTA) and NK1R following treatment of SP (10−6M). SP treatment increased PPTA and NK1R expression in isolated pancreatic acinar cells, which was abolished by pretreatment of a selective NK1R antagonist, CP96,345. SP also time dependently increased protein expression of NK1R. Treatment of cells with a specific NK1R agonist, GR73,632, up-regulated SP protein levels in the cells. Using previously established concentrations, pre-treatment of pancreatic acinar cells with Gö6976 (10 nM), rottlerin (5 μM), PD98059 (30 μM), SP600125 (30 μM) or Bay11-7082 (30 μM) significantly inhibited up-regulation of SP and NK1R. These observations suggested that the PKC-ERK/JNK-NF-κB pathway is necessary for the modulation of expression levels. In comparison, pre-treatment of CP96,345 reversed gene expression in SP-induced cells, but not in caerulein-treated cells. Overall, the findings in this study suggested a possible auto-regulatory mechanism of SP/NK1R expression in mouse pancreatic acinar cells, via activation of NK1R. Elevated SP levels during AP might increase the occurrence of a positive feedback loop that contributes to abnormally high expression of SP and NK1R.
Collapse
Affiliation(s)
- Yung-Hua Koh
- Department of Pharmacology, National University of Singapore, Singapore
| | | | | |
Collapse
|
18
|
Bhatia M. Role of hydrogen sulfide in the pathology of inflammation. SCIENTIFICA 2012; 2012:159680. [PMID: 24278674 PMCID: PMC3820548 DOI: 10.6064/2012/159680] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/03/2012] [Indexed: 06/02/2023]
Abstract
Hydrogen sulfide (H2S) is a well-known toxic gas that is synthesized in the human body from the amino acids cystathionine, homocysteine, and cysteine by the action of at least two distinct enzymes: cystathionine-γ-lyase and cystathionine-β-synthase. In the past few years, H2S has emerged as a novel and increasingly important biological mediator. Imbalances in H2S have also been shown to be associated with various disease conditions. However, defining the precise pathophysiology of H2S is proving to be a complex challenge. Recent research in our laboratory has shown H2S as a novel mediator of inflammation and work in several groups worldwide is currently focused on determining the role of H2S in inflammation. H2S has been implicated in different inflammatory conditions, such as acute pancreatitis, sepsis, joint inflammation, and chronic obstructive pulmonary disease (COPD). Active research on the role of H2S in inflammation will unravel the pathophysiology of its actions in inflammatory conditions and may help develop novel therapeutic approaches for several, as yet incurable, disease conditions.
Collapse
Affiliation(s)
- Madhav Bhatia
- Department of Pathology, University of Otago, P.O. Box 4345, Christchurch 8140, New Zealand
| |
Collapse
|
19
|
Akbarshahi H, Rosendahl AH, Westergren-Thorsson G, Andersson R. Acute lung injury in acute pancreatitis – Awaiting the big leap. Respir Med 2012; 106:1199-210. [PMID: 22749752 DOI: 10.1016/j.rmed.2012.06.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 05/09/2012] [Accepted: 06/01/2012] [Indexed: 12/12/2022]
|
20
|
Fang X, Hu H, Xie J, Zhu H, Zhang D, Mo W, Zhang R, Yu M. An involvement of neurokinin-1 receptor in FcεRΙ-mediated RBL-2H3 mast cell activation. Inflamm Res 2012; 61:1257-63. [PMID: 22820943 PMCID: PMC3472057 DOI: 10.1007/s00011-012-0523-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 06/02/2012] [Accepted: 06/28/2012] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE AND DESIGN To determine whether the neurokinin-1 receptor (NK1R) plays a role in the activation of RBL-2H3 mast cells after FcεRΙ aggregation. MATERIALS AND METHODS NK1R expression in RBL-2H3 cells was inhibited by small hairpin RNA (shRNA) against NK1R, and determined by western blotting. For activation, both NK1R knockdown and control RBL-2H3 cells were sensitized by dinitrophenol (DNP)-specific IgE and stimulated with the antigen DNP-bovine serum albumin (BSA). Following the activation of RBL-2H3 cells, monocyte chemoattractant protein (MCP-1) production and intracellular calcium flux were monitored by ELISA and confocal microscopy assay, respectively. For investigation of the signaling mechanism, phosphorylation of mitogen-activated protein kinases (MAPKs) after RBL-2H3 cell activation was assessed by western blotting. RESULTS shRNA-NK1R mediated an effective inhibition of NK1R expression in RBL-2H3 cells. Protein production of MCP-1 was reduced by more than 55 % in NK1R knockdown RBL-2H3 cells compared with control RBL-2H3 cells. In addition, both calcium mobilization and phosphorylation levels of MAPKs (Erk1/2, JNK, and p38) after DNP-BSA stimulation (via FcεRΙ) were decreased due to the inhibition of NK1R expression. CONCLUSION NK1R is required for the activation of RBL-2H3 cells following FcεRΙ engagement and involved in the regulation of MAPK signaling pathways.
Collapse
Affiliation(s)
- Xiaoyun Fang
- The Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai, 200032 People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Hua Hu
- Department of Otolaryngology, Huadong Hospital of Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
- Department of Otolaryngology, EENT Hospital of Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Jianhui Xie
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Haiyan Zhu
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Dongmei Zhang
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Wei Mo
- The Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai, 200032 People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Ruxin Zhang
- Department of Otolaryngology, Huadong Hospital of Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Min Yu
- The Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai, 200032 People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
21
|
Koh YH, Tamizhselvi R, Moochhala S, Bian JS, Bhatia M. Role of protein kinase C in caerulein induced expression of substance P and neurokinin-1-receptors in murine pancreatic acinar cells. J Cell Mol Med 2012; 15:2139-49. [PMID: 20973912 PMCID: PMC4394224 DOI: 10.1111/j.1582-4934.2010.01205.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Substance P (SP) is involved in the pathophysiology of acute pancreatitis (AP) via binding to its high-affinity receptor, neurokinin-1-receptor (NK1R). An up-regulation of SP and NK1R expression was observed in experimental AP and in caerulein-stimulated pancreatic acinar cells. However, the mechanisms that lead to this up-regulation are not fully understood. In this study, we showed the role of protein kinase C (PKC) in caerulein-induced SP and NK1R production in isolated mouse pancreatic acinar cells. Caerulein (10(-7) M) stimulation rapidly activated the conventional PKC-α and novel PKC-δ as observed by the phosphorylation of these molecules. Pre-treatment of pancreatic acinar cells with Gö6976 (1-10 nM) and rottlerin (1-10 μM) inhibited PKC-α and PKC-δ phosphorylation, respectively, but not the other way round. At these concentrations used, PKC-α and PKC-δ inhibition reversed the caerulein-induced up-regulation of SP and NK1R, indicating an important role of PKCs in the modulation of SP and NK1R expression. Further experiments looking into signalling mechanisms showed that treatment of pancreatic acinar cells with both Gö6976 and rottlerin inhibited the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). Inhibition of PKC-α or PKC-δ also affected caerulein-induced transcription factor activation, as represented by nuclear factor-κB and AP-1 DNA-binding activity. The findings in this study suggested that PKC is upstream of the mitogen-activated protein kinases and transcription factors, which then lead to the up-regulation of SP/NK1R expression in caerulein-treated mouse pancreatic acinar cells.
Collapse
Affiliation(s)
- Yung-Hua Koh
- Department of Pharmacology, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
22
|
Koh YH, Moochhala S, Bhatia M. The role of neutral endopeptidase in caerulein-induced acute pancreatitis. THE JOURNAL OF IMMUNOLOGY 2011; 187:5429-39. [PMID: 22013111 DOI: 10.4049/jimmunol.1102011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Substance P (SP) is well known to promote inflammation in acute pancreatitis (AP) by interacting with neurokinin-1 receptor. However, mechanisms that terminate SP-mediated responses are unclear. Neutral endopeptidase (NEP) is a cell-surface enzyme that degrades SP in the extracellular fluid. In this study, we examined the expression and the role of NEP in caerulein-induced AP. Male BALB/c mice (20-25 g) subjected to 3-10 hourly injections of caerulein (50 μg/kg) exhibited reduced NEP activity and protein expression in the pancreas and lungs. Additionally, caerulein (10(-7) M) also downregulated NEP activity and mRNA expression in isolated pancreatic acinar cells. The role of NEP in AP was examined in two opposite ways: inhibition of NEP (phosphoramidon [5 mg/kg] or thiorphan [10 mg/kg]) followed by 6 hourly caerulein injections) or supplementation with exogenous NEP (10 hourly caerulein injections, treatment of recombinant mouse NEP [1 mg/kg] during second caerulein injection). Inhibition of NEP raised SP levels and exacerbated inflammatory conditions in mice. Meanwhile, the severity of AP, determined by histological examination, tissue water content, myeloperoxidase activity, and plasma amylase activity, was markedly better in mice that received exogenous NEP treatment. Our results suggest that NEP is anti-inflammatory in caerulein-induced AP. Acute inhibition of NEP contributes to increased SP levels in caerulein-induced AP, which leads to augmented inflammatory responses in the pancreas and associated lung injury.
Collapse
Affiliation(s)
- Yung-Hua Koh
- Department of Pharmacology, National University of Singapore, Singapore
| | | | | |
Collapse
|
23
|
Ang SF, Moochhala SM, MacAry PA, Bhatia M. Hydrogen sulfide and neurogenic inflammation in polymicrobial sepsis: involvement of substance P and ERK-NF-κB signaling. PLoS One 2011; 6:e24535. [PMID: 21931742 PMCID: PMC3171449 DOI: 10.1371/journal.pone.0024535] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/11/2011] [Indexed: 11/18/2022] Open
Abstract
Hydrogen sulfide (H2S) has been shown to induce transient receptor potential vanilloid 1 (TRPV1)-mediated neurogenic inflammation in polymicrobial sepsis. However, endogenous neural factors that modulate this event and the molecular mechanism by which this occurs remain unclear. Therefore, this study tested the hypothesis that whether substance P (SP) is one important neural element that implicates in H2S-induced neurogenic inflammation in sepsis in a TRPV1-dependent manner, and if so, whether H2S regulates this response through activation of the extracellular signal-regulated kinase-nuclear factor-κB (ERK-NF-κB) pathway. Male Swiss mice were subjected to cecal ligation and puncture (CLP)-induced sepsis and treated with TRPV1 antagonist capsazepine 30 minutes before CLP. DL-propargylglycine (PAG), an inhibitor of H2S formation, was administrated 1 hour before or 1 hour after sepsis, whereas sodium hydrosulfide (NaHS), an H2S donor, was given at the same time as CLP. Capsazepine significantly attenuated H2S-induced SP production, inflammatory cytokines, chemokines, and adhesion molecules levels, and protected against lung and liver dysfunction in sepsis. In the absence of H2S, capsazepine caused no significant changes to the PAG-mediated attenuation of lung and plasma SP levels, sepsis-associated systemic inflammatory response and multiple organ dysfunction. In addition, capsazepine greatly inhibited phosphorylation of ERK1/2 and inhibitory κBα, concurrent with suppression of NF-κB activation even in the presence of NaHS. Furthermore, capsazepine had no effect on PAG-mediated abrogation of these levels in sepsis. Taken together, the present findings show that H2S regulates TRPV1-mediated neurogenic inflammation in polymicrobial sepsis through enhancement of SP production and activation of the ERK-NF-κB pathway.
Collapse
Affiliation(s)
- Seah-Fang Ang
- Immunology Program and Department of Microbiology, Center for Life Sciences, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Shabbir M. Moochhala
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Defense Medical and Environmental Research Institute, DSO National Laboratories, Singapore
| | - Paul A. MacAry
- Immunology Program and Department of Microbiology, Center for Life Sciences, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Madhav Bhatia
- Department of Pathology, University of Otago, Christchurch, New Zealand
- * E-mail:
| |
Collapse
|
24
|
Kong X, Zhang C, Jin X, Wu X, Zhang S, Zhong Z, Feng Q, Liu T, Yuan H. The effect of HMGB1 A box on lung injury in mice with acute pancreatitis. Biofactors 2011; 37:323-7. [PMID: 21915938 DOI: 10.1002/biof.177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The objective of this study is to observe the effect of high-mobility group protein B1 A Box (HMGB1 A) box on lung injury in mice with acute pancreatitis and its effect on the level of high-mobility group protein B1 (HMGB1) in lung, to explore the mechanism. A total of 60 male Institute of Cancer Research mice were randomly divided into control group (n = 30) and treatment group (n = 30). Severe acute pancreatitis mice model was induced by 20% L-Arg intraperitoneal injection. The recombination HMGB1 A box was used in treatment after modeling. All the mice were killed under anesthesia at 24 and 48 h after the modeling injection. The level of HMGB1 and activity of myeloperoxidase (MPO) in lung were measured. The pathological changes of lung were observed. The level of HMGB1 in lung of A box treatment group decreased more significantly 24 h and 48 h after modeling compared with control group. The activity of MPO in lung of A box treatment group decreased more significantly 24 h after modeling compared with control group. The lung tissue pathologic score of A box treatment group decreased more significantly 48 h after modeling compared with control group. HMGB1 expression levels in the lungs were positively related to histological score of injured lung in acute pancreatitis. It indicates that HMGB1 A box is remarkably protective to lung injury induced by acute pancreatitis.
Collapse
Affiliation(s)
- Xiangqian Kong
- Department of General Surgery, Provincial Hospital affiliated to Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Xia XM, Wang FY, Wang ZK, Wan HJ, Xu WA, Lu H. Emodin enhances alveolar epithelial barrier function in rats with experimental acute pancreatitis. World J Gastroenterol 2010; 16:2994-3001. [PMID: 20572302 PMCID: PMC2890939 DOI: 10.3748/wjg.v16.i24.2994] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of emodin on expression of claudin-4, claudin-5 and occludin, as well as the alveolar epithelial barrier in rats with pancreatitis induced by sodium taurocholate.
METHODS: Experimental pancreatitis was induced by retrograde injection of 5% sodium taurocholate into the biliopancreatic duct. Emodin was injected via the external jugular vein 3 h after induction of acute pancreatitis. Rats from sham operation group and acute pancreatitis group were injected with normal saline (an equivalent volume as emodin) at the same time point. Samples of lung and serum were obtained 6 h after drug administration. Pulmonary morphology was examined with HE staining. Pulmonary edema was estimated by measuring water content in lung tissue samples. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) level were measured by enzyme-linked immunospecific assay. Serum amylase and pulmonary myeloperoxidase (MPO) activity were detected by spectrophotometry. Alveolar epithelial barrier was assessed by pulmonary dye extravasation. Expression of claudin-4, claudin-5 and occludin in lung tissue samples was examined by immunohistology, quantitative real-time reverse transcription polymerase chain reaction and Western blotting analysis, respectively.
RESULTS: Pancreatitis-associated lung injury was characterized by pulmonary edema, leukocyte infiltration, alveolar collapse, and elevated serum amylase level. The pulmonary damage, pulmonary pathological scores, serum amylase and MPO activity, TNF-α and IL-6 levels, and wet/dry ratio were decreased in rats after treatment with emodin. Immunostaining of claudin-4, claudin-5 and occludin was detected in lung tissue samples from rats in sham operation group, which was distributed in alveolar epithelium, vascular endothelium, and bronchial epithelium, respectively. The mRNA and protein expression levels of claudin-4, claudin-5 and occludin in lung tissue samples were markedly decreased, the expression level of claudin-4, claudin-5 and occluding was increased, and the pulmonary dye extravasation was reduced in lung tissue samples from rats with acute pancreatitis after treatment with emodin.
CONCLUSION: Emodin attenuates pulmonary edema and inflammation, enhances alveolar epithelial barrier function, and promotes expression of claudin-4, claudin-5 and occludin in lung tissue samples from rats with acute pancreatitis.
Collapse
|
26
|
Abstract
Hydrogen sulfide (H(2)S) plays an important role in cardiovascular, central nervous, and gastrointestinal systems. Being the third gaseous mediator, H(2)S has been shown to act as a vasodilator. In recent times, more and more attention has been paid to the biological functions of H(2)S in inflammation. Substance P is an 11 amino acid neuropeptide that is released from nerve endings in many tissues. Subsequent to its release, substance P binds to neurokinin-1 (NK-1) receptors on the surface of effector cells and, in addition to being a mediator of pain, it plays an important role in many inflammatory states including asthma, immune-complex-mediated lung injury, experimental arthritis, and inflammatory bowel disease. Substance P has been shown to increase microvascular permeability and promote plasma extravasation. Using animal models of inflammation of different etiologies such as acute pancreatitis, sepsis, and burns, studies in our laboratory have recently shown an important role of the pro-inflammatory action of H(2)S and substance P.
Collapse
Affiliation(s)
- Madhav Bhatia
- Cardiovascular Biology Research Programme, Life Sciences Institute, Singapore.
| |
Collapse
|
27
|
Jung KH, Hong SW, Zheng HM, Lee HS, Lee H, Lee DH, Lee SY, Hong SS. Melatonin ameliorates cerulein-induced pancreatitis by the modulation of nuclear erythroid 2-related factor 2 and nuclear factor-kappaB in rats. J Pineal Res 2010; 48:239-250. [PMID: 20210857 DOI: 10.1111/j.1600-079x.2010.00748.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Melatonin exhibits a wide variety of biological effects, including antioxidant and anti-inflammatory functions. Its antioxidant role impedes the etiopathogenesis of pancreatitis, but little is known about the signaling pathway of melatonin in the induction of antioxidant enzymes in acute pancreatitis (AP). The aim of this study was to determine whether melatonin could prevent cerulein-induced AP through nuclear factor erythroid 2-related factor 2 (Nrf2) and curtail inflammation by inhibition of NF-kappaB. AP was induced by two intraperitoneal (i.p.) injections of cerulein at 2 h intervals (50 microg/kg) in Sprague-Dawley rats. Melatonin (10 or 50 mg/kg/daily, i.p.) was administered 24 h before each injection of cerulein. The rats were killed 12 h after the last injection. Acinar cell degeneration, pancreatic edema, and inflammatory infiltration were significantly different in cerulein- and melatonin-treated rats. Melatonin significantly reduced amylase, lipase, MPO, and MDA levels, and increased antioxidant enzyme activities including SOD and GPx, which were decreased in AP (P < 0.05). Melatonin increased the expression of NQO1, HO-1, and SOD2 when compared with the cerulein-induced AP group (P < 0.05). In addition, melatonin increased Nrf2 expression, and reduced expressions of tumor necrosis factor-alpha, IL-1beta, IL-6, IL-8, and iNOS. The elevated nuclear binding of NF-kappaB in the cerulein-induced pancreatitis group was inhibited by melatonin. These results show that melatonin increases antioxidant enzymes and Nrf2 expression, and limits inflammatory mediators in cerulein-induced AP. It is proposed that melatonin may play an important role in oxidative stress via the Nrf2 pathway in parallel with reduction of inflammation by NF-kappaB inhibition.
Collapse
Affiliation(s)
- Kyung Hee Jung
- Department of Biomedical Sciences, Inha University, Incheon Korea
| | - Sang-Won Hong
- Department of Biomedical Sciences, Inha University, Incheon Korea
| | - Hong-Mei Zheng
- Department of Biomedical Sciences, Inha University, Incheon Korea
| | - Hee-Seung Lee
- Department of Biomedical Sciences, Inha University, Incheon Korea
| | - Hyunseung Lee
- Department of Biomedical Sciences, Inha University, Incheon Korea
| | - Don-Haeng Lee
- Department of Internal Medicine and Utah-Inha Drug Delivery and Advanced Therapeutics Global R&D Center, College of Medicine, Inha University, Incheon Korea
| | - Sang Yoon Lee
- Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, Inha University, Incheon Korea
| |
Collapse
|
28
|
Abstract
OBJECTIVES Acute pancreatitis (AP) is characterized by pancreatic microcirculatory and secretory disturbances. As galanin can modulate pancreatic vascular perfusion, we sought to determine if galanin plays a role in AP. METHODS Acute pancreatitis was induced in wild-type and galanin gene knockout mice by intraperitoneal injections of cerulein. The severity of AP was evaluated (plasma amylase and lipase, myeloperoxidase activity, and acinar cell necrosis) with and without treatment with galanin or the antagonist galantide. Galanin receptor messenger RNA expression in mouse pancreas was measured by reverse transcription-polymerase chain reaction and Western blot analysis. RESULTS Galantide ameliorated AP, reducing all indices by 25% to 40%, whereas galanin was without effect. In galanin knockout mice, all indices of AP were reduced 25% to 50% compared with wild-type littermates. Galanin administration to the knockout mice exacerbated AP such that it was comparable with the AP induced in the wild-type mice. Conversely, administration of galantide to the galanin knockout mice did not affect the AP, whereas AP was ameliorated in the wild-type mice. The 3 galanin receptor subtypes are expressed in mouse pancreas, with receptor subtype 3 expression predominating. CONCLUSIONS These data implicate a role for galanin in AP and suggest a potential clinical application for galanin antagonists in treatment.
Collapse
|
29
|
Ang SF, Moochhala SM, Bhatia M. Hydrogen sulfide promotes transient receptor potential vanilloid 1-mediated neurogenic inflammation in polymicrobial sepsis. Crit Care Med 2010; 38:619-628. [PMID: 19851090 DOI: 10.1097/ccm.0b013e3181c0df00] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the interaction and involvement of hydrogen sulfide and transient receptor potential vanilloid type 1 in the pathogenesis of sepsis. Hydrogen sulfide has been demonstrated to be involved in many inflammatory states including sepsis. Its contribution in neurogenic inflammation has been suggested in normal airways and urinary bladder. However, whether endogenous hydrogen sulfide would induce transient receptor potential vanilloid type 1-mediated neurogenic inflammation in sepsis remains unknown. DESIGN Prospective, experimental study. SETTING Research laboratory. SUBJECT Male Swiss mice. INTERVENTIONS Mice were subjected to cecal ligation and puncture-induced sepsis and treated with transient receptor potential vanilloid type 1 antagonist capsazepine (15 mg/kg subcutaneous) 30 mins before cecal ligation and puncture. To investigate hydrogen sulfide-mediated neurogenic inflammation in sepsis, DL-propargylglycine (50 mg/kg intraperitoneal), an inhibitor of hydrogen sulfide formation was administrated 1 hr before or 1 hr after the induction of sepsis, whereas sodium hydrosulfide (10 mg/kg intraperitoneal), a hydrogen sulfide donor, was given at the same time as cecal ligation and puncture. Lung and liver myeloperoxidase activities, liver cystathionine-gamma-lyase activity, plasma hydrogen sulfide level, histopathological examination, and survival studies were determined after induction of sepsis. MEASUREMENTS AND MAIN RESULTS Capsazepine treatment attenuates significantly systemic inflammation and multiple organ damage caused by sepsis, and protects against sepsis-induced mortality. Similarly, administration of sodium hydrosulfide exacerbates but capsazepine reverses these deleterious effects. In the presence of DL-propargylglycine, capsazepine causes no significant changes to the attenuation of sepsis-associated systemic inflammation, multiple organ damage, and mortality. In addition, capsazepine has no effect on endogenous generation of hydrogen sulfide, suggesting that hydrogen sulfide is located upstream of transient receptor potential vanilloid type 1 activation, and may play a critical role in regulating the production and release of sensory neuropeptides in sepsis. CONCLUSIONS The present study shows that hydrogen sulfide induces systemic inflammation and multiple organ damage characteristic of sepsis via transient receptor potential vanilloid type 1-mediated neurogenic inflammation.
Collapse
Affiliation(s)
- Seah-Fang Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
30
|
Barreto SG, Carati CJ, Schloithe AC, Toouli J, Saccone GTP. The combination of neurokinin-1 and galanin receptor antagonists ameliorates caerulein-induced acute pancreatitis in mice. Peptides 2010; 31:315-21. [PMID: 19944731 DOI: 10.1016/j.peptides.2009.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/16/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
Abstract
Both galanin and substance P have been separately implicated in the pathogenesis of acute pancreatitis. We compared the efficacy of the combination of the galanin antagonist galantide and the neurokinin-1 receptor antagonist L703,606 with that of either alone in the treatment of acute pancreatitis. Acute pancreatitis was induced in mice with 7-hourly caerulein injections. Galantide was co-administered with each caerulein injection commencing with the first injection (prophylactic) or 2h after the first injection (therapeutic). L703,606 was administered either 30 min before (prophylactic), or 2h after the first caerulein injection (therapeutic). Combination of the two agents was also administered. Control groups received galantide, L703,606, or saline, without caerulein. Pancreata were harvested for histological examination and estimation of myeloperoxidase activity. Plasma amylase activity was measured. Prophylactic and therapeutic administration of galantide reduced the hyperamylasemia by 37% and 30% respectively whereas only prophylactic L703,606 reduced hyperamylasemia (by 34%). Prophylactic administration of the combined antagonists reduced the hyperamylasemia by 44%. In contrast, therapeutic administration of the combination significantly increased plasma amylase levels by 27%. The plasma amylase activity in the control groups was similar to basal levels. Prophylactic and therapeutic administration of either antagonist or the combination significantly reduced myeloperoxidase activity. Galantide and L703,606 individually, and in combination, significantly reduced the acute pancreatitis-induced necrosis score. The administration of the combined antagonists does not offer any further benefit as compared to galantide alone. An interaction between neurokinin-1 and galanin receptors may occur to modulate amylase secretion.
Collapse
Affiliation(s)
- Savio G Barreto
- Department of General and Digestive Surgery, Flinders Medical Centre and Flinders University, Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
31
|
Koh YH, Tamizhselvi R, Bhatia M. Extracellular signal-regulated kinase 1/2 and c-Jun NH2-terminal kinase, through nuclear factor-kappaB and activator protein-1, contribute to caerulein-induced expression of substance P and neurokinin-1 receptors in pancreatic acinar cells. J Pharmacol Exp Ther 2009; 332:940-8. [PMID: 20007404 DOI: 10.1124/jpet.109.160416] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The neuropeptide substance P (SP) has emerged to be an important proinflammatory mediator in acute pancreatitis (AP). The presence of substance P and its receptor, neurokinin-1 receptor (NK1R) has been shown in the pancreas and the pancreatic acinar cells. In this study, we investigated the unexplored mechanisms that mediate SP and NK1R expression using an in vitro AP model. Pancreatic acinar cells were obtained from pancreas of male Swiss mice. Isolated cells were treated with caerulein to mimic secretagogue pancreatitis. A concentration-dependent study that subjected the cells to 60 min of stimulation by caerulein showed that SP and the transcript from its gene preprotachykinin-A (PPT-A), and NK1R were up-regulated at a supraphysiological concentration of 10(-7) M. A concentration-dependent study on intracellular kinases, extracellular signal-regulated kinase (ERK1/2), and c-Jun N-terminal kinase (JNK) and also transcription factors nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1) showed that they were activated when the caerulein concentration was 10(-7) M. Inhibition of JNK reversed the up-regulation of PPT-A, SP, and NK1R. However, inhibition of ERK1/2 reversed the up-regulation of NK1R but not of PPT-A and SP. Furthermore, we found that specific ERK1/2 and JNK inhibitors reduce NF-kappaB and AP-1 activity. Taken together, our results suggest that supraphysiological concentrations of caerulein up-regulate the expression of SP and NK1R in pancreatic acinar cells, and the signaling molecules that are involved in this up-regulation include ERK1/2, JNK, NF-kappaB, and AP-1.
Collapse
Affiliation(s)
- Yung-Hua Koh
- Department of Pharmacology, National University of Singapore, Singapore
| | | | | |
Collapse
|
32
|
Sun J, Ramnath RD, Tamizhselvi R, Bhatia M. Role of protein kinase C and phosphoinositide 3-kinase-Akt in substance P-induced proinflammatory pathways in mouse macrophages. FASEB J 2009; 23:997-1010. [PMID: 19029199 DOI: 10.1096/fj.08-121756] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Neuropeptide modulation of immune cell function is an important mechanism of neuro-immune intersystem crosstalk. Substance P (SP) is one such key neuropeptide involved. In this study, we investigated the yet unexplored cellular mechanisms of SP-mediated inflammatory responses in macrophages using a mouse macrophage-like cell line RAW 264.7 and isolated peritoneal macrophages. We found that the conventional PKCalpha and novel PKCdelta and epsilon were selectively activated by SP via its primary neurokinin-1 receptor (NK-1R) on the cells. Activation of these PKC isoforms mediated the activation of downstream extracellular signal-regulated kinase-1/2 (ERK1/2) and the transcription factor NF-kappaB, which drove the transcription of inducible chemokines in macrophages. Additionally, phosphoinositide 3-kinase (PI3K)-Akt was also activated by SP/NK-1R in macrophages. Inhibition of PI3K-Akt pathway attenuated ERK1/2 and NF-kappaB activation, suggesting it also played a part in SP-induced cellular inflammatory response. Kinetic analysis indicated that PKC isoforms induced early ERK1/2 activation, while PI3K-Akt contributed to the pathway at later time points. It was further demonstrated that PKC and PI3K-Akt were activated independent of each other. Collectively, our results suggest that SP/NK-1R activates two convergent proinflammatory signaling pathways, PKCs and PI3K-Akt, resulting in ERK1/2 and NF-kappaB activation and chemokine production in mouse macrophages.
Collapse
Affiliation(s)
- Jia Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
33
|
Ramnath RD, Sun J, Bhatia M. Involvement of SRC family kinases in substance P-induced chemokine production in mouse pancreatic acinar cells and its significance in acute pancreatitis. J Pharmacol Exp Ther 2009; 329:418-28. [PMID: 19211920 DOI: 10.1124/jpet.108.148684] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Substance P is known to play a key role in the pathogenesis of acute pancreatitis. Src family kinases (SFKs) are known to be involved in cytokine signaling. However, the involvement of SFKs in substance P-induced chemokine production and its role in acute pancreatitis have not been investigated yet. To that end, we have used primary preparations of mouse pancreatic acinar cells as our model to show that substance P/neurokinin 1 receptor (NK1R) induced activation of SFKs. SFKs mediated the activation of mitogen-activated protein kinases [extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal kinase (JNK)], transcription factors [signal transducer and activator of transcription (STAT) 3, nuclear factor (NF) kappaB, activator protein-1 (AP-1)], and production of chemokines in pancreatic acinar cells. We further tested the significance of the SFK signaling pathway in acute pancreatitis. Our results show, for the first time, that treatment of mice with the potent and selective SFK inhibitor PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3,4-D] pyrimidine], but not its negative inhibitor PP3 (4-amino-7-phenylpyrazol [3,4-D] pyrimidine), reduced the severity of pancreatitis. This was proven by significant attenuation of hyperamylasemia, pancreatic myeloperoxidase activity, chemokines, and water content. Histological evidence of diminished pancreatic injury also confirmed the protective effect of the inhibition of SFKs. Moreover, treatment with the substance P receptor antagonist CP96345 [(2S,3S)-cis-2-(diphenylmethyl)-N-((2-methoxyphenyl)-methyl)-1-azabicyclo(2.2.2.)-octan-3-amine] attenuated acute pancreatitis-induced activation of SFKs, ERK, JNK, STAT3, NFkappaB, and AP-1. The proposed signaling pathway through which substance P mediates acute pancreatitis is through substance P/NK1R-SFKs-(ERK, JNK)-(STAT3, NFkappaB, AP-1) chemokines. In light of our study, we propose that drugs targeting the substance P-mediated signaling pathways could prove beneficial in improving treatment efficacy in acute pancreatitis.
Collapse
|
34
|
Bhatia M, Sidhapuriwala JN, Ng SW, Tamizhselvi R, Moochhala SM. Pro-inflammatory effects of hydrogen sulphide on substance P in caerulein-induced acute pancreatitis. J Cell Mol Med 2008; 12:580-90. [PMID: 18419599 PMCID: PMC3822545 DOI: 10.1111/j.1582-4934.2007.00131.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hydrogen sulphide (H2S), a novel gasotransmitter, has been recognized to play an important role in inflammation. Cystathionine-γ-lyase (CSE) is a major H2S synthesizing enzyme in the cardiovascular system and DL-propargylglycine (PAG) is an irreversible inhibitor of CSE. Substance P (SP), a product of preprotachykinin-A (PPT-A) gene, is a well-known pro-inflammatory mediator which acts principally through the neurokinin-1 receptor (NK-1R). We have shown an association between H2S and SP in pulmonary inflammation as well as a pro-inflammatory role of H2S and SP in acute pancreatitis. The present study was aimed to investigate the interplay between pro-inflammatory effects of H2S and SP in a murine model of caerulein-induced acute pancreatitis. Acute pancreatitis was induced in mice by 10 hourly intraperitoneal injections of caerulein (50 (g/kg). PAG (100 mg/kg, i.p.) was administered either 1 hr before (prophylactic) or 1 hr after (therapeutic) the first caerulein injection. PAG, given prophylactically as well as therapeutically, significantly reduced plasma H2S levels and pancreatic H2S synthesizing activities as well as SP concentrations in plasma, pancreas and lung compared with caerulein-induced acute pancreatitis. Furthermore, prophylactic as well as therapeutic administration of PAG significantly reduced PPT-A mRNA expression and NK-1R mRNA expression in both pancreas and lung when compared with caerulein-induced acute pancreatitis. These results suggest that the pro-inflammatory effects of H2S may be mediated by SP-NK-1R pathway in acute pancreatitis.
Collapse
Affiliation(s)
- Madhav Bhatia
- Department of Pharmacology and Cardiovascular Biology Research Group, National University of Singapore, Singapore.
| | | | | | | | | |
Collapse
|
35
|
Abstract
OBJECTIVES Secretory phospholipases A2 (sPLA2s) induce acute pancreatitis when injected into the common bile duct of rats. Substance P via neurokinin 1 (NK-1) receptors and bradykinin via B2 receptors are described to play important roles in the pathophysiology of acute pancreatitis. This study was undertaken to evaluate the role of substance P and bradykinin in the sPLA2-induced pancreatitis. METHODS Rats were submitted to the common bile duct injection of sPLA2 obtained from Naja mocambique mocambique venom at 300 microg/kg. At 4 hours thereafter, measurement of pancreatic plasma extravasation, pancreatic and lung myeloperoxidase (MPO), serum amylase, and serum tumor necrosis factor alpha levels were evaluated. RESULTS Injection of sPLA2 significantly increased all parameters evaluated. Pretreatment with either the NK-1 receptor antagonist SR140333 or the B2 receptor antagonist icatibant largely reduced the increased pancreatic plasma extravasation and circulating levels of tumor necrosis factor alpha. Both treatments partly reduced the MPO levels in the pancreas, whereas in the lungs, icatibant was more efficient to reduce the increased MPO levels. In addition, icatibant largely reduced the serum levels of amylase, whereas SR140333 had no significant effect. CONCLUSIONS We concluded that NK-1 and B2 receptors can regulate important steps in the local and remote inflammation during acute pancreatitis induced by sPLA2.
Collapse
|
36
|
Ramnath RD, Sun J, Bhatia M. Role of calcium in substance P-induced chemokine synthesis in mouse pancreatic acinar cells. Br J Pharmacol 2008; 154:1339-1348. [PMID: 18493246 PMCID: PMC2483386 DOI: 10.1038/bjp.2008.188] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/12/2008] [Accepted: 03/31/2008] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Substance P (SP) and chemokines play critical roles in acute pancreatitis. SP elevates cytosolic calcium in pancreatic acinar cells and elevated cytosolic calcium is thought to be an early event in the pathogenesis of acute pancreatitis. SP induces production of chemokines MCP-1, MIP-1alpha and MIP-2 in pancreatic acinar cells, however the exact mechanism by which SP stimulates the production of these pro-inflammatory mediators remain undetermined. The aim of the present study is to investigate the role of calcium in SP-induced chemokine production in pancreatic acinar cells and to establish the signal transduction mechanisms involved. EXPERIMENTAL APPROACH An in vitro model of isolated mouse pancreatic acinar cells was used. Western blotting analysis, ELISA and calcium measurement were performed. KEY RESULTS SP increased chemokine secretion through the activation of PKCalpha/betaII, MAPKinases (ERK and JNK), NFkappaB and AP-1 in pancreatic acinar cells. These effects were blocked by pretreatment of the cells with the specific calcium chelator BAPTA-AM. Moreover, SP-induced activation of PKCalpha/betaII, ERK, JNK, NF-kappaB, AP-1 and chemokine production was inhibited by the specific phospholipase C inhibitor U73122. CONCLUSIONS AND IMPLICATIONS SP-induced chemokine production in pancreatic acinar cells resulted from PLC-induced elevated intracellular calcium and PKCalpha/betaII activation, subsequently leading to the activation of MAPKinases (ERK and JNK) and transcription factors NF-kappaB and AP-1. The present study demonstrates the critical role of calcium in SP-induced chemokine production in pancreatic acinar cells. Drugs targeting the SP-calcium mediated signaling pathways could prove beneficial in improving the treatment of acute pancreatitis.
Collapse
Affiliation(s)
- R D Ramnath
- Department of Pharmacology, National University of SingaporeSingapore
| | - J Sun
- Department of Pharmacology, National University of SingaporeSingapore
| | - M Bhatia
- Department of Pharmacology, National University of SingaporeSingapore
| |
Collapse
|
37
|
Chen X, Li SL, Wu T, Liu JD. Proteasome inhibitor ameliorates severe acute pancreatitis and associated lung injury of rats. World J Gastroenterol 2008; 14:3249-53. [PMID: 18506934 PMCID: PMC2712861 DOI: 10.3748/wjg.14.3249] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the effect of proteasome inhibitor MG-132 on severe acute pancreatitis (SAP) and associated lung injury of rats.
METHODS: Male adult SD rats were randomly divided into SAP group, sham-operation group, and MG-132 treatment group. A model of SAP was established by injection of 5% sodium taurocholate into the biliary-pancreatic duct of rats. The MG-132 group was pretreated with 10 mg/kg MG-132 intraperitoneally (ip) 30 min before the induction of pancreatitis. The changes in serum amylase, myeloperoxidase (MPO) activity of pancreatic and pulmonary tissue were measured. The TNF-α level in pancreatic cytosolic fractions was assayed with an enzyme-linked immunosorbent assay (ELISA) kit. Meanwhile, the pathological changes in both pancreatic and pulmonary tissues were also observed.
RESULTS: MG-132 significantly decreased serum amylase, pancreatic weight/body ratio, pancreatic TNF-α level, pancreatic and pulmonary MPO activity (P < 0.05). Histopathological examinations revealed that pancreatic and pulmonary samples from rats pretreated with MG-132 demonstrated milder edema, cellular damage, and inflammatory activity (P < 0.05).
CONCLUSION: The proteasome inhibitor MG-132 shows a protective effect on severe acute pancreatitis and associated lung injury of rats.
Collapse
|
38
|
Ng SW, Zhang H, Hegde A, Bhatia M. Role of preprotachykinin-A gene products on multiple organ injury in LPS-induced endotoxemia. J Leukoc Biol 2007; 83:288-95. [PMID: 17998302 DOI: 10.1189/jlb.0807575] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Endotoxemia is a life-threatening, inflammatory condition that involves multiple organ injury and dysfunction. Preprotachykinin-A (PPT-A) gene products, substance P (SP), and neurokinin-A have been shown to play an important role in neurogenic inflammation. To investigate the role of PPT-A gene products on multiple organ injury in LPS-induced endotoxemia, endotoxemia was induced by LPS administration (10 mg/kg, i.p.) in PPT-A gene-deficient mice (PPTA(-/-)) and the wild-type (WT) control mice (PPT-A+/+). I.p. administration of LPS to WT mice caused a significant increase in circulating levels of SP as well as in liver, lung, and kidney. PPT-A gene deletion significantly protected against liver, pulmonary, and renal injury following LPS-induced endotoxemia, as evidenced by tissue myeloperoxidase activities, plasma alanine aminotransferase, aspartate aminotransferase levels, and histological examination. Furthermore, PPT-A(-/-) mice had significantly attenuated chemokines, proinflammatory cytokines, and adhesion molecule levels in the liver, lung, and kidney. These results show that PPT-A gene products are critical proinflammatory mediators in endotoxemia and the associated multiple organ injury. In addition, the data suggest that deletion of the PPT-A gene protected mice against organ damage in endotoxemia by disruption in neutrophil recruitment.
Collapse
Affiliation(s)
- Siaw Wei Ng
- Cardiovascular Biology Research Group, Department of Pharmacology, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
39
|
Ikeura T, Kataoka Y, Wakabayashi T, Mori T, Takamori Y, Takamido S, Okazaki K, Yamada H. Effects of sensory denervation by neonatal capsaicin administration on experimental pancreatitis induced by dibutyltin dichloride. Med Mol Morphol 2007; 40:141-9. [PMID: 17874046 DOI: 10.1007/s00795-007-0374-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 06/14/2007] [Indexed: 01/30/2023]
Abstract
Increase in the number of intrapancreatic sensory nerve fibers has been implicated in the generation of pain in chronic pancreatitis. Because some sensory neurotransmitters (e.g., substance P) are known to have proinflammatory effects, we hypothesized that denervation of intrapancreatic nerves might influence not only pain generation but also inflammation. Neonatal Lewis rats were injected with capsaicin (50 mg/kg or 0 mg/kg), a neurotoxin, to induce denervation of primary sensory neurons. When rats reached 170-190 g body weight, experimental pancreatitis was induced by a single administration of dibutyltin dichloride (7 mg/mg). The severity of pancreatitis was evaluated in both groups in the acute phase (at 3 and 7 days) and chronic phase (at 28 days). At day 7, the sensory denervation induced by neonatal capsaicin administration inhibited pancreatic inflammation on both histological (determination of interstitial edema, expansion of interlobular septa and intercellular spaces, and inflammatory cell infiltration) and biochemical (intrapancreatic myeloperoxidase activity) evaluation. Furthermore, at day 28, glandular atrophy, pseudotubular complexes, and rate of fibrosis were each significantly lower in the capsaicin-pretreated group than in the vehicle-pretreated group. Our findings provide in vivo evidence that primary sensory neurons play important roles in both acute pancreatitis and chronic pancreatic inflammation with fibrosis.
Collapse
Affiliation(s)
- Tsukasa Ikeura
- Department of Anatomy and Cell Science, Kansai Medical University, Fumizonocho 10-15, Moriguchi City, Osaka 570-8506, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Tamizhselvi R, Moore PK, Bhatia M. Hydrogen sulfide acts as a mediator of inflammation in acute pancreatitis: in vitro studies using isolated mouse pancreatic acinar cells. J Cell Mol Med 2007; 11:315-26. [PMID: 17488480 PMCID: PMC3822830 DOI: 10.1111/j.1582-4934.2007.00024.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hydrogen sulphide (H2S) is synthesized from L-cysteine via the action of cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS). We have earlier shown that H2S acts as a mediator of inflammation. However the mechanism remains unclear. In this study, we investigated the presence of H2S and the expression of H2S synthesizing enzymes, CSE and CBS, in isolated mouse pancreatic acini. Pancreatic acinar cells from mice were incubated with or without caerulein (10−7 M for 30 and 60 min). Caerulein increased the levels of H2S and CSE mRNA expression while CBS mRNA expression was decreased. In addition, cells pre-treated with DL-propargylglycine (PAG, 3 mM), a CSE inhibitor, reduced the formation of H2S in caerulein treated cells, suggesting that CSE may be the main enzyme involved in H2S formation in mouse acinar cells. Furthermore, substance P (SP) concentration in the acini and expression of SP gene (preprotachykinin-A, PPT-A) and neurokinin-1 receptor (NK-1R), the primary receptor for SP, are increased in secretagogue caerulein-treated acinar cells. Inhibition of endogenous production of H2S by PAG significantly suppressed SP concentration, PPT-A expression and NK1-R expression in the acini. To determine whether H2S itself provoked inflammation in acinar cells, the cells were treated with H2S donor drug, sodium hydrosulphide (NaHS), (10, 50 and 100 μM), that resulted in a significant increase in SP concentration and expression of PPT-A and NK1-R in acinar cells. These results suggest that the pro-inflammatory effect of H2S may be mediated by SP-NK-1R related pathway in mouse pancreatic acinar cells.
Collapse
Affiliation(s)
- Ramasamy Tamizhselvi
- *Correspondence to: Madhav BHATIA, Ph.D. Department of Pharmacology, National University of Singapore, Yong Loo Lin School of edicine, Centre for life Sciences, 28 Medical Drive, Singapore 117456. Tel. +(65) 6516 8256 Fax. +(65) 6775 7674
| | | | - Madhav Bhatia
- *Correspondence to: Madhav BHATIA, Ph.D. Department of Pharmacology, National University of Singapore, Yong Loo Lin School of edicine, Centre for life Sciences, 28 Medical Drive, Singapore 117456. Tel. +(65) 6516 8256 Fax. +(65) 6775 7674
| |
Collapse
|
42
|
Hegde A, Zhang H, Moochhala SM, Bhatia M. Neurokinin-1 receptor antagonist treatment protects mice against lung injury in polymicrobial sepsis. J Leukoc Biol 2007; 82:678-85. [PMID: 17565047 DOI: 10.1189/jlb.0407217] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Earlier work from our laboratory has suggested a role for the neuropeptide substance P (SP) in inducing lung injury in sepsis. In that study, mice lacking the preprotachykinin-A gene, which encodes for SP, were protected against lung injury in sepsis. To further substantiate the role of SP in sepsis and to study its mechanism, we have evaluated the effect of SR140333, a SP receptor antagonist, on lung injury in sepsis, which was induced in male Swiss mice by cecal ligation and puncture (CLP). Sham-operated animals received the same surgical procedure, except CLP. Vehicle or SR140333 (1 mg/kg, s.c.) was administered to CLP mice 30 min before or 1 h after the CLP. Eight hours after surgery, lung tissue was collected and analyzed for myeloperoxidase (MPO) activity, chemokines, cytokines, and adhesion molecules. The CLP procedure alone caused a significant increase in the lung levels of MIP-2, MCP-1, IL-1beta, IL-6, ICAM-1, E- and P-selectin, and MPO activity when compared with sham-operated mice. SR140333 injected 30 min before or 1 h after CLP significantly attenuated the increased lung MPO activity and levels of MIP-2, MCP-1, IL-1beta, IL-6, ICAM-1, and E- and P-selectin compared with CLP-operated mice injected with the vehicle. Histological evaluation of the lung sections further supported the beneficial effect of SR140333 on lung inflammation. Therefore, SP receptor antagonism can be a potential therapeutic target in polymicrobial sepsis, and this effect is brought about via reduction in leukocyte recruitment.
Collapse
Affiliation(s)
- Akhil Hegde
- Cardiovascular Biology Program, Department of Pharmacology, National University of Singapore, Singapore 117456
| | | | | | | |
Collapse
|
43
|
Lau HY, Bhatia M. Effect of CP-96,345 on the expression of adhesion molecules in acute pancreatitis in mice. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1283-92. [PMID: 17218475 DOI: 10.1152/ajpgi.00429.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated the effect of a specific neurokinin-1 receptor (NK1R) antagonist, CP-96,345, on the regulation of the expression of adhesion molecules ICAM-1, VCAM-1, E-selectin, and P-selectin as well as leukocyte recruitment during acute pancreatitis (AP). AP was induced in male Balb/C mice by 10 consecutive hourly intraperitoneal injections of caerulein. In the treatment groups, CP-96,345 was administered at 2.5 mg/kg ip either 30 min before or 1 h after the first caerulein injection. Animals were killed, and the lungs and pancreas were isolated for RNA extraction and RT-PCR or for immunohistochemical staining. mRNA expression of the four adhesion molecules was upregulated in the pancreas during AP. Treatment with CP-96,345 effectively reduced the mRNA expression of P-selectin and E-selectin but not ICAM-1 and VCAM-1. In the lung, ICAM-1, E-selectin, and P-selectin mRNA expression increased during AP. Antagonist treatment suppressed this elevation. Similar expression patterns were seen in the immunohistochemical stainings. Intravital microscopy of the pancreatic microcirculation revealed the effect of CP-96,345 on leukocyte recruitment. The present study provides important information on the relationship between NK1R activation and the regulation of adhesion molecules. Also, this study points to the differential regulation of inflammation in the pancreas and lung with AP.
Collapse
Affiliation(s)
- Hon Yen Lau
- Dept. of Pharmacology, Yong Loo Lin School of Medicine, National Univ. of Singapore, Bldg. MD2, 18 Medical Dr., Singapore 117597
| | | |
Collapse
|
44
|
Abstract
Many animal models are available to investigate the pathogenesis of pancreatitis, an inflammatory disorder of the pancreas. However, the secretagogue hyperstimulation model of pancreatitis is the most commonly used. Animals infused with high doses of cholecystokinin (CCK) exhibit hyperamylasemia, pancreatic edema, and acinar cell injury, which closely mimic pancreatitis in humans. Intra-acinar zymogen activation is an essential early event in the pathogenesis of secretagogue-induced pancreatitis. Early in the course of pancreatitis, lysosomal hydrolases colocalize with digestive zymogens and activate them. These activated zymogens then cause acinar cell injury and necrosis, a characteristic of pancreatitis. Besides being the site of initiation of injury in pancreatitis, acinar cells also synthesize and release cytokines and chemokines very early in the course of pancreatitis, which then attract and activate inflammatory cells and initiate the disease's systemic phase.
Collapse
Affiliation(s)
- Ashok K Saluja
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Stephen J Pandol
- Department of Medicine, Department of Veterans Affairs and University of California, Los Angeles, California, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
Acute pancreatitis (AP) is characterized by edema, acinar cell necrosis, hemorrhage, and severe inflammation of the pancreas. Patients with AP present with elevated blood and urine levels of pancreatic digestive enzymes, such as amylase and lipase. Severe AP may lead to systemic inflammatory response syndrome and multiorgan dysfunction syndrome, which account for the high mortality rate of AP. Although most (>80%) cases of AP are associated with gallstones and alcoholism, some are idiopathic. Although the pathogenesis of AP has not yet been elucidated, a common feature is the premature activation of trypsinogen within pancreatic tissues, which triggers autodigestion of the gland. Recent advances in basic research suggest that etiologic factors including cyclooxygenase-2, substance P, and angiotensin II may have novel roles in this disease. Basic research data obtained thus far have been based on animal models of AP ranging from mild edematous pancreatitis to severe necrotizing pancreatitis. In view of this, an adequate selection of experimental animal models is of paramount importance. Notwithstanding these animal models, it should be emphasized that none of these models mimic the clinical situation where varying degrees of severity usually occur. In this review, commonly used animal models of AP will be critically evaluated. A discussion of recent advances in our knowledge about AP risk factors is also included.
Collapse
Affiliation(s)
- Yuk Cheung Chan
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | |
Collapse
|
47
|
Sun J, Bhatia M. Blockade of neurokinin-1 receptor attenuates CC and CXC chemokine production in experimental acute pancreatitis and associated lung injury. Am J Physiol Gastrointest Liver Physiol 2007; 292:G143-53. [PMID: 16873893 DOI: 10.1152/ajpgi.00271.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Accumulating evidence suggests the neuropeptide substance P (SP) and its receptor neurokinin-1 receptor (NK-1R) play a pivotal role in the pathogenesis of acute pancreatitis (AP). However, the mechanisms remain unclear. The present study investigated whether chemokines as proinflammatory molecules are involved in SP-NK-1R-related pathogenesis of this condition. We observed temporally and spatially selective chemokine responses in secretagogue caerulein-induced AP in mice. CC chemokines monocyte chemotactic protein (MCP)-1 and macrophage inflammatory protein-1alpha (MIP-1alpha) and CXC chemokine MIP-2 were elevated after AP induction. Time-dependent, tissue-specific analysis of their mRNA and protein expression suggested that they are early mediators in the condition and mediate local as well as systemic inflammatory responses. In contrast, another CC chemokine regulated on activation, T cells expressed and secreted (RANTES) was only involved in local pancreatic inflammation at a later stage of the disease. Either prophylactic or therapeutic treatment with a potent selective NK-1R antagonist CP-96,345 significantly suppressed caerulein-induced increase in MCP-1, MIP-1alpha, and MIP-2 expression but had no apparent effect on RANTES expression. The suppression effect of CP-96,345 on MCP-1, MIP-1alpha, and MIP-2 expression was concordantly demonstrated by immunohistochemistry, which, additionally, suggested that chemokine immunoreactivity was localized to acinar cells and the infiltrating leukocytes in the pancreas and alveolar macrophages, epithelial cells, and endothelial cells in the lungs. Our data suggest that SP, probably by acting via NK-1R on various chemokine-secreting cells in the pancreas and lungs, stimulates the release of chemokines that aggravate local AP and the development of its systemic sequelae.
Collapse
Affiliation(s)
- Jia Sun
- Department of Pharmacology, National University of Singapore, Singapore
| | | |
Collapse
|
48
|
Ramnath RD, Bhatia M. Substance P treatment stimulates chemokine synthesis in pancreatic acinar cells via the activation of NF-kappaB. Am J Physiol Gastrointest Liver Physiol 2006; 291:G1113-9. [PMID: 16873895 DOI: 10.1152/ajpgi.00177.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acinar cell injury early in acute pancreatitis leads to a local inflammatory reaction and to the subsequent systemic inflammatory response, which may result in multiple organ dysfunction and death. Inflammatory mediators, including chemokines and substance P (SP), are known to play a crucial role in the pathogenesis of acute pancreatitis. It has been shown that pancreatic acinar cells produce the chemokine monocyte chemoattractant protein-1 (MCP-1) in response to caerulein hyperstimulation, demonstrating that acinar-derived MCP-1 is an early mediator of inflammation in acute pancreatitis. Similarly, SP levels in the pancreas and pancreatic acinar cell expression of neurokinin-1 receptor, the primary receptor for SP, are both increased during secretagogue-induced experimental pancreatitis. This study aims to examine the functional consequences of exposing mouse pancreatic acinar cells to SP and to determine whether it leads to proinflammatory signaling, such as production of chemokines. Exposure of mouse pancreatic acini to SP significantly increased synthesis of MCP-1, macrophage inflammatory protein-1alpha (MIP-1alpha), as well as MIP-2. Furthermore, SP also increased NF-kappaB activation. The stimulatory effect of SP was specific to chemokine synthesis through the NF-kappaB pathway, since the increase in chemokine production was completely attenuated when pancreatic acini were pretreated with the selective NF-kappaB inhibitor NF-kappaB essential modulator-binding domain peptide. This study shows that SP-induced chemokine synthesis in mouse pancreatic acinar cells is NF-kappaB dependent.
Collapse
|
49
|
Broccardo M, Linari G, Agostini S, Amadoro G, Carpino F, Ciotti MT, Petrella C, Petrozza V, Severini C, Improta G. Expression of NK-1 and NK-3 tachykinin receptors in pancreatic acinar cells after acute experimental pancreatitis in rats. Am J Physiol Gastrointest Liver Physiol 2006; 291:G518-24. [PMID: 16782701 DOI: 10.1152/ajpgi.00505.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Activation of neurokinin (NK)-1 receptors but not of NK-3 stimulates amylase release from isolated pancreatic acini of the rat. Immunofluorescence studies show that NK-1 receptors are more strongly expressed than NK-3 receptors on pancreatic acinar cells under basal conditions. No studies have examined the expression of the two NK receptor populations in pancreatic acini during pancreatitis in rats. We therefore investigated the relationships between expression of these two tachykinin receptors and experimental acute pancreatitis induced by stimulating pancreatic amylase with caerulein (CK) in rats. Hyperstimulation of the pancreas by CK caused an increase in plasma amylase and pancreatic water content and resulted in morphological evidence of cytoplasmic vacuolization. Immunofluorescence analysis revealed a similar percentage of NK-1 receptor antibody immunoreactive acinar cells in rats with pancreatitis and in normal rat tissue but a larger percentage of NK-3 receptor immunoreactive cells in acute pancreatitis than in normal pancreas. Western blot analysis of NK-1 and NK-3 receptor protein levels after CK-induced pancreatitis showed no change in NK-1 receptors but a stronger increase in NK-3 receptor expression in pancreatic acini compared with normal rats thus confirming the immunofluorescence data. These new findings support previous evidence that substance P-mediated functions within the pancreas go beyond sensory signal transduction contributing to neurogenic inflammation, and they suggest that substance P plays a role in regulating pancreatic exocrine secretion via acinar NK-1 receptors. The significant increase in NK-3 receptors during pancreatic stimulation suggests that NK-3 receptors also intervene in the pathogenesis of mild acute pancreatitis in rats.
Collapse
Affiliation(s)
- Maria Broccardo
- Dipartimento di Fisiologia Umana e Farmacologia "V. Erspamer" Università di Roma "La Sapienza"- P.le A. Moro 5-00185 Roma, Italia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bhatia M, Zhi L, Zhang H, Ng SW, Moore PK. Role of substance P in hydrogen sulfide-induced pulmonary inflammation in mice. Am J Physiol Lung Cell Mol Physiol 2006; 291:L896-904. [PMID: 16798781 DOI: 10.1152/ajplung.00053.2006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have shown earlier that H(2)S acts as a mediator of inflammation. In this study, we have investigated the involvement of substance P and neurogenic inflammation in H(2)S-induced lung inflammation. Intraperitoneal administration of NaHS (1-10 mg/kg), an H(2)S donor, to mice caused a significant increase in circulating levels of substance P in a dose-dependent manner. H(2)S alone could also cause lung inflammation, as evidenced by a significant increase in lung myeloperoxidase activity and histological evidence of lung injury. The maximum effect of H(2)S on substance P levels and on lung inflammation was observed 1 h after NaHS administration. At this time, a significant increase in lung levels of TNF-alpha and IL-1beta was also observed. In substance P-deficient mice, the preprotachykinin-A knockout mice, H(2)S did not cause any lung inflammation. Furthermore, pretreatment of mice with CP-96345 (2.5 mg/kg ip), an antagonist of the neurokinin-1 (NK(1)) receptor, protected mice against lung inflammation caused by H(2)S. However, treatment with antagonists of NK(2), NK(3), and CGRP receptors did not have any effect on H(2)S-induced lung inflammation. Depleting neuropeptide from sensory neurons by capsaicin (50 mg/kg sc) significantly reduced the lung inflammation caused by H(2)S. In addition, pretreatment of mice with capsazepine (15 mg/kg sc), an antagonist of the transient receptor potential vanilloid-1, protected mice against H(2)S-induced lung inflammation. These results demonstrate a key role of substance P and neurogenic inflammation in H(2)S-induced lung injury in mice.
Collapse
Affiliation(s)
- Madhav Bhatia
- Department of Pharmacology, National University of Singapore, Yong Loo Lin School of Medicine, Bldg. MD2, 18 Medical Dr., Singapore 117597.
| | | | | | | | | |
Collapse
|