1
|
Ribeiro Tomé LM, Dornelles Parise MT, Parise D, de Carvalho Azevedo VA, Brenig B, Badotti F, Góes-Neto A. Pure lignin induces overexpression of cytochrome P450 (CYP) encoding genes and brings insights into the lignocellulose depolymerization by Trametes villosa. Heliyon 2024; 10:e28449. [PMID: 38689961 PMCID: PMC11059554 DOI: 10.1016/j.heliyon.2024.e28449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 05/02/2024] Open
Abstract
Trametes villosa is a remarkable white-rot fungus (WRF) with the potential to be applied in lignocellulose conversion to obtain chemical compounds and biofuels. Lignocellulose breakdown by WRF is carried out through the secretion of oxidative and hydrolytic enzymes. Despite the existing knowledge about this process, the complete molecular mechanisms involved in the regulation of this metabolic system have not yet been elucidated. Therefore, in order to understand the genes and metabolic pathways regulated during lignocellulose degradation, the strain T. villosa CCMB561 was cultured in media with different carbon sources (lignin, sugarcane bagasse, and malt extract). Subsequently, biochemical assays and differential gene expression analysis by qPCR and high-throughput RNA sequencing were carried out. Our results revealed the ability of T. villosa CCMB561 to grow on lignin (AL medium) as the unique carbon source. An overexpression of Cytochrome P450 was detected in this medium, which may be associated with the lignin O-demethylation pathway. Clusters of up-regulated CAZymes-encoding genes were identified in lignin and sugarcane bagasse, revealing that T. villosa CCMB561 acts simultaneously in the depolymerization of lignin, cellulose, hemicellulose, and pectin. Furthermore, genes encoding nitroreductases and homogentisate-1,2-dioxygenase that act in the degradation of organic pollutants were up-regulated in the lignin medium. Altogether, these findings provide new insights into the mechanisms of lignocellulose degradation by T. villosa and confirm the ability of this fungal species to be applied in biorefineries and in the bioremediation of organic pollutants.
Collapse
Affiliation(s)
- Luiz Marcelo Ribeiro Tomé
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, MG, Brazil
- Graduate Program in Bioinformatics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, MG, Brazil
| | - Mariana Teixeira Dornelles Parise
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, MG, Brazil
- Graduate Program in Bioinformatics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, MG, Brazil
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, MG, Brazil
| | - Doglas Parise
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, MG, Brazil
- Graduate Program in Bioinformatics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, MG, Brazil
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, MG, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Graduate Program in Bioinformatics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, MG, Brazil
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, MG, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, 37073, Göttingen, Germany
| | - Fernanda Badotti
- Department of Chemistry, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, 30421-169, MG, Brazil
| | - Aristóteles Góes-Neto
- Laboratory of Molecular and Computational Biology of Fungi, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, MG, Brazil
- Graduate Program in Bioinformatics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, MG, Brazil
| |
Collapse
|
2
|
Nakazawa T, Morimoto R, Wu H, Kodera R, Sakamoto M, Honda Y. Dominant effects of gat1 mutations on the ligninolytic activity of the white-rot fungus Pleurotus ostreatus. Fungal Biol 2018; 123:209-217. [PMID: 30798876 DOI: 10.1016/j.funbio.2018.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/08/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022]
Abstract
In nature, white-rot fungi efficiently degrade lignin present in wood biomass. Elucidation of molecular mechanisms underlying wood lignin biodegradation by white-rot fungi would contribute to the development of efficient and ecofriendly methods of producing valuable chemical products from wood biomass. Here, using forward genetics approach, we demonstrate that the mutant of a putative transcription factor gene, gat1-1, significantly decreases the ligninolytic activity of the white-rot fungus Pleurotus ostreatus, when grown on beech wood sawdust medium. We also show that this phenotype is dominant. In Schizophyllum commune, Gat1 was previously shown to be involved in fruiting body development. In this study, we reveal that the mutations in gat1 gene cause defects in fruiting body development in P. ostreatus. Unlike the previously reported recessive gene mutations that decrease the ligninolytic activity of P. ostreatus, the gat1-1 mutation and Δgat1 are dominant and would thus be useful for future studies on the functional role of the orthologs in other white-rot fungi.
Collapse
Affiliation(s)
- Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Ryota Morimoto
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hongli Wu
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Rina Kodera
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Sodaneath H, Lee JI, Yang SO, Jung H, Ryu HW, Cho KS. Decolorization of textile dyes in an air-lift bioreactor inoculated with Bjerkandera adusta OBR105. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:1099-1111. [PMID: 28763254 DOI: 10.1080/10934529.2017.1340753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new decolorizing white-rot fungus, OBR105, was isolated from Mount Odae in South Korea and identified by the morphological characterization of its fruit body and spores and partial 18s rDNA sequences. The ligninolytic enzyme activity of OBR105 was studied to characterize their decolorizing mechanism using a spectrophotometric enzyme assay. For the evaluation of the decolorization capacity of OBR105, the isolate was incubated in an erlenmeyer flask and in an airlifte bioreator with potato dextrose broth (PDB) medium supplemented with each dye. In addition, the decolorization efficiency of real textile wastewater was evaluated in an airlift bioreactor inoculated with the isolate. The isolate was identified as Bjerkandera adusta and had ligninolytic enzymes such as laccase, lignin peroxidase (LiP), and Mn-dependent peroxidase (MnP). Its LiP activity was higher than its MnP and laccase activities. B. adusta OBR105 successfully decolorized reactive dyes (red 120, blue 4, orange 16, and black 5) and acid dyes (red 114, blue 62, orange 7, and black 172). B. adusta OBR105 decolorized 91-99% of 200 mg L-1 of each dye (except acid orange 7) within 3 days in a PDB medium at 28°C, pH 5, and 150 rpm. This fungus decolorized only 45% of 200 mg L-1 acid orange 7 (single azo-type dye) within 3 days, and the decolorization efficiency did not increase by prolonging the cultivation time. In the air-lift bioreactor, B. adusta OBR105 displayed a high decolorization capacity, greater than 90%, for 3 acid dyes (red 114, blue 62, and black 172) and 1 reactive dye (blue 4) within 10-15 h of treatment. B. adusta OBR105 could decolorize real textile wastewater in the air-lift bioreactor. This result suggests that an air-lift reactor employing B. adusta OBR105 is a promising bioreactor for the treatment of dye wastewater.
Collapse
Affiliation(s)
- Hong Sodaneath
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| | - Jung-In Lee
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| | - Seung-Ok Yang
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| | - Hyekyeng Jung
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| | - Hee Wook Ryu
- b Department of Chemical Engineering , Soongsil University , Seoul , Republic of Korea
| | - Kyung-Suk Cho
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| |
Collapse
|
4
|
Rajwar D, Paliwal R, Rai JPN. Biodegradation of pulp and paper mill effluent by co-culturing ascomycetous fungi in repeated batch process. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:482. [PMID: 28861773 DOI: 10.1007/s10661-017-6198-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
The competence of novel fungal consortium, consisting of Nigrospora sp. LDF00204 (accession no. KP732542) and Curvularia lunata LDF21 (accession no. KU664593), was investigated for the treatment of pulp and paper mill effluent. Fungal consortium exhibited enhanced biomass production under optimized medium conditions, i.e., glucose as carbon (C), sodium nitrate as nitrogen (N), C/N 1.5:0.5, pH 5, temperature 30 °C, and agitation 140 rpm, and significantly reduced biochemical oxygen demand (85.6%), chemical oxygen demand (80%), color (82.3%), and lignin concentration (76.1%) under catalytic enzyme activity; however, unutilized ligninolytic enzymes, such as laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP), were observed to be 13.5, 11.4, and 9.4 U/ml after the third cycle of effluent treatment in repeated batch process. Scanning electron microscopy (SEM) of fungal consortium revealed their compatibility through intermingled hyphae and spores, while the FTIR spectra confirmed the alteration of functional groups ensuring structural changes during the effluent treatment. Gas chromatography/mass spectroscopy (GC-MS) analysis showed the reduction of complex compounds and development of numerous low-molecular-weight metabolites, such as 1-3-dimethyl benzene, 2-chloro-3-methyl butane, pentadecanoic acid, and 1-2-benzene dicarboxylic acid, during the treatment, demonstrating the massive potential of the novel fungal consortium to degrade recalcitrant industrial pollutants.
Collapse
Affiliation(s)
- Deepika Rajwar
- Department of Environmental Sciences, G. B. Pant University of Agriculture & Technology, Pantnagar, 263 145, India.
| | - Rashmi Paliwal
- Department of Environmental Sciences, G. B. Pant University of Agriculture & Technology, Pantnagar, 263 145, India
| | - J P N Rai
- Department of Environmental Sciences, G. B. Pant University of Agriculture & Technology, Pantnagar, 263 145, India
| |
Collapse
|
5
|
Meehnian H, Jana AK, Jana MM. Variation in Particle Size, Moisture Content and Supplements for Improvement of Cotton Stalks’ Lignin Degradation by Phlebia radiata and Saccharification. INDIAN CHEMICAL ENGINEER 2017. [DOI: 10.1080/00194506.2017.1350826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Harmanpreet Meehnian
- Department of Biotechnology, Dr B R A National Institute of Technology Jalandhar, Punjab 144011, India
| | - Asim K. Jana
- Department of Biotechnology, Dr B R A National Institute of Technology Jalandhar, Punjab 144011, India
| | - Mithu Maiti Jana
- Department of Chemistry, Dr B R A National Institute of Technology Jalandhar, Punjab 144011, India
| |
Collapse
|
6
|
|
7
|
Sumandono T, Saragih H, Migirin, Watanabe T, Amirta R. Decolorization of Remazol Brilliant Blue R by New Isolated White Rot Fungus Collected from Tropical Rain Forest in East Kalimantan and its Ligninolytic Enzymes Activity. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proenv.2015.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Knop D, Yarden O, Hadar Y. The ligninolytic peroxidases in the genus Pleurotus: divergence in activities, expression, and potential applications. Appl Microbiol Biotechnol 2014; 99:1025-38. [PMID: 25503316 DOI: 10.1007/s00253-014-6256-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 11/29/2022]
Abstract
Mushrooms of the genus Pleurotus are comprised of cultivated edible ligninolytic fungi with medicinal properties and a wide array of biotechnological and environmental applications. Like other white-rot fungi (WRF), they are able to grow on a variety of lignocellulosic biomass substrates and degrade both natural and anthropogenic aromatic compounds. This is due to the presence of the non-specific oxidative enzymatic systems, which are mainly consisted of lacasses, versatile peroxidases (VPs), and short manganese peroxidases (short-MnPs). Additional, less studied, peroxidase are dye-decolorizing peroxidases (DyPs) and heme-thiolate peroxidases (HTPs). During the past two decades, substantial information has accumulated concerning the biochemistry, structure and function of the Pleurotus ligninolytic peroxidases, which are considered to play a key role in many biodegradation processes. The production of these enzymes is dependent on growth media composition, pH, and temperature as well as the growth phase of the fungus. Mn(2+) concentration differentially affects the expression of the different genes. It also severs as a preferred substrate for these preoxidases. Recently, sequencing of the Pleurotus ostreatus genome was completed, and a comprehensive picture of the ligninolytic peroxidase gene family, consisting of three VPs and six short-MnPs, has been established. Similar enzymes were also discovered and studied in other Pleurotus species. In addition, progress has been made in the development of molecular tools for targeted gene replacement, RNAi-based gene silencing and overexpression of genes of interest. These advances increase the fundamental understanding of the ligninolytic system and provide the opportunity for harnessing the unique attributes of these WRF for applied purposes.
Collapse
Affiliation(s)
- Doriv Knop
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | | | | |
Collapse
|
9
|
Microbial enzyme systems for lignin degradation and their transcriptional regulation. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11515-014-1336-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Chan Cupul W, Heredia Abarca G, Martínez Carrera D, Rodríguez Vázquez R. Enhancement of ligninolytic enzyme activities in a Trametes maxima–Paecilomyces carneus co-culture: Key factors revealed after screening using a Plackett–Burman experimental design. ELECTRON J BIOTECHN 2014. [DOI: 10.1016/j.ejbt.2014.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Zebulun HO, Isikhuemhen OS, Inyang H. Decontamination of anthracene-polluted soil through white rot fungus-induced biodegradation. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s10669-010-9284-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Differential gene expression of ligninolytic enzymes in Pleurotus ostreatus grown on olive oil mill wastewater. Appl Microbiol Biotechnol 2010; 88:541-51. [DOI: 10.1007/s00253-010-2750-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/17/2010] [Accepted: 06/20/2010] [Indexed: 10/19/2022]
|
13
|
Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 2008; 157:174-209. [PMID: 18581264 DOI: 10.1007/s12010-008-8279-z] [Citation(s) in RCA: 402] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 05/05/2008] [Indexed: 10/21/2022]
Abstract
Lignin is the most abundant renewable source of aromatic polymer in nature, and its decomposition is indispensable for carbon recycling. It is chemically recalcitrant to breakdown by most organisms because of the complex, heterogeneous structure. The white-rot fungi produce an array of extracellular oxidative enzymes that synergistically and efficiently degrade lignin. The major groups of ligninolytic enzymes include lignin peroxidases, manganese peroxidases, versatile peroxidases, and laccases. The peroxidases are heme-containing enzymes with catalytic cycles that involve the activation by H2O2 and substrate reduction of compound I and compound II intermediates. Lignin peroxidases have the unique ability to catalyze oxidative cleavage of C-C bonds and ether (C-O-C) bonds in non-phenolic aromatic substrates of high redox potential. Manganese peroxidases oxidize Mn(II) to Mn(III), which facilitates the degradation of phenolic compounds or, in turn, oxidizes a second mediator for the breakdown of non-phenolic compounds. Versatile peroxidases are hybrids of lignin peroxidase and manganese peroxidase with a bifunctional characteristic. Laccases are multi-copper-containing proteins that catalyze the oxidation of phenolic substrates with concomitant reduction of molecular oxygen to water. This review covers the chemical nature of lignin substrates and focuses on the biochemical properties, molecular structures, reaction mechanisms, and related structures/functions of these enzymes.
Collapse
|
14
|
Asgher M, Bhatti HN, Ashraf M, Legge RL. Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 2008; 19:771-83. [DOI: 10.1007/s10532-008-9185-3] [Citation(s) in RCA: 333] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 03/14/2008] [Indexed: 11/28/2022]
|
15
|
Mechanism for oxidation of high-molecular-weight substrates by a fungal versatile peroxidase, MnP2. Appl Environ Microbiol 2008; 74:2873-81. [PMID: 18326680 DOI: 10.1128/aem.02080-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unlike general peroxidases, Pleurotus ostreatus MnP2 was reported to have a unique property of direct oxidization of high-molecular-weight compounds, such as Poly R-478 and RNase A. To elucidate the mechanism for oxidation of polymeric substrates by MnP2, a series of mutant enzymes were produced by using a homologous gene expression system, and their reactivities were characterized. A mutant enzyme with an Ala substituting for an exposing Trp (W170A) drastically lost oxidation activity for veratryl alcohol (VA), Poly R-478, and RNase A, whereas the kinetic properties for Mn(2+) and H(2)O(2) were substantially unchanged. These results demonstrated that, in addition to VA, the high-molecular-weight substrates are directly oxidized by MnP2 at W170. Moreover, in the mutants Q266F and V166/168L, amino acid substitution(s) around W170 resulted in a decreased activity only for the high-molecular-weight substrates. These results, along with the three-dimensional modeling of the mutants, suggested that the mutations caused a steric hindrance to access of the polymeric substrates to W170. Another mutant, R263N, contained a newly generated N glycosylation site and showed a higher molecular mass in sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. Interestingly, the R263N mutant exhibited an increased reactivity with VA and high-molecular-weight substrates. The existence of an additional carbohydrate modification and the catalytic properties in this mutant are discussed. This is the first study of a direct mechanism for oxidation of high-molecular-weight substrates by a fungal peroxidase using a homologous gene expression system.
Collapse
|
16
|
Yamanaka R, Soares CF, Matheus DR, Machado KMG. Lignolytic enzymes produced by Trametes villosa ccb176 under different culture conditions. Braz J Microbiol 2008; 39:78-84. [PMID: 24031184 PMCID: PMC3768374 DOI: 10.1590/s1517-838220080001000019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 09/22/2007] [Accepted: 01/20/2008] [Indexed: 11/22/2022] Open
Abstract
The expression of the enzymatic system produced by basidiomycetous fungi, which is involved in the degradation of xenobiotics, mainly depends on culture conditions, especially of the culture medium composition. Trametes villosa is a strain with a proven biotechnological potential for the degradation of organochlorine compounds and for the decolorization of textile dyes. The influence of glucose concentration, addition of a vegetable oil-surfactant emulsion, nature of the surfactant and the presence of manganese and copper on the growth, pH and production of laccase, total peroxidase and manganese-dependent peroxidase activities were evaluated. In general, acidification of the medium was observed, with the pH reaching a value close to 3.5 within the first days of growth. Laccase was the main activity detected under the different conditions and was produced throughout the culture period of the fungus, irrespective of the growth phase. Supplementation of the medium with vegetable oil emulsified with a surfactant induced manganese-dependent peroxidase activity in T. villosa. Higher specific yields of laccase activity were obtained with the addition of copper.
Collapse
|
17
|
Yi H, Crowley DE. Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:4382-8. [PMID: 17626440 DOI: 10.1021/es062397y] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Many plant species enhance the biodegradation of polycyclic aromatic hydrocarbons (PAHs), but there is little understanding of the mechanisms by which this occurs. This research identified phytochemicals that stimulate pyrene degradation using crushed roottissues from 43 plants that were screened in soil spiked with 100 ppm pyrene. Among the plants tested, root tissues from Apium graveolens (celery), Raphanus sativus (radish), Solanum tuberosum (potato), and Daucus carota (carrot) were most effective for promoting disappearance of pyrene within 40 days. Experiments with A. graveolens showed that plant culture in soil contaminated with pyrene or benzo[a]pyrene was as effective as addition of crushed root tissues. Comparison of the chemical compositions of the effective plants suggested that linoleic acid was the major substance that stimulated PAH degradation. This hypothesis was supported in experiments examining degradation of pyrene and benzo[a]pyrene in soil amended with linoleate, whereas linolenic and palmitic acids did not stimulate degradation within a 20 day period. Antibiotic inhibitor studies implicated gram positive bacteria as a predominant group responding to linoleic acid. These findings provide insight into the mechanisms by which plants enhance degradation of PAHs, and have practical application for remediation of PAH contaminated soils.
Collapse
Affiliation(s)
- Haakrho Yi
- Department of Environmental Sciences, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
18
|
Jin XC, Liu GQ, Xu ZH, Tao WY. Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Appl Microbiol Biotechnol 2007; 74:239-43. [PMID: 17086413 DOI: 10.1007/s00253-006-0658-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 08/30/2006] [Accepted: 09/04/2006] [Indexed: 10/24/2022]
Abstract
The strain Aspergillus fumigatus XC6 isolated from mildewing rice straw was evaluated for its ability to decolorize a dye industry effluent. The strain was capable of decolorizing dyes effluent over a pH range 3.0-8.0 with the dyes as sole carbon and nitrogen sources. The optimum pH was 3.0; however, supplemented with either appropriate nitrogen sources (0.2% NH(4)Cl or (NH(4))(2)SO(4) ) or carbon sources (1.0% sucrose or potato starch), the strain decolorized the effluent completely at the original pH of the dyes effluent. Therefore, A. fumigatus XC6 is an efficient strain for the decolorization of reactive textile dyes effluents, and it might be a practical alternative in dyeing wastewater treatment.
Collapse
Affiliation(s)
- Xian-Chun Jin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Southern Yangtze University, Wuxi 214036, People's Republic of China.
| | | | | | | |
Collapse
|
19
|
Hakala TK, Hildén K, Maijala P, Olsson C, Hatakka A. Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus. Appl Microbiol Biotechnol 2006; 73:839-49. [PMID: 17031639 DOI: 10.1007/s00253-006-0541-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 06/08/2006] [Accepted: 06/11/2006] [Indexed: 10/24/2022]
Abstract
Manganese peroxidase (MnP) production in the white-rot basidiomycete Physisporinus rivulosus T241i was studied. Separate MnP isoforms were produced in carbon-limited liquid media supplemented with Mn(2+), veratryl alcohol, or sawdust. The isoforms had different pH ranges for the oxidation of Mn(2+) and 2,6-dimethoxyphenol. Although lignin degradation by white-rot fungi is often triggered by nitrogen depletion, MnPs of P. rivulosus were efficiently produced also in the presence of high-nutrient nitrogen, especially in cultures supplemented with veratryl alcohol. Two MnP encoding genes, mnpA and mnpB, were identified, and their corresponding cDNAs were characterized. Structurally, the genes showed marked dissimilarity, and the expression of the two genes implicated quantitative variation and differential regulation in response to manganese, veratryl alcohol, or sawdust. The variability in regulation and properties of the isoforms may widen the operating range for efficient lignin degradation by P. rivulosus.
Collapse
Affiliation(s)
- Terhi K Hakala
- Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 56, Biocenter 1, 00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
20
|
Tsukihara T, Honda Y, Sakai R, Watanabe T, Watanabe T. Exclusive overproduction of recombinant versatile peroxidase MnP2 by genetically modified white rot fungus, Pleurotus ostreatus. J Biotechnol 2006; 126:431-9. [PMID: 16820241 DOI: 10.1016/j.jbiotec.2006.05.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/06/2006] [Accepted: 05/19/2006] [Indexed: 11/23/2022]
Abstract
By combining a homologous recombinant gene expression system and optimization of the culture conditions, hyper overproduction of Pleurtous ostreatus MnP2 was achieved. Genetically modified P. ostreatus strains with the recombinant mnp2 sequence under the control of sdi1 expression signals, were subjected to agitated culture using media supplemented with wheat bran or its hot-water extract. The best result, whereby 7300 U/l of MnP was produced by a recombinant strain TM2-18, indicated that more than 30-fold overproduction of the recombinant MnP2 compared to the previous result was achieved. On the other hand, no MnP activity was detected for the wild-type strain under the same conditions. Accumulation of the recombinant, but not endogenous, mnp2 transcripts was demonstrated in reverse-transcription PCR experiments. These results indicated that the recombinant MnP2 was exclusively expressed by the recombinant strain. Purified recombinant MnP2 showed almost identical properties to native MnP2 in electrophoresis, spectroscopic and kinetic analyses, including determination of K(m) and V(max) values for Mn(II), H(2)O(2) and veratryl alcohol. Moreover, the recombinant MnP2 directly oxidized a high-molecularweight substrate RNase A in the absence of redox mediators, as does native MnP2. The homologous overproduction system will provide a plat form for exclusive production of mutant or variant peroxidases with a desired property in basidiomycete.
Collapse
Affiliation(s)
- Takahisa Tsukihara
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
21
|
Tsukihara T, Honda Y, Watanabe T, Watanabe T. Molecular breeding of white rot fungus Pleurotus ostreatus by homologous expression of its versatile peroxidase MnP2. Appl Microbiol Biotechnol 2006; 71:114-20. [PMID: 16163536 DOI: 10.1007/s00253-005-0136-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 08/11/2005] [Accepted: 08/14/2005] [Indexed: 10/25/2022]
Abstract
Using a DNA-mediated transformation technique, a molecular breeding approach to isolate Pleurotus ostreatus strains with enhanced productivity of its versatile peroxidase MnP2 was conducted. A recombinant mnp2 construct under the control of P. ostreatus sdi1 expression signals was introduced into the wild-type P. ostreatus strain by cotransformation with a carboxin-resistant marker plasmid. A total of 32 transformants containing the recombinant mnp2 sequence were isolated in a screening with specific amplification by PCR. Productivity of MnP2 in the recombinants was evaluated by the decolorization ability of Poly R-478 on agar plates in the absence of Mn2+. Recombinant P. ostreatus strains with elevated manganese peroxidase (MnP) productivity were successfully isolated. One of the recombinants, TM2-10, was demonstrated to secrete recombinant MnP2 predominantly on a synthetic medium containing 15 mM ammonium oxalate, which was confirmed by reverse transcription PCR (RT-PCR) and isozyme profile analysis using anion-exchange chromatography. The benzo[a]pyrene-removing activity by fungal treatment was also analyzed using the isolated recombinant strains.
Collapse
Affiliation(s)
- Takahisa Tsukihara
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
| | | | | | | |
Collapse
|
22
|
Asgher M, Shah SAH, Ali M, Legge RL. Decolorization of Some Reactive Textile Dyes by White Rot Fungi Isolated in Pakistan. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-005-5743-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Morais H, Forgács E, Cserháti T. Enzyme Production of the Edible Mushroom Pleorotus ostreatusin Shaken Cultures Completed with Agro-Industrial Wastes. Eng Life Sci 2005. [DOI: 10.1002/elsc.200420065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|