1
|
Om P, Gopinath MS, Madan Kumar P, Muthu Kumar SP, Kudachikar VB. Ethanolic extract of Pyrus pashia buch ham ex. D. Don (Kainth): A bioaccessible source of polyphenols with anti-inflammatory activity in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114628. [PMID: 34517063 DOI: 10.1016/j.jep.2021.114628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/22/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pyrus pashia Buch ham ex. D. Don (Kainth) fruit from the Himalayan region is traditionally consumed by native people in the form of decoctions for various clinical conditions including inflammatory diseases. However, scientific studies on the biofunctional properties of Kainth fruits are still scarce. AIM OF THE STUDY The study is aimed to investigate the anti-inflammatory effects of Kainth fruit extracts using in vitro and in vivo inflammation models. MATERIAL AND METHODS Free, esterified and bound fractions from the Kainth ethanolic extracts were prepared for determining the anti-inflammatory effect. The levels of 5-LOX and COX-2 were determined in vitro. The protein levels of cytokines (IL-6, TNF-α & IL-10) were quantitated by ELISA method in lipopolysaccharide-stimulated RAW macrophages. Also, the anti-inflammatory potential of the Kainth fruit extracts was determined using the carrageenan-induced mice paw edema model. The bioaccessibility of Kainth fruit extracts was measured using a simulated in vitro digestion system (salivary, gastric and intestinal). RESULTS The Kainth fruit extracts were partially purified to yield free, esterified and bound phenolics. Free and bound phenolics of Kainth fruits inhibited 5-Lipoxygenase, Cyclooxygenase-2 activities and pro-inflammatory cytokines (Interleukin-6 and tumour necrosis factor-α) expression in vitro. Also, oral administration of these extracts to the carrageenan-injected mice showed an anti-inflammatory effect by decreasing the pro-inflammatory cytokines and reducing the cellular infiltration in paw tissues. Also, both the extracts showed better bioavailability and bioaccessibility in in vitro and in vivo studies. CONCLUSIONS The results indicated that free and bound phenolics from Kainth fruits that are rich in catechin, epicatechin, arbutin and chlorogenic acid exhibited anti-inflammatory effects and could potentially be used to treat inflammatory diseases.
Collapse
Affiliation(s)
- Prakash Om
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - M S Gopinath
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - P Madan Kumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - S P Muthu Kumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - V B Kudachikar
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
2
|
Hamezah HS, Durani LW, Yanagisawa D, Ibrahim NF, Aizat WM, Bellier JP, Makpol S, Ngah WZW, Damanhuri HA, Tooyama I. Proteome profiling in the hippocampus, medial prefrontal cortex, and striatum of aging rat. Exp Gerontol 2018; 111:53-64. [PMID: 29981398 DOI: 10.1016/j.exger.2018.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/28/2018] [Accepted: 07/01/2018] [Indexed: 01/03/2023]
Abstract
Decrease in multiple functions occurs in the brain with aging, all of which can contribute to age-related cognitive and locomotor impairments. Brain atrophy specifically in hippocampus, medial prefrontal cortex (mPFC), and striatum, can contribute to this age-associated decline in function. Our recent metabolomics analysis showed age-related changes in these brain regions. To further understand the aging processes, analysis using a proteomics approach was carried out. This study was conducted to identify proteome profiles in the hippocampus, mPFC, and striatum of 14-, 18-, 23-, and 27-month-old rats. Proteomics analysis using ultrahigh performance liquid chromatography coupled with Q Exactive HF Orbitrap mass spectrometry identified 1074 proteins in the hippocampus, 871 proteins in the mPFC, and 241 proteins in the striatum. Of these proteins, 97 in the hippocampus, 25 in mPFC, and 5 in striatum were differentially expressed with age. The altered proteins were classified into three ontologies (cellular component, molecular function, and biological process) containing 44, 38, and 35 functional groups in the hippocampus, mPFC, and striatum, respectively. Most of these altered proteins participate in oxidative phosphorylation (e.g. cytochrome c oxidase and ATP synthase), glutathione metabolism (e.g. peroxiredoxins), or calcium signaling pathway (e.g. protein S100B and calmodulin). The most prominent changes were observed in the oldest animals. These results suggest that alterations in oxidative phosphorylation, glutathione metabolism, and calcium signaling pathway are involved in cognitive and locomotor impairments in aging.
Collapse
Affiliation(s)
- Hamizah Shahirah Hamezah
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan.
| | - Lina Wati Durani
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan.
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan.
| | - Nor Faeizah Ibrahim
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Wan Mohd Aizat
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | - Jean Pierre Bellier
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan.
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan.
| |
Collapse
|
3
|
Hammerling U, Bergman Laurila J, Grafström R, Ilbäck NG. Consumption of Red/Processed Meat and Colorectal Carcinoma: Possible Mechanisms Underlying the Significant Association. Crit Rev Food Sci Nutr 2016; 56:614-34. [PMID: 25849747 DOI: 10.1080/10408398.2014.972498] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiology and experimental studies provide an overwhelming support of the notion that diets high in red or processed meat accompany an elevated risk of developing pre-neoplastic colorectal adenoma and frank colorectal carcinoma (CRC). The underlying mechanisms are disputed; thus several hypotheses have been proposed. A large body of reports converges, however, on haem and nitrosyl haem as major contributors to the CRC development, presumably acting through various mechanisms. Apart from a potentially higher intestinal mutagenic load among consumers on a diet rich in red/processed meat, other mechanisms involving subtle interference with colorectal stem/progenitor cell survival or maturation are likewise at play. From an overarching perspective, suggested candidate mechanisms for red/processed meat-induced CRC appear as three partly overlapping tenets: (i) increased N-nitrosation/oxidative load leading to DNA adducts and lipid peroxidation in the intestinal epithelium, (ii) proliferative stimulation of the epithelium through haem or food-derived metabolites that either act directly or subsequent to conversion, and (iii) higher inflammatory response, which may trigger a wide cascade of pro-malignant processes. In this review, we summarize and discuss major findings of the area in the context of potentially pertinent mechanisms underlying the above-mentioned association between consumption of red/processed meat and increased risk of developing CRC.
Collapse
Affiliation(s)
- Ulf Hammerling
- a Cancer Pharmacology & Computational Medicine, Department of Medical Sciences, Uppsala University and Uppsala Academic Hospital , Uppsala , Sweden
| | - Jonas Bergman Laurila
- b Sahlgrenska Biobank, Gothia Forum, Sahlgrenska University Hospital , Gothenburg , Sweden
| | - Roland Grafström
- c Institute of Environmental Medicine, The Karolinska Institute , Stockholm , Sweden.,d Knowledge Intensive Products and Services, VTT Technical Research Centre of Finland , Turku , Finland
| | - Nils-Gunnar Ilbäck
- e Clinical Microbiology & Infectious Medicine, Department of Medical Sciences, Uppsala University and Uppsala Academic Hospital , Uppsala , Sweden
| |
Collapse
|
4
|
Ma H, Chen G, Guo M. Mass spectrometry based translational proteomics for biomarker discovery and application in colorectal cancer. Proteomics Clin Appl 2016; 10:503-15. [PMID: 26616366 DOI: 10.1002/prca.201500082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/17/2015] [Accepted: 11/25/2015] [Indexed: 12/29/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death in the world. Clinically, early detection of the disease is the most effective approach to tackle this tough challenge. Discovery and development of reliable and effective diagnostic tools for the assessment of prognosis and prediction of response to drug therapy are urgently needed for personalized therapies and better treatment outcomes. Among many ongoing efforts in search for potential CRC biomarkers, MS-based translational proteomics provides a unique opportunity for the discovery and application of protein biomarkers toward better CRC early detection and treatment. This review updates most recent studies that use preclinical models and clinical materials for the identification of CRC-related protein markers. Some new advances in the development of CRC protein markers such as CRC stem cell related protein markers, SRM/MRM-MS and MS cytometry approaches are also discussed in order to address future directions and challenges from bench translational research to bedside clinical application of CRC biomarkers.
Collapse
Affiliation(s)
- Hong Ma
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P. R. China.,Haematology and Oncology Division, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P. R. China
| |
Collapse
|
5
|
Gerola S, Nittka S, Kähler G, Tao S, Brenner H, Binelli G, Eils R, Brors B, Neumaier M. Genetic variants in apoptosis-related genes associated with colorectal hyperplasia. Genes Chromosomes Cancer 2014; 53:769-78. [DOI: 10.1002/gcc.22185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 04/21/2014] [Indexed: 12/13/2022] Open
Affiliation(s)
- Stefano Gerola
- Institute for Clinical Chemistry; Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg; Mannheim 68167 Germany
| | - Stefanie Nittka
- Institute for Clinical Chemistry; Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg; Mannheim 68167 Germany
| | - Georg Kähler
- Department of Medical; Medical Center Mannheim, Universitätsmedizin Mannheim, University of Heidelberg; Mannheim Germany
| | - Sha Tao
- Division of Clinical Epidemiology and Aging Research; German Cancer Research Center (DKFZ); Heidelberg 69120 Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research; German Cancer Research Center (DKFZ); Heidelberg 69120 Germany
| | - Giorgio Binelli
- Department of Theoretical and Applied Sciences; Insubria University; Varese Italy
| | - Roland Eils
- Division of Theoretical Bioinformatics; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 224; Heidelberg Germany
| | - Benedikt Brors
- Division of Theoretical Bioinformatics; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 224; Heidelberg Germany
| | - Michael Neumaier
- Institute for Clinical Chemistry; Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg; Mannheim 68167 Germany
| |
Collapse
|
6
|
Derijks-Engwegen JY, Cats A, Smits ME, Schellens JH, Beijnen JH. Improving colorectal cancer management: the potential of proteomics. Biomark Med 2012; 2:253-89. [PMID: 20477414 DOI: 10.2217/17520363.2.3.253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Successful treatment is heavily dependent on tumor stage at the time of detection, but unfortunately CRC is often only detected in advanced stages. New biomarkers in the form of genes or proteins that can be used for diagnosis, prognostication, follow-up, and treatment selection and monitoring could be of great benefit for the management of CRC. Furthermore, proteins could prove valuable new targets for therapy. Therefore, clinical proteomics has gained a lot of scientific interest in this regard. To get an overall insight into the extent to which this research has contributed to a better management of CRC, we give a comprehensive overview of the results of proteomics research on CRC, focusing on expression proteomics, in other words, protein profiling studies. Furthermore, we evaluate the potential of the discriminating proteins identified in this research for clinical use as biomarkers for (early) diagnosis, prognosis and follow-up of CRC or as targets for new therapeutic regimens.
Collapse
|
7
|
Bousette N, Gramolini AO, Kislinger T. Proteomics-based investigations of animal models of disease. Proteomics Clin Appl 2012; 2:638-53. [PMID: 21136864 DOI: 10.1002/prca.200780043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cells contain a large yet, constant genome, which contains all the coding information necessary to sustain cellular physiology. However, proteins are the end products of genes, and hence dictate the phenotype of cells and tissues. Therefore, proteomics can provide key information for the elucidation of physiological and pathophysiological mechanisms by identifying the protein profile from cells and tissues. The relatively novel techniques used for the study of proteomics thus have the potential to improve diagnostic, prognostic, as well as therapeutic avenues. In this review, we first discuss the benefits of animal models over the use of human samples for the proteomic analysis of human disease. Next, we aim to demonstrate the potential of proteomics in the elucidation of disease mechanisms that may not be possible by other conventional technologies. Following this, we describe the use of proteomics for the analysis of PTM and protein interactions in animal models and their relevance to the study of human disease. Finally, we discuss the development of clinical biomarkers for the early diagnosis of disease via proteomic analysis of animal models. We also discuss the development of standard proteomes and relate how this data will benefit future proteomic research. A comprehensive review of all animal models used in conjunction with proteomics is beyond the scope of this manuscript. Therefore, we aimed to cover a large breadth of topics, which together, demonstrate the potential of proteomics as a powerful tool in biomedical research.
Collapse
Affiliation(s)
- Nicolas Bousette
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Heart and Stroke/Richard Lewar Centre of Cardiovascular Excellence, Toronto, Ontario, Canada
| | | | | |
Collapse
|
8
|
Hussein SZ, Mohd Yusoff K, Makpol S, Mohd Yusof YA. Gelam Honey Inhibits the Production of Proinflammatory, Mediators NO, PGE(2), TNF-α, and IL-6 in Carrageenan-Induced Acute Paw Edema in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:109636. [PMID: 22919407 PMCID: PMC3418690 DOI: 10.1155/2012/109636] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/14/2012] [Accepted: 04/25/2012] [Indexed: 12/24/2022]
Abstract
Natural honey is well known for its therapeutic value and has been used in traditional medicine of different cultures throughout the world. The aim of this study was to investigate the anti-inflammatory effect of Malaysian Gelam honey in inflammation-induced rats. Paw edema was induced by a subplantar injection of 1% carrageenan into the rat right hind paw. Rats were treated with the nonsteroidal anti-inflammatory drug (NSAID) Indomethacin (10 mg/kg, p.o.) or Gelam honey at different doses (1 or 2 g/kg, p.o.). The increase in footpad thickness was considered to be edema, which was measured using a dial caliper. Plasma and paw tissue were collected to analyze the production of inflammatory mediators, such as NO, PGE(2), TNF-α, and IL-6, as well as iNOS and COX-2. The results showed that Gelam honey could reduce edema in a dose-dependent fashion in inflamed rat paws, decrease the production of NO, PGE(2), TNF-α, and IL-6 in plasma, and suppress the expression of iNOS, COX-2, TNF-α, and IL-6 in paw tissue. Oral pretreatment of Gelam honey at 2 g/kg of body weight at two time points (1 and 7 days) showed a significantly decreased production of proinflammatory cytokines, which was similar to the effect of the anti-inflammatory drug Indomethacin (NSAID), both in plasma and tissue. Thus, our results suggest that Gelam honey has anti-inflammatory effects by reducing the rat paw edema size and inhibiting the production of proinflammatory mediators. Gelam honey is potentially useful for treating inflammatory conditions.
Collapse
Affiliation(s)
- Saba Zuhair Hussein
- Department of Biochemistry, Faculty of Medicine, University Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Kamaruddin Mohd Yusoff
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canik Basari University, 34083 Samsun, Turkey
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, University Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Yasmin Anum Mohd Yusof
- Department of Biochemistry, Faculty of Medicine, University Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Drew J. Janice Drew’s work on diet and cancer. World J Gastrointest Pathophysiol 2011; 2:61-4. [PMID: 21860839 PMCID: PMC3158879 DOI: 10.4291/wjgp.v2.i4.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 08/06/2011] [Accepted: 08/13/2011] [Indexed: 02/06/2023] Open
Abstract
Obesity and associated reduced consumption of plant derived foods are linked to increased risk of colon cancer as well as a number of other organ specific cancers. Inflammatory processes are a contributing factor but the precise mechanisms remain elusive. Obesity and cancer incidence are increasing worldwide, presenting bleak prospects for reducing, or preventing, obesity related cancers. The incidence of these preventable cancers can be achieved with greater understanding of the molecular mechanisms linking diet and carcinogenesis. Janice Drew has developed a research program over recent years to investigate molecular mechanisms related to consumption of anti-inflammatory metabolites generated from consumption of plant based diets, the impact of high fat diets and associated altered metabolism and obesity on regulation of colon inflammatory responses and processes regulating the colon epithelium. Comprehensive strategies have been developed incorporating transcriptomics, including the novel gene expression technology, the GenomeLab System and proteomics, together with biochemical analyses of plasma and tissue samples to assess correlated changes in oxidative stress, inflammation and pathology. The approaches developed have achieved success in establishing antioxidant and anti-inflammatory activity of dietary antioxidants and associated genes and pathways that interact to modulate redox status in the colon. Cellular processes and genes altered in response to obesity and high fat diets have provided evidence of molecular mechanisms that are implicated in obesity related cancer.
Collapse
|
10
|
Ang CS, Rothacker J, Patsiouras H, Gibbs P, Burgess AW, Nice EC. Use of multiple reaction monitoring for multiplex analysis of colorectal cancer-associated proteins in human feces. Electrophoresis 2011; 32:1926-38. [PMID: 21538981 DOI: 10.1002/elps.201000502] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/25/2010] [Accepted: 12/17/2010] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer-related deaths worldwide with an annual incidence of almost a million cases and an annual mortality around 500,000. The fecal occult blood test is currently the first line method for CRC screening, but has unacceptably low sensitivity and specificity. Improved screening tests are therefore urgently required for early-stage CRC screening when therapy is most likely to be effective. We describe a discovery-based proteomics hypothesis using orthogonal multi-dimensional fractionation (1-D SDS-PAGE, RP-HPLC, size exclusion chromatography) to mine deep into the fecal proteome for the initial discovery process, which generated a library containing 108 human fecal proteins with the associated peptide and MS/MS data. These data were then used to develop and optimize a multiplex multiple reaction monitoring assay for 40 non-redundant human proteins present in the feces. To show proof of principal for clinical analysis, multiplex screening of these 40 proteins was carried out on fecal samples from eight CRC patient and seven normal volunteers. We identified 24 proteins consistently found in all samples and nine proteins found only in the CRC patients, showing the potential of this approach for the analysis of potential CRC biomarkers. Absolute quantitation using C-terminal isotopically labeled synthetic peptides corresponding to hemoglobin and carcinoembryonic antigen 5 was also performed.
Collapse
Affiliation(s)
- Ching-Seng Ang
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
11
|
Ali I, Aboul-Enein HY, Singh P, Singh R, Sharma B. Separation of biological proteins by liquid chromatography. Saudi Pharm J 2010; 18:59-73. [PMID: 23960722 DOI: 10.1016/j.jsps.2010.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 11/03/2009] [Indexed: 01/11/2023] Open
Abstract
After the success of human genome project, proteome is a new emerging field of biochemistry as it provides the knowledge of enzymes (proteins) interactions with different body organs and medicines administrated into human body. Therefore, the study of proteomics is very important for the development of new and effective drugs to control many lethal diseases. In proteomics study, analyses of proteome is essential and significant from the pathological point of views, i.e., in several serious diseases such as cancer, Alzheimer's disease and aging, heart diseases and also for plant biology. The separation and identification of proteomics is a challenging job due to their complex structures and closely related physico-chemical behaviors. However, the recent advances in liquid chromatography make this job easy. Various kinds of liquid chromatography, along with different detectors and optimization strategies, have been discussed in this article. Besides, attempts have been made to include chirality concept in proteomics for understanding mechanism and medication of various disease controlled by different body proteins.
Collapse
Key Words
- 2D-nano LC, two-dimensional nano liquid chromatography quadrupole
- ACN, acetonitrile
- AIEC, anion exchange chromatography
- CEC, capillary electro-chromatography
- CIEF, capillary isoelectric focusing
- CSF, cerebrospinal fluid
- Chirality
- EC, electro-chromatography
- ESI-LC–MS, electrospray ionization liquid chromatography–mass spectrometry
- FA, formic acid
- FLP, FMRF amide-like peptide
- FT-ICR-MS, ion cyclotron resonance-mass spectrometry
- GPI-APs, glycosylphosphadylinositol anchored proteins
- GSH, glutathione stimulating hormone
- GSTs, glutathione-S-transferase isoenzyme
- Gene
- HFBA, heptafluorobutyric acid
- HPLC, high performance liquid chromatography
- ICAT, isotope coded affinity tag
- IEF-SEC, isoelectrofocussing size-exclusion chromatography
- IMCD, inner medullary collecting duct
- LC-Q-TOF, liquid chromatography-quadrupole time-of-flight tandem mass
- LC-dual ESI, liquid chromatography dual electrospray ionization-Fourier transform
- LC–MS, liquid chromatography–mass spectrometry
- Liquid chromatography
- MALDI-TOF, matrix-assisted laser desorption/ionization-time-of flight
- MFGM, milk fat globule membranes
- MMA, mass measurement accuracy
- MPC, mesenchymal progenitor cell
- MS/MS, spectrometry
- NLFs, Nasal lavage fluids
- NLP, neuropeptide like protein
- Nano detection
- PC2, prohormone convertase-2
- PS II, photosystem II
- Preparation
- Proteomics
- Q-TOFMS/MS, time-of-flight tandem-mass spectrometry
- RPLC, reversed phase liquid chromatography
- SCX, strong cation exchange
- SEC, size-exclusion chromatography
- TFA, trifluoroacetic acid
- TIC, total ion current
- TRAF, tumor necrosis factor receptor
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi 110 025, India
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Ikonomou G, Samiotaki M, Panayotou G. Proteomic methodologies and their application in colorectal cancer research. Crit Rev Clin Lab Sci 2009; 46:319-42. [PMID: 19958217 DOI: 10.3109/10408360903375277] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Ang CS, Rothacker J, Patsiouras H, Burgess AW, Nice EC. Murine fecal proteomics: a model system for the detection of potential biomarkers for colorectal cancer. J Chromatogr A 2009; 1217:3330-40. [PMID: 19875126 DOI: 10.1016/j.chroma.2009.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 09/30/2009] [Accepted: 10/02/2009] [Indexed: 12/18/2022]
Abstract
Tumor related products shed into the feces offer a potential source of biomarkers for the detection of colorectal cancer (CRC). Using SDS-PAGE followed by nanoflow reversed-phased LC-MS/MS to analyse fecal samples from Apc(Min/+) mice (that develop spontaneous multiple intestinal neoplasia with age) we have identified 336 proteins (115 proteins of murine origin, 201 from fecal bacteria, 18 associated with food intake and 2 of apparent parasitic origin). 75% of the murine proteins identified in this study are predicted to be extracellular or associated with the cell plasma membrane. Of these proteins, a number of the murine homologues of colorectal cancer associated proteins (CCAP) such as hemoglobin, haptoglobin, hemopexin, alpha-2-macroglobulin and cadherin-17 have been identified, demonstrating the potential of fecal proteomics for detecting potential biomarkers and paving the way for subsequent MS/MS based biomarker studies on similar human samples.
Collapse
Affiliation(s)
- Ching-Seng Ang
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, PO Box 2008, Royal Melbourne Hospital, Australia
| | | | | | | | | |
Collapse
|
15
|
Chang HJ, Lee MR, Hong SH, Yoo BC, Shin YK, Jeong JY, Lim SB, Choi HS, Jeong SY, Park JG. Identification of mitochondrial FoF1-ATP synthase involved in liver metastasis of colorectal cancer. Cancer Sci 2007; 98:1184-91. [PMID: 17559425 PMCID: PMC11159599 DOI: 10.1111/j.1349-7006.2007.00527.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Liver metastasis is a major cause of poor survival of colorectal cancer patients. In order to identify the proteins associated with liver metastasis in colorectal cancer, we carried out two-dimensional gel electrophoresis-based comparative proteomic analysis of normal colon mucosa, primary colon cancer tissue and corresponding metastatic tumor tissue in liver. The proteins identified were further validated by immunohistochemical analysis of 67 quadruplet samples of normal colon primary colorectal cancer and normal liver-synchronous liver metastasis, and 251 colorectal cancers as well as in vitro invasion assay of the human colon cancer cell line, SNU-81. From proteomic assessment, the mitochondrial FoF1-ATP synthase (ATP synthase) alpha-subunit was identified as a protein that is upregulated in liver metastasis compared with the primary tumor. Immunohistochemical analyses confirmed a significant increase in the expression of ATP synthase alpha- and d-subunits in synchronous liver metastasis compared with primary tumor and normal mucosa, respectively. ATP synthase alpha- and d-subunits were overexpressed in 197 (78.5%) and 190 (75.7%), respectively, of the 251 colorectal cancers. The alpha- and d-subunits were significantly associated with liver metastasis (P < 0.05) as well as low histological grade (P < 0.0001). The d-subunit also correlated with venous invasion (P = 0.026) and distant metastasis (P = 0.032). In stage III cancers, d-subunit expression was independently associated with poor survival (P = 0.017). Furthermore, transfection of small interfering RNA targeted to ATP synthase alpha- and d-subunits resulted in decreased in vitro invasiveness of the human colon cancer cell line. Our overall findings demonstrate that increased ATP synthase is associated with liver metastasis of colorectal cancer.
Collapse
Affiliation(s)
- Hee Jin Chang
- Research Institute and Hospital, National Cancer Center, 809 Madu 1-dong, Ilsandong-gu, Goyan-si, Gyeonggi-do 410-769, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Drew JE, Farquharson AJ, Keijer J, Barrera LN. Complex regulation of mucosal pentraxin (Mptx) revealed by discrete micro-anatomical locations in colon. Biochim Biophys Acta Mol Basis Dis 2006; 1762:844-8. [PMID: 16978845 DOI: 10.1016/j.bbadis.2006.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 07/11/2006] [Accepted: 07/27/2006] [Indexed: 11/17/2022]
Abstract
Recently a mucosal pentraxin, Mptx, regulated by heme and calcium was reported in rat gut mucosal scrapings using microarray strategies. Considering the heterogeneity of gut mucosa scrapings and the widespread use of the rat as a model to study colon pathologies this study was undertaken to generate detailed mapping of micro-anatomical locations of Mptx and gain further insight into potential functions of this mucosal pentraxin in rat colon. Differential regulation was also examined in colon from different rat strains and rat models of oxidative stress and in pre-cancerous colon tissue. Different regional patterns of expression and discrete localisation in epithelial cells within transverse and distal colon crypts and an absence of expression in proximal colon were confirmed by regional PCR analysis and in situ hybridisation studies of colon. This study demonstrates that consideration of regional differences in Mptx gene expression and micro-anatomical location is necessary in the interpretation and deciphering of its regulation in colon.
Collapse
Affiliation(s)
- Janice E Drew
- Molecular Nutrition, Gut Health, Rowett Research Institute, Greenburn Road, Bucksburn, ABERDEEN AB21 9SB, Scotland, UK.
| | | | | | | |
Collapse
|
17
|
Drew JE, Padidar S, Horgan G, Duthie GG, Russell WR, Reid M, Duncan G, Rucklidge GJ. Salicylate modulates oxidative stress in the rat colon: a proteomic approach. Biochem Pharmacol 2006; 72:204-16. [PMID: 16730665 DOI: 10.1016/j.bcp.2006.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 04/06/2006] [Indexed: 02/08/2023]
Abstract
The dietary phenolic compound, salicylic acid, decreases oxidative stress and pro-inflammatory and potentially neo-plastic prostaglandins with a concomitant increase in glutathione peroxidase activity. Salicylic acid, a dietary plant-based phenolic compound and also the main metabolite of aspirin, may contribute to the colon protective effects of plant-based diets. Oxidative stress is a characteristic of pre-cancerous and cancerous colon and inflammatory bowel diseases (IBD) that increase colon cancer risk. The mechanism(s) whereby salicylic acid modulates potentially pro-cancerous activity associated with oxidative stress is further investigated here using a proteomic approach. A rat model of oxidative stress was supplemented with salicylic acid (1 mg/kg diet, mean plasma levels 310+/-32 micromol/l). Soluble colon protein extracts were subjected to 2D PAGE. Salicylic acid modulated proteins, identified using MALDI-TOF and LC/MS/MS, are involved in protein folding, transport, redox, energy metabolism and cytoskeletal regulation. A partial least squares (PLS) analysis approach was used to assist biological interpretation of the altered protein profiles via their associations between previously published biochemical measurements of oxidative stress, prostaglandin levels and increased glutathione peroxidase activity. Early detection of altered homeostasis in colon may assist in identifying pre-pathological features preceding colon tumorigenesis and contribute to an understanding of epidemiological evidence supporting a protective effect of plant-based diets.
Collapse
Affiliation(s)
- Janice E Drew
- Gut Health Division, Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen, AB21 9SB Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Drew JE, Farquharson AJ, Arthur JR, Morrice PC, Duthie GG. Novel sites of cytosolic glutathione peroxidase expression in colon. FEBS Lett 2005; 579:6135-9. [PMID: 16229841 DOI: 10.1016/j.febslet.2005.09.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 09/20/2005] [Accepted: 09/22/2005] [Indexed: 01/15/2023]
Abstract
Glutathione peroxidases (Gpx) are important moderators of oxidative stress that is implicated in the pathogenesis of numerous diseases including colon cancer. Previous studies report limited examinations of cytosolic glutathione peroxidase location of expression in colon tissue. This study reports evidence of both common sites of Gpx1 and Gpx2 expression in rat colon and sites that are exclusive to each isoform. Semi-quantitative PCR performed previously demonstrated RNA expression of Gpx1 and Gpx2 in proximal, transverse and distal colon. Mapping the distribution throughout the entire colon has revealed specific, novel sites of glutathione peroxidase expression in colon lymphatic tissue. In situ hybridisation and immunohistochemistry confirmed micro-anatomical location of Gpx1 within lymphatic tissue and the lamina propria, sub-mucosa, muscularis and serosa, but not the lumenal epithelium. In situ hybridisation and immunohistochemistry were consistent with reports of microanatomical location of Gpx2 in the lumenal epithelium. Novel sites of Gpx2 expression were also observed in lymphatic tissue. Immunolocalisation in the vicinity of aberrant crypt foci was also examined to further investigate the link between glutathione peroxidases and colon cancer. This did not reveal significant abnormalities, nor did measurement of cytosolic glutathione peroxidase activity or gene expression in colon tissue from rats treated with the colontropic chemical, 1,2-dimethylhydrazine. These results support the potential for Gpx1 and Gpx2 redundancy in lymphatic tissue, but not in epithelial cells of the colon crypt or in the lamina propria, sub-mucosa, muscularis or serosa.
Collapse
Affiliation(s)
- Janice E Drew
- Gut Health Division, Rowett Research Institute, Bucksburn, Aberdeen AB21 9SB, Scotland, UK.
| | | | | | | | | |
Collapse
|
19
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2447491 DOI: 10.1002/cfg.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|