1
|
Tan T, Gao B, Yu H, Pan H, Sun Z, Lei A, Zhang L, Lu H, Wu H, Daley GQ, Feng Y, Zhang J. Dynamic nucleolar phase separation influenced by non-canonical function of LIN28A instructs pluripotent stem cell fate decisions. Nat Commun 2024; 15:1256. [PMID: 38341436 PMCID: PMC10858886 DOI: 10.1038/s41467-024-45451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
LIN28A is important in somatic reprogramming and pluripotency regulation. Although previous studies addressed that LIN28A can repress let-7 microRNA maturation in the cytoplasm, few focused on its role within the nucleus. Here, we show that the nucleolus-localized LIN28A protein undergoes liquid-liquid phase separation (LLPS) in mouse embryonic stem cells (mESCs) and in vitro. The RNA binding domains (RBD) and intrinsically disordered regions (IDR) of LIN28A contribute to LIN28A and the other nucleolar proteins' phase-separated condensate establishment. S120A, S200A and R192G mutations in the IDR result in subcellular mislocalization of LIN28A and abnormal nucleolar phase separation. Moreover, we find that the naive-to-primed pluripotency state conversion and the reprogramming are associated with dynamic nucleolar remodeling, which depends on LIN28A's phase separation capacity, because the LIN28A IDR point mutations abolish its role in regulating nucleolus and in these cell fate decision processes, and an exogenous IDR rescues it. These findings shed light on the nucleolar function in pluripotent stem cell states and on a non-canonical RNA-independent role of LIN28A in phase separation and cell fate decisions.
Collapse
Affiliation(s)
- Tianyu Tan
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310000, China
| | - Bo Gao
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hua Yu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hongru Pan
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhen Sun
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Anhua Lei
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Li Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hengxing Lu
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310000, China
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - George Q Daley
- Stem Cell Transplantation Program, Division of Pediatric Hematology Oncology, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310000, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310058, China.
- Center of Gene/Cell Engineering and Genome Medicine, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Aprile D, Alessio N, Demirsoy IH, Squillaro T, Peluso G, Di Bernardo G, Galderisi U. MUSE Stem Cells Can Be Isolated from Stromal Compartment of Mouse Bone Marrow, Adipose Tissue, and Ear Connective Tissue: A Comparative Study of Their In Vitro Properties. Cells 2021; 10:761. [PMID: 33808472 PMCID: PMC8065981 DOI: 10.3390/cells10040761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 01/10/2023] Open
Abstract
The cells present in the stromal compartment of many tissues are a heterogeneous population containing stem cells, progenitor cells, fibroblasts, and other stromal cells. A SSEA3(+) cell subpopulation isolated from human stromal compartments showed stem cell properties. These cells, known as multilineage-differentiating stress-enduring (MUSE) cells, are capable of resisting stress and possess an excellent ability to repair DNA damage. We isolated MUSE cells from different mouse stromal compartments, such as those present in bone marrow, subcutaneous white adipose tissue, and ear connective tissue. These cells showed overlapping in vitro biological properties. The mouse MUSE cells were positive for stemness markers such as SOX2, OCT3/4, and NANOG. They also expressed TERT, the catalytic telomerase subunit. The mouse MUSE cells showed spontaneous commitment to differentiation in meso/ecto/endodermal derivatives. The demonstration that multilineage stem cells can be isolated from an animal model, such as the mouse, could offer a valid alternative to the use of other stem cells for disease studies and envisage of cellular therapies.
Collapse
Affiliation(s)
- Domenico Aprile
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (D.A.); (N.A.); (I.H.D.); (T.S.); (G.D.B.)
| | - Nicola Alessio
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (D.A.); (N.A.); (I.H.D.); (T.S.); (G.D.B.)
| | - Ibrahim H. Demirsoy
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (D.A.); (N.A.); (I.H.D.); (T.S.); (G.D.B.)
| | - Tiziana Squillaro
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (D.A.); (N.A.); (I.H.D.); (T.S.); (G.D.B.)
| | | | - Giovanni Di Bernardo
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (D.A.); (N.A.); (I.H.D.); (T.S.); (G.D.B.)
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Umberto Galderisi
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (D.A.); (N.A.); (I.H.D.); (T.S.); (G.D.B.)
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
- Genome and Stem Cell Center (GENKOK), Erciyes University, 38280 Kayseri, Turkey
| |
Collapse
|
3
|
Barral A, Rollan I, Sanchez-Iranzo H, Jawaid W, Badia-Careaga C, Menchero S, Gomez MJ, Torroja C, Sanchez-Cabo F, Göttgens B, Manzanares M, Sainz de Aja J. Nanog regulates Pou3f1 expression at the exit from pluripotency during gastrulation. Biol Open 2019; 8:bio046367. [PMID: 31791948 PMCID: PMC6899006 DOI: 10.1242/bio.046367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Pluripotency is regulated by a network of transcription factors that maintain early embryonic cells in an undifferentiated state while allowing them to proliferate. NANOG is a critical factor for maintaining pluripotency and its role in primordial germ cell differentiation has been well described. However, Nanog is expressed during gastrulation across all the posterior epiblast, and only later in development is its expression restricted to primordial germ cells. In this work, we unveiled a previously unknown mechanism by which Nanog specifically represses genes involved in anterior epiblast lineage. Analysis of transcriptional data from both embryonic stem cells and gastrulating mouse embryos revealed Pou3f1 expression to be negatively correlated with that of Nanog during the early stages of differentiation. We have functionally demonstrated Pou3f1 to be a direct target of NANOG by using a dual transgene system for the controlled expression of Nanog Use of Nanog null ES cells further demonstrated a role for Nanog in repressing a subset of anterior neural genes. Deletion of a NANOG binding site (BS) located nine kilobases downstream of the transcription start site of Pou3f1 revealed this BS to have a specific role in the regionalization of the expression of this gene in the embryo. Our results indicate an active role of Nanog inhibiting neural regulatory networks by repressing Pou3f1 at the onset of gastrulation.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Antonio Barral
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Isabel Rollan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Hector Sanchez-Iranzo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Wajid Jawaid
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0AW, UK
| | - Claudio Badia-Careaga
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Sergio Menchero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Manuel J Gomez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Fatima Sanchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Berthold Göttgens
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0AW, UK
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Madrid 28049, Spain
| | - Julio Sainz de Aja
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| |
Collapse
|
4
|
Mnatsakanyan H, Sabater I Serra R, Salmeron-Sanchez M, Rico P. Zinc Maintains Embryonic Stem Cell Pluripotency and Multilineage Differentiation Potential via AKT Activation. Front Cell Dev Biol 2019; 7:180. [PMID: 31544103 PMCID: PMC6728745 DOI: 10.3389/fcell.2019.00180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
Embryonic stem cells (ESCs) possess remarkable abilities, as they can differentiate into all cell types (pluripotency) and be self-renewing, giving rise to two identical cells. These characteristics make ESCs a powerful research tool in fundamental embryogenesis as well as candidates for use in regenerative medicine. Significant efforts have been devoted to developing protocols to control ESC fate, including soluble and complex cocktails of growth factors and small molecules seeking to activate/inhibit key signaling pathways for the maintenance of pluripotency states or activate differentiation. Here we describe a novel method for the effective maintenance of mouse ESCs, avoiding the supplementation of complex inhibitory cocktails or cytokines, e.g., LIF. We show that the addition of zinc to ESC cultures leads to a stable pluripotent state that shares biochemical, transcriptional and karyotypic features with the classical LIF treatment. We demonstrate for the first time that ESCs maintained in long-term cultures with added zinc, are capable of sustaining a stable ESCs pluripotent phenotype, as well as differentiating efficiently upon external stimulation. We show that zinc promotes long-term ESC self-renewal (>30 days) via activation of ZIP7 and AKT signaling pathways. Furthermore, the combination of zinc with LIF results in a synergistic effect that enhances LIF effects, increases AKT and STAT3 activity, promotes the expression of pluripotency regulators and avoids the expression of differentiation markers.
Collapse
Affiliation(s)
- Hayk Mnatsakanyan
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain
| | - Roser Sabater I Serra
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Manuel Salmeron-Sanchez
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Division of Biomedical Engineering, Centre for the Cellular Microenvironment, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Patricia Rico
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
5
|
Cao L, Zhang Y, Qian M, Wang X, Shuai Q, Gao C, Lang R, Yang J. Construction of multicellular aggregate by E-cadherin coated microparticles enhancing the hepatic specific differentiation of mesenchymal stem cells. Acta Biomater 2019; 95:382-394. [PMID: 30660779 DOI: 10.1016/j.actbio.2019.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 12/22/2022]
Abstract
The differentiation of human mesenchymal stem cells (hMSCs) into hepatocyte-like cells in vitroprovides a promising candidate for cell therapy of liver diseases, and cell aggregates have been proposed to improve the efficiency of expansion and differentiation. Previously, we engineered multicellular aggregates incorporating human E-cadherin fusion protein (hE-cad-Fc)-coated poly(lactic-co-glycolic acid) (PLGA) microparticles (hE-cad-PLGAs), and a significant improvement was obtained in both cellular proliferation of and cytokine secretion by hMSCs. In this study, hepatic differentiation of hMSCs was induced by a biomimetic microenvironment consisting of these engineered aggregates and a cocktail of specific cytokines. The ratio of hE-cad-PLGAs to hMSCs in engineered hMSCs aggregates was optimized to 1:3 for hepatic differentiation. The expressions of hepatic-specific markers were significantly promoted, and cell polarity and activated drug metabolism enzymes were established in MSC/hE-cad-PLGA aggregates compared with MSC and MSC/PLGA aggregates. Moreover, the expressions of stemness and definitive endoderm markers confirmed effectively induced endoderm differentiation in MSC/hE-cad-PLGA aggregates, which was consistent with the pattern of embryonic development. After pre-differentiation for 1 week, the MSC/hE-cad-PLGA aggregates continuously progressed the hepatic phenotype expression in healthy rat peritoneum. Therefore, the biomimetic microenvironment constructed by hE-cad-PLGAs in engineered multicellular aggregates was able to promote the process of endoderm differentiation and the subsequent hepatic differentiation of hMSCs. It would be appropriate for applied research in hepatotoxic drug screening and cell-based treatment of liver diseases. By optimizing with other cytokine cocktail, the engineered multicellular aggregates can be applied to the construction of other endoderm-derived organs. STATEMENT OF SIGNIFICANCE: The differentiation of mesenchymal stem cells (MSCs) into hepatocyte-like cells in vitroprovides a promising for cell therapy for liver diseases, and cell aggregates have been proposed to improve the expansion and differentiation efficiency. Here, engineered multicellular aggregates were constructed by E-cadherin modified microparticles (hE-cad-PLGAs) construct a biomimetic microenvironment to promote the process of endoderm differentiation and the subsequent hepatic differentiation of hMSCs. Furthermore, after pre-differentiation for 1 week, the MSC/hE-cad-PLGA aggregates continuously progressed the hepatic phenotype expression in healthy rat peritoneum. Therefore, engineered multicellular aggregates with hE-cad-PLGAs would be appropriate for applied research in hepatotoxic drug screening and cell-based treatment of liver diseases, and provide a promising method in the construction of other endoderm-derived organs.
Collapse
Affiliation(s)
- Lei Cao
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| | - Mengyuan Qian
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xueping Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Qizhi Shuai
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Chao Gao
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Naticchia MR, Laubach LK, Tota EM, Lucas TM, Huang ML, Godula K. Embryonic Stem Cell Engineering with a Glycomimetic FGF2/BMP4 Co-Receptor Drives Mesodermal Differentiation in a Three-Dimensional Culture. ACS Chem Biol 2018; 13:2880-2887. [PMID: 30157624 DOI: 10.1021/acschembio.8b00436] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell surface glycans, such as heparan sulfate (HS), are increasingly identified as co-regulators of growth factor signaling in early embryonic development; therefore, chemical tailoring of HS activity within the cellular glycocalyx of stem cells offers an opportunity to control their differentiation. The growth factors FGF2 and BMP4 are involved in mediating the exit of murine embryonic stem cells (mESCs) from their pluripotent state and their differentiation toward mesodermal cell types, respectively. Here, we report a method for remodeling the glycocalyx of mutant Ext1-/- mESCs with defective biosynthesis of HS to drive their mesodermal differentiation in an embryoid body culture. Lipid-functionalized synthetic HS-mimetic glycopolymers with affinity for both FGF2 and BMP4 were introduced into the plasma membrane of Ext1-/- mESCs, where they acted as functional co-receptors of these growth factors and facilitated signal transduction through associated MAPK and Smad signaling pathways. We demonstrate that these materials can be employed to remodel Ext1-/- mESCs within three-dimensional embryoid body structures, providing enhanced association of BMP4 at the cell surface and driving mesodermal differentiation. As a more complete understanding of the function of HS in regulating development continues to emerge, this simple glycocalyx engineering method is poised to enable precise control over growth factor signaling activity and outcomes of differentiation in stem cells.
Collapse
Affiliation(s)
- Matthew R. Naticchia
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive #0358, La Jolla, California 92093-0358, United States
| | - Logan K. Laubach
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive #0358, La Jolla, California 92093-0358, United States
| | - Ember M. Tota
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive #0358, La Jolla, California 92093-0358, United States
| | - Taryn M. Lucas
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive #0358, La Jolla, California 92093-0358, United States
| | - Mia L. Huang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive #0358, La Jolla, California 92093-0358, United States
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive #0358, La Jolla, California 92093-0358, United States
| |
Collapse
|
7
|
Tronser T, Laromaine A, Roig A, Levkin PA. Bacterial Cellulose Promotes Long-Term Stemness of mESC. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16260-16269. [PMID: 29676562 DOI: 10.1021/acsami.8b01992] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stem cells possess unique properties, such as the ability to self-renew and the potential to differentiate into an organism's various cell types. These make them highly valuable in regenerative medicine and tissue engineering. Their properties are precisely regulated in vivo through complex mechanisms that include multiple cues arising from the cell interaction with the surrounding extracellular matrix, neighboring cells, and soluble factors. Although much research effort has focused on developing systems and materials that mimic this complex microenvironment, the controlled regulation of differentiation and maintenance of stemness in vitro remains elusive. In this work, we demonstrate, for the first time, that the nanofibrous bacterial cellulose (BC) membrane derived from Komagataeibacter xylinus can inhibit the differentiation of mouse embryonic stem cells (mESC) under long-term conditions (17 days), improving their mouse embryonic fibroblast (MEF)-free cultivation in comparison to the MEF-supported conventional culture. The maintained cells' pluripotency was confirmed by the mESCs' ability to differentiate into the three germ layers (endo-, meso-, and ectoderm) after having been cultured on the BC membrane for 6 days. In addition, the culturing of mESCs on flexible, free-standing BC membranes enables the quick and facile manipulation and transfer of stem cells between culture dishes, both of which significantly facilitate the use of stem cells in routine culture and various applications. To investigate the influence of the structural and topographical properties of the cellulose on stem cell differentiation, we used the cellulose membranes differing in membrane thickness, porosity, and surface roughness. This work identifies bacterial cellulose as a novel convenient and flexible membrane material enabling long-term maintenance of mESCs' stemness and significantly facilitating the handling and culturing of stem cells.
Collapse
Affiliation(s)
- Tina Tronser
- Institute of Toxicology and Genetics (ITG) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona , Consejo Superior de Investigaciones Científicas (ICMAB-CSIC) , Campus de la UAB , 08193 Bellaterra , Catalunya, Spain
| | - Anna Roig
- Institut de Ciència de Materials de Barcelona , Consejo Superior de Investigaciones Científicas (ICMAB-CSIC) , Campus de la UAB , 08193 Bellaterra , Catalunya, Spain
| | - Pavel A Levkin
- Institute of Toxicology and Genetics (ITG) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany
- Institute of Organic Chemistry , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| |
Collapse
|
8
|
Actin and myosin II modulate differentiation of pluripotent stem cells. PLoS One 2018; 13:e0195588. [PMID: 29664925 PMCID: PMC5903644 DOI: 10.1371/journal.pone.0195588] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/25/2018] [Indexed: 12/20/2022] Open
Abstract
Use of stem cell-based therapies in tissue engineering and regenerative medicine is hindered by efficient means of directed differentiation. For pluripotent stem cells, an initial critical differentiation event is specification to one of three germ lineages: endoderm, mesoderm, and ectoderm. Differentiation is known to be regulated by numerous extracellular and intracellular factors, but the role of the cytoskeleton during specification, or early differentiation, is still unknown. In these studies, we used agonists and antagonists to modulate actin polymerization and the actin-myosin molecular motor during spontaneous differentiation of embryonic stem cells in embryoid bodies. We found that inhibiting either actin polymerization or actin-myosin interactions led to a decrease in differentiation to the mesodermal lineage and an increase in differentiation to the endodermal lineage. Thus, targeting processes that regulate cytoskeletal tension may be effective in enhancing or inhibiting differentiation towards cells of the endodermal or mesodermal lineages, which include hepatocytes, islets, cardiomyocytes, endothelial cells, and osteocytes. Therefore, these fundamental findings demonstrate that modulation of the cytoskeleton may be useful in production for a range of cell-based therapies, including for liver, pancreatic, cardiac, vascular, and orthopedic applications.
Collapse
|
9
|
Cataldi S, Arcuri C, Hunot S, Mecca C, Codini M, Laurenti ME, Ferri I, Loreti E, Garcia-Gil M, Traina G, Conte C, Ambesi-Impiombato FS, Beccari T, Curcio F, Albi E. Effect of Vitamin D in HN9.10e Embryonic Hippocampal Cells and in Hippocampus from MPTP-Induced Parkinson's Disease Mouse Model. Front Cell Neurosci 2018; 12:31. [PMID: 29467625 PMCID: PMC5808335 DOI: 10.3389/fncel.2018.00031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/24/2018] [Indexed: 12/14/2022] Open
Abstract
It has long been proven that neurogenesis continues in the adult brains of mammals in the dentatus gyrus of the hippocampus due to the presence of neural stem cells. Although a large number of studies have been carried out to highlight the localization of vitamin D receptor in hippocampus, the expression of vitamin D receptor in neurogenic dentatus gyrus of hippocampus in Parkinson's disease (PD) and the molecular mechanisms triggered by vitamin D underlying the production of differentiated neurons from embryonic cells remain unknown. Thus, we performed a preclinical in vivo study by inducing PD in mice with MPTP and showed a reduction of glial fibrillary acidic protein (GFAP) and vitamin D receptor in the dentatus gyrus of hippocampus. Then, we performed an in vitro study by inducing embryonic hippocampal cell differentiation with vitamin D. Interestingly, vitamin D stimulates the expression of its receptor. Vitamin D receptor is a transcription factor that probably is responsible for the upregulation of microtubule associated protein 2 and neurofilament heavy polypeptide genes. The latter increases heavy neurofilament protein expression, essential for neurofilament growth. Notably N-cadherin, implicated in activity for dendritic outgrowth, is upregulated by vitamin D.
Collapse
Affiliation(s)
- Samuela Cataldi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Cataldo Arcuri
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Stéphane Hunot
- Institut du Cerveau et de la Moelleépinière, Inserm U 1127, CNRS UMR 7225, UPMC Univ Paris 06, UMR S 1127, Sorbonne Universités, Paris, France
| | - Carmen Mecca
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maria E. Laurenti
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ivana Ferri
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elisabetta Loreti
- Division of Anatomic Pathology and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Mercedes Garcia-Gil
- Department of Biology, University of Pisa, Pisa, Italy
- Interdepartmental Research Center Nutrafood, Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy
| | - Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
10
|
Tronser T, Popova AA, Jaggy M, Bastmeyer M, Levkin PA. Droplet Microarray Based on Patterned Superhydrophobic Surfaces Prevents Stem Cell Differentiation and Enables High-Throughput Stem Cell Screening. Adv Healthc Mater 2017; 6. [PMID: 28961385 DOI: 10.1002/adhm.201700622] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/27/2017] [Indexed: 11/08/2022]
Abstract
Over the past decades, stem cells have attracted growing interest in fundamental biological and biomedical research as well as in regenerative medicine, due to their unique ability to self-renew and differentiate into various cell types. Long-term maintenance of the self-renewal ability and inhibition of spontaneous differentiation, however, still remain challenging and are not fully understood. Uncontrolled spontaneous differentiation of stem cells makes high-throughput screening of stem cells also difficult. This further hinders investigation of the underlying mechanisms of stem cell differentiation and the factors that might affect it. In this work, a dual functionality of nanoporous superhydrophobic-hydrophilic micropatterns is demonstrated in their ability to inhibit differentiation of mouse embryonic stem cells (mESCs) and at the same time enable formation of arrays of microdroplets (droplet microarray) via the effect of discontinuous dewetting. Such combination makes high-throughput screening of undifferentiated mouse embryonic stem cells possible. The droplet microarray is used to investigate the development, differentiation, and maintenance of stemness of mESC, revealing the dependence of stem cell behavior on droplet volume in nano- and microliter scale. The inhibition of spontaneous differentiation of mESCs cultured on the droplet microarray for up to 72 h is observed. In addition, up to fourfold increased cell growth rate of mESCs cultured on our platform has been observed. The difference in the behavior of mESCs is attributed to the porosity and roughness of the polymer surface. This work demonstrates that the droplet microarray possesses the potential for the screening of mESCs under conditions of prolonged inhibition of stem cells' spontaneous differentiation. Such a platform can be useful for applications in the field of stem cell research, pharmacological testing of drug efficacy and toxicity, biomedical research as well as in the field of regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Tina Tronser
- Karlsruhe Institute of Technology (KIT); Institute of Toxicology and Genetics (ITG); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Anna A. Popova
- Karlsruhe Institute of Technology (KIT); Institute of Toxicology and Genetics (ITG); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Mona Jaggy
- Karlsruhe Institute of Technology (KIT); Zoological Institute; Cell- and Neurobiology; Fritz-Haber-Weg 4 76131 Karlsruhe Germany
- Karlsruhe Institute of Technology (KIT); Institute of Functional Interfaces (IFG); New Polymers and Biomaterials; Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Martin Bastmeyer
- Karlsruhe Institute of Technology (KIT); Zoological Institute; Cell- and Neurobiology; Fritz-Haber-Weg 4 76131 Karlsruhe Germany
- Karlsruhe Institute of Technology (KIT); Institute of Functional Interfaces (IFG); New Polymers and Biomaterials; Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Pavel A. Levkin
- Karlsruhe Institute of Technology (KIT); Institute of Toxicology and Genetics (ITG); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Institute of Technology (KIT); Institute of Organic Chemistry; 76131 Karlsruhe Germany
| |
Collapse
|
11
|
Jeong J, Kim KN, Chung MS, Kim HJ. Functional comparison of human embryonic stem cells and induced pluripotent stem cells as sources of hepatocyte-like cells. Tissue Eng Regen Med 2016; 13:740-749. [PMID: 30603455 DOI: 10.1007/s13770-016-0094-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 12/17/2022] Open
Abstract
Pluripotent stem cells can differentiate into many cell types including mature hepatocytes, and can be used in the development of new drugs, treatment of diseases, and in basic research. In this study, we established a protocol leading to efficient hepatic differentiation, and compared the capacity to differentiate into the hepatocyte lineage of human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Optimal combinations of cytokines and growth factors were added to embryoid bodies produced by both types of cell. Differentiation of the cells was assessed with optical and electron microscopes, and hepatic-specific transcripts and proteins were detected by quantitative reverse transcription polymerase chain reaction and immunocytochemistry, respectively. Both types of embryoid body produced polygonal hepatocyte-like cells accompanied by time-dependent up regulation of genes for α-fetoprotein, albumin (ALB), asialoglycoprotein1, CK8, CK18, CK19, CYP1A2, and CYP3A4, which are expressed in fetal and adult hepatocytes. Both types of cell displayed functions characteristic of mature hepatocytes such as accumulation of glycogen, secretion of ALB, and uptake of indocyanine green. And these cells are transplanted into mouse model. Our findings indicate that hESCs and hiPSCs have similar abilities to differentiate into hepatocyte in vitro using the protocol developed here, and these cells are transplantable into damaged liver. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s13770-016-0094-y and is accessible for authorized users.
Collapse
Affiliation(s)
- Jaemin Jeong
- 1Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Kyu Nam Kim
- 2Department of Anesthesiology and Pain Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Min Sung Chung
- 1Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- 3Department of Surgery, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Korea
| | - Han Joon Kim
- 1Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- 3Department of Surgery, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 Korea
| |
Collapse
|
12
|
Kaspi H, Chapnik E, Levy M, Beck G, Hornstein E, Soen Y. Brief report: miR-290-295 regulate embryonic stem cell differentiation propensities by repressing Pax6. Stem Cells 2014; 31:2266-72. [PMID: 23843298 DOI: 10.1002/stem.1465] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 05/24/2013] [Accepted: 06/06/2013] [Indexed: 11/09/2022]
Abstract
microRNAs of the miR-290-295 family are selectively expressed at high levels in mouse embryonic stem cells (mESCs) and have established roles in regulating self-renewal. However, the potential influence of these microRNAs on cell fate acquisition during differentiation has been overlooked. Here, we show that miR-290-295 regulate the propensity of mESCs to acquire specific fates. We generated a new miR-290-295-null mESC model, which exhibits increased propensity to generate ectoderm, at the expense of endoderm and mesoderm lineages. We further found that in wild-type cells, miR-290-295 repress Pax6 and ectoderm differentiation; accordingly, Pax6 knockdown partially rescues the mESCs differentiation impairment that is caused by loss of miR-290-295. Thus, in addition to regulating self-renewal, the large reservoir of miR-290-295 in undifferentiated mESCs fine-tunes the expression of master transcriptional factors, such as Pax6, thereby regulating the equilibrium of fate acquisition by mESC descendants.
Collapse
Affiliation(s)
- Haggai Kaspi
- Department of Biological Chemistry and Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
13
|
Zhao L, Sun MA, Li Z, Bai X, Yu M, Wang M, Liang L, Shao X, Arnovitz S, Wang Q, He C, Lu X, Chen J, Xie H. The dynamics of DNA methylation fidelity during mouse embryonic stem cell self-renewal and differentiation. Genome Res 2014; 24:1296-307. [PMID: 24835587 PMCID: PMC4120083 DOI: 10.1101/gr.163147.113] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The faithful transmission of DNA methylation patterns through cell divisions is essential for the daughter cells to retain a proper cell identity. To achieve a comprehensive assessment of methylation fidelity, we implemented a genome-scale hairpin bisulfite sequencing approach to generate methylation data for DNA double strands simultaneously. We show here that methylation fidelity increases globally during differentiation of mouse embryonic stem cells (mESCs), and is particularly high in the promoter regions of actively expressed genes and positively correlated with active histone modification marks and binding of transcription factors. The majority of intermediately (40%–60%) methylated CpG dinucleotides are hemi-methylated and have low methylation fidelity, particularly in the differentiating mESCs. While 5-hmC and 5-mC tend to coexist, there is no significant correlation between 5-hmC levels and methylation fidelity. Our findings may shed new light on our understanding of the origins of methylation variations and the mechanisms underlying DNA methylation transmission.
Collapse
Affiliation(s)
- Lei Zhao
- Laboratory of Genome Variation and Precision Biomedicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming-An Sun
- Epigenomics and Computational Biology Lab, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia 24060, USA
| | - Zejuan Li
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Xue Bai
- Laboratory of Genome Variation and Precision Biomedicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Miao Yu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Min Wang
- Epigenomics and Computational Biology Lab, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia 24060, USA
| | - Liji Liang
- Laboratory of Genome Variation and Precision Biomedicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojian Shao
- Laboratory of Genome Variation and Precision Biomedicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Stephen Arnovitz
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Qianfei Wang
- Laboratory of Genome Variation and Precision Biomedicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Xuemei Lu
- Laboratory of Genome Variation and Precision Biomedicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjun Chen
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Hehuang Xie
- Laboratory of Genome Variation and Precision Biomedicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Epigenomics and Computational Biology Lab, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia 24060, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24060, USA
| |
Collapse
|
14
|
Gallicano GI. Modeling to optimize terminal stem cell differentiation. SCIENTIFICA 2013; 2013:574354. [PMID: 24278782 PMCID: PMC3820305 DOI: 10.1155/2013/574354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/18/2012] [Indexed: 06/02/2023]
Abstract
Embryonic stem cell (ESC), iPCs, and adult stem cells (ASCs) all are among the most promising potential treatments for heart failure, spinal cord injury, neurodegenerative diseases, and diabetes. However, considerable uncertainty in the production of ESC-derived terminally differentiated cell types has limited the efficiency of their development. To address this uncertainty, we and other investigators have begun to employ a comprehensive statistical model of ESC differentiation for determining the role of intracellular pathways (e.g., STAT3) in ESC differentiation and determination of germ layer fate. The approach discussed here applies the Baysian statistical model to cell/developmental biology combining traditional flow cytometry methodology and specific morphological observations with advanced statistical and probabilistic modeling and experimental design. The final result of this study is a unique tool and model that enhances the understanding of how and when specific cell fates are determined during differentiation. This model provides a guideline for increasing the production efficiency of therapeutically viable ESCs/iPSCs/ASC derived neurons or any other cell type and will eventually lead to advances in stem cell therapy.
Collapse
Affiliation(s)
- G. Ian Gallicano
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
15
|
Pai JH, Kluckman K, Cowley DO, Bortner DM, Sims CE, Allbritton NL, Allbritton NL. Efficient division and sampling of cell colonies using microcup arrays. Analyst 2013; 138:220-8. [PMID: 23099535 PMCID: PMC3509232 DOI: 10.1039/c2an36065a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A microengineered array to sample clonal colonies is described. The cells were cultured on an array of individually releasable elements until the colonies expanded to cover multiple elements. Single elements were released using a laser-based system and collected to sample cells from individual colonies. A greater than an 85% rate in splitting and collecting colonies was achieved using a 3-dimensional cup-like design or "microcup". Surface modification using patterned titanium deposition of the glass substrate improved the stability of microcup adhesion to the glass while enabling minimization of the laser energy for splitting the colonies. Smaller microcup dimensions and slotting the microcup walls reduced the time needed for colonies to expand into multiple microcups. The stem cell colony retained on the array and the collected fraction within released microcups remained undifferentiated and viable. The colony samples were characterized by both reporter gene expression and a destructive assay (PCR) to identify target colonies. The platform is envisioned as a means to rapidly establish cell lines using a destructive assay to identify desired clones.
Collapse
Affiliation(s)
- Jeng-Hao Pai
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, Fax: +1 (919) 962-2388, Tel: +1 (919) 966-2291
| | | | - Dale O. Cowley
- TransViragen, Inc., PO Box 110301, Research Triangle Park, NC 27709
| | - Donna M. Bortner
- TransViragen, Inc., PO Box 110301, Research Triangle Park, NC 27709
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, Fax: +1 (919) 962-2388, Tel: +1 (919) 966-2291
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, Fax: +1 (919) 962-2388, Tel: +1 (919) 966-2291
| | - Nancy L. Allbritton
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
16
|
Mahfuz Chowdhury M, Kimura H, Fujii T, Sakai Y. Induction of alternative fate other than default neuronal fate of embryonic stem cells in a membrane-based two-chambered microbioreactor by cell-secreted BMP4. BIOMICROFLUIDICS 2012; 6:14117-1411713. [PMID: 22662099 PMCID: PMC3365351 DOI: 10.1063/1.3693590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 02/24/2012] [Indexed: 06/01/2023]
Abstract
Cell-secreted soluble factor signaling in a diffusion dominant microenvironment plays an important role on early stage differentiation of pluripotent stem cells invivo. In this study, we utilized a membrane-based two-chambered microbioreactor (MB) to differentiate mouse embryonic stem cells (mESCs) in a diffusion dominant microenvironment of the top chamber while providing enough nutrient through the bottom chamber. Speculating that accumulated FGF4 in the small top chamber will augment neuronal differentiation in the MB culture, we first differentiated mESCs for 8 days by using a chemically optimized culture medium for neuronal induction. However, comparison of cellular morphology and expression of neuronal markers in the MB with that in the 6-well plate (6WP) indicated relatively lower neuronal differentiation in the MB culture. Therefore, to investigate whether microenvironment in the MB facilitates non-neuronal differentiation, we differentiated mESCs for 8 days by using chemically defined basal medium. In this case, differentiated cell morphology differed markedly between the MB and 6WP cultures: epithelial sheet-like morphology in the MB, whereas rosette morphology in the 6WP. Expression of markers from the three germ layers indicated lower neuronal but higher meso- and endo-dermal differentiation of mESCs in the MB than the 6WP culture. Moreover, among various cell-secreted soluble factors, BMP4 expression was remarkably upregulated in the MB culture. Inhibition of BMP4 signaling demonstrated that enhanced effect of upregulated BMP4 was responsible for the prominent meso- and endo-dermal differentiation in the MB. However, in the 6WP, downregulated BMP4 had a minimal influence on the differentiation behavior. Our study demonstrated utilization of a microbioreactor to modulate the effect of cell-secreted soluble factors by autoregulation and thereby inducing alternative self-capability of mESCs. Understanding and implementation of autoregulation of soluble factors similar to this study will lead to the development of robust culture systems to control ESC behavior.
Collapse
|
17
|
Pauwelyn K, Roelandt P, Notelaers T, Sancho-Bru P, Fevery J, Verfaillie CM. Culture of mouse embryonic stem cells with serum but without exogenous growth factors is sufficient to generate functional hepatocyte-like cells. PLoS One 2011; 6:e23096. [PMID: 21829697 PMCID: PMC3149071 DOI: 10.1371/journal.pone.0023096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 07/11/2011] [Indexed: 12/13/2022] Open
Abstract
Mouse embryonic stem cells (mESC) have been used to study lineage specification in vitro, including towards a hepatocyte-like fate, and such investigations guided lineage differentiation protocols for human (h)ESC. We recently described a four-step protocol to induce hepatocyte-like cells from hESC which also induced hepatocyte-like cell differentiation of mouse induced pluripotent stem cells. As ESC also spontaneously generate hepatocyte-like cells, we here tested whether the growth factors and serum used in this protocol are required to commit mESC and hESC to hepatocyte-like cells. Culture of mESC from two different mouse strains in the absence of serum and growth factors did not induce primitive streak/definitive endoderm genes but induced default differentiation to neuroectoderm on day 6. Although Activin-A and Wnt3 induced primitive streak/definitive endoderm transcripts most robustly in mESC, simple addition of serum also induced these transcripts. Expression of hepatoblast genes occurred earlier when growth factors were used for mESC differentiation. However, further maturation towards functional hepatocyte-like cells was similar in mESC progeny from cultures with serum, irrespective of the addition of growth factors, and irrespective of the mouse strain. This is in contrast to hESC, where growth factors are required for specification towards functional hepatocyte-like cells. Culture of mESC with serum but without growth factors did not induce preferential differentiation towards primitive endoderm or neuroectoderm. Thus, although induction of primitive streak/definitive endoderm specific genes and proteins is more robust when mESC are exposed to a combination of serum and exogenous growth factors, ultimate generation of hepatocyte-like cells from mESC occurs equally well in the presence or absence of exogenous growth factors. The latter is in contrast to what we observed for hESC. These results suggest that differences exist between lineage specific differentiation potential of mESC and hESC, requiring optimization of different protocols for ESC from either species.
Collapse
Affiliation(s)
- Karen Pauwelyn
- Stem Cell Institute Leuven, Catholic University Leuven, Belgium
- Department of Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Philip Roelandt
- Stem Cell Institute Leuven, Catholic University Leuven, Belgium
- Department of Hepatology, University Hospitals Leuven, Leuven, Belgium
- * E-mail:
| | | | - Pau Sancho-Bru
- Stem Cell Institute Leuven, Catholic University Leuven, Belgium
- Liver Unit, Hospital Clinic, Institut d'Investigacions Biomedicale August Pi i Sunyer (IDIBAPS), CIBERehd, Barcelona, Spain
| | - Johan Fevery
- Department of Hepatology, University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
18
|
Wang Y, Phillips C, Xu W, Pai JH, Dhopeshwarkar R, Sims CE, Allbritton N. Micromolded arrays for separation of adherent cells. LAB ON A CHIP 2010; 10:2917-24. [PMID: 20838672 PMCID: PMC2994190 DOI: 10.1039/c0lc00186d] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We present an efficient, yet inexpensive, approach for isolating viable single cells or colonies from a mixed population. This cell microarray platform possesses innovations in both the array manufacture and the manner of target cell release. Arrays of microwells with bases composed of detachable concave elements, termed microrafts, were fabricated by a dip-coating process using a polydimethylsiloxane mold as the template and the array substrate. This manufacturing approach enabled the use of materials other than photoresists to create the array elements. Thus microrafts possessing low autofluorescence could be fabricated for fluorescence-based identification of cells. Cells plated on the microarray settled and attached at the center of the wells due to the microrafts' concavity. Individual microrafts were readily dislodged by the action of a needle inserted through the compliant polymer substrate. The hard polymer material (polystyrene or epoxy resin) of which the microrafts were composed protected the cells from damage by the needle. For cell analysis and isolation, cells of interest were identified using a standard inverted microscope and microrafts carrying target cells were dislodged with the needle. The released cells/microrafts could be efficiently collected, cultured and clonally expanded. During the separation and collection procedures, the cells remained adherent and provided a measure of protection during manipulation, thus providing an extremely high single-cell cloning rate (>95%). Generation of a transfected cell line based on expression of a fluorescent protein demonstrated an important application for performing on-chip cell separations.
Collapse
Affiliation(s)
- Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Contact printing of arrayed microstructures. Anal Bioanal Chem 2010; 397:3377-85. [PMID: 20425106 DOI: 10.1007/s00216-010-3728-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/06/2010] [Accepted: 04/06/2010] [Indexed: 12/16/2022]
Abstract
A novel contact printing method utilizing a sacrificial layer of polyacrylic acid (PAA) was developed to selectively modify the upper surfaces of arrayed microstructures. The method was characterized by printing polystyrene onto SU-8 microstructures to create an improved substrate for a cell-based microarray platform. Experiments measuring cell growth on SU-8 arrays modified with polystyrene and fibronectin demonstrated improved growth of NIH 3T3 (93% vs. 38%), HeLa (97% vs. 77%), and HT1080 (76% vs. 20%) cells relative to that for the previously used coating method. In addition, use of the PAA sacrificial layer permitted the printing of functionalized polystyrene, carboxylate polystyrene nanospheres, and silica nanospheres onto the arrays in a facile manner. Finally, a high concentration of extracellular matrix materials (ECM), such as collagen (5 mg/mL) and gelatin (0.1%), was contact-printed onto the array structures using as little as 5 microL of the ECM reagent and without the formation of a continuous film bridge across the microstructures. Murine embryonic stem cells cultured on arrays printed with this gelatin hydrogel remained in an undifferentiated state indicating an adequate surface gelatin layer to maintain these cells over time.
Collapse
|
20
|
Shadpour H, Sims CE, Thresher RJ, Allbritton NL. Sorting and expansion of murine embryonic stem cell colonies using micropallet arrays. Cytometry A 2009; 75:121-9. [PMID: 19012319 DOI: 10.1002/cyto.a.20672] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Isolation of cell colonies is an essential task in most stem cell studies. Conventional techniques for colony selection and isolation require significant time, labor, and consumption of expensive reagents. New microengineered technologies hold the promise for improving colony manipulation by reducing the required manpower and reagent consumption. Murine embryonic stem cells were cultured on arrays composed of releasable elements termed micropallets created from a biocompatible photoresist. Micropallets containing undifferentiated colonies were released using a laser-based technique followed by cell collection and expansion in culture. The micropallet arrays provided a biocompatible substrate for maintaining undifferentiated murine stem cells in culture. A surface coating of 0.025% gelatin was shown to be optimal for cell culture and collection. Arrays composed of surface-roughened micropallets provided further improvements in culture and isolation. Colonies of viable stem cells were efficiently isolated and collected. Colonies sorted in this manner were shown to remain undifferentiated even after collection and further expansion in culture. Qualitative and quantitative analyses of sorting, collection efficiency, and cell viability after release and expansion of stem cell colonies demonstrated that the micropallet array technology is a promising alternative to conventional sorting methods for stem cell applications.
Collapse
Affiliation(s)
- Hamed Shadpour
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
21
|
Ami D, Neri T, Natalello A, Mereghetti P, Doglia SM, Zanoni M, Zuccotti M, Garagna S, Redi CA. Embryonic stem cell differentiation studied by FT-IR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:98-106. [DOI: 10.1016/j.bbamcr.2007.08.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 11/28/2022]
|
22
|
Chen X, Wu R, Feng S, Gu B, Dai L, Zhang M, Zhao X. Single cell derived murine embryonic stem cell clones stably express Rex1-specific green fluorescent protein and their differentiation study. Biochem Biophys Res Commun 2007; 362:467-73. [PMID: 17707341 DOI: 10.1016/j.bbrc.2007.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 08/01/2007] [Indexed: 11/21/2022]
Abstract
Embryonic stem cells (ESCs) often display high rates of apoptosis and spontaneous differentiation in routine culture, thus bring the proliferation of these cells highly inefficient. Moreover, little is known about the factors that are indispensable for sustaining self-renewal. To surmount these issues, we established transgenic mES cell lines expressing the enhanced green fluorescent protein (EGFP) under the control of the Rex1 promoter which is a key regulator of pluripotency in ES cells. In addition, we provided a simplified and improved protocol to derive transgenic mESCs from single cell. Finally, we showed that embryoid body (EB) development was faster than adherent differentiation in terms of differentiation ratio by real-time tracking of the EGFP expression. Therefore, these cell lines can be tracked and selected both in vitro and in vivo and should be invaluable for studying the factors that are indispensable for maintaining pluripotency.
Collapse
Affiliation(s)
- Xiaopan Chen
- College of Life Sciences, Zhejiang University, No. 338, Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Repin VS, Saburina IN, Sukhikh GT. Cell biology of fetal tissues and fundamental medicine. Bull Exp Biol Med 2007; 144:108-17. [DOI: 10.1007/s10517-007-0268-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Sekiya T, Kojima K, Matsumoto M, Holley MC, Ito J. Rebuilding lost hearing using cell transplantation. Neurosurgery 2007; 60:417-33; discussion 433. [PMID: 17327786 DOI: 10.1227/01.neu.0000249189.46033.42] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The peripheral auditory nervous system (cochlea and auditory nerve) has a complex anatomy, and it has traditionally been thought that once the sensorineural structures are damaged, restoration of hearing is impossible. In the past decade, however, the potential to restore lost hearing has been intensively investigated using molecular and cell biological techniques, and we can now part with such a pessimistic view. In this review, we examine an important field in hearing restoration research: cell transplantation. METHODS Most efforts in this field have been directed to the replacement of hair cells by transplantation to the cochlea. Here, we focus on transplantation to the auditory nerve, from the side of the cerebellopontine angle rather than the cochlea. RESULTS Delivery of cells to the cochlea is potentially damaging, and nerve cells transplanted distally to the Schwann-glial transitional zone (cochlear side) may become inhibited when they reach the transitional zone. The auditory nerve is probably the most suitable route for cell transplantation. CONCLUSION The auditory nerve occupies an important position not only in neurosurgery but also in various diseases in other disciplines, and several lines of recent evidence indicate that it is a key target for hearing restoration. It is familiar to most neurosurgeons, and the recent advances in the molecular and cell biology of inner-ear development are of direct importance to neurorestorative medicine. In this article, we review the anatomy, development, and molecular biology of the auditory nerve and cochlea, with emphasis on the advances in cell transplantation.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
25
|
Heo J, Factor VM, Uren T, Takahama Y, Lee JS, Major M, Feinstone SM, Thorgeirsson SS. Hepatic precursors derived from murine embryonic stem cells contribute to regeneration of injured liver. Hepatology 2006; 44:1478-86. [PMID: 17133486 DOI: 10.1002/hep.21441] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
We established an efficient system for differentiation, expansion and isolation of hepatic progenitor cells from mouse embryonic stem (ES) cells and evaluated their capacity to repopulate injured liver. Using mouse ES cells transfected with the green fluorescent protein (GFP) reporter gene regulated by albumin (ALB) enhancer/promoter, we found that a serum-free chemically defined medium supports formation of embryoid bodies (EBs) and differentiation of hepatic lineage cells in the absence of exogenous growth factors or feeder cell layers. The first GFP+ cells expressing ALB were detected in close proximity to "beating" myocytes after 7 days of EB cultures. GFP+ cells increased in number, acquired hepatocyte-like morphology and hepatocyte-specific markers (i.e., ALB, AAT, TO, and G6P), and by 28 days represented more than 30% of cells isolated from EB outgrowths. The FACS-purified GFP+ cells developed into functional hepatocytes without evidence of cell fusion and participated in the repairing of diseased liver when transplanted into MUP-uPA/SCID mice. The ES cell-derived hepatocytes were responsive to normal growth regulation and proliferated at the same rate as the host hepatocytes after an additional growth stimulus from CCl(4)-induced liver injury. The transplanted GFP+ cells also differentiated into biliary epithelial cells. In conclusion, a highly enriched population of committed hepatocyte precursors can be generated from ES cells in vitro for effective cell replacement therapy.
Collapse
Affiliation(s)
- Jeonghoon Heo
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|