1
|
Tatum NJ, Endicott JA. Chatterboxes: the structural and functional diversity of cyclins. Semin Cell Dev Biol 2020; 107:4-20. [PMID: 32414682 DOI: 10.1016/j.semcdb.2020.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Proteins of the cyclin family have divergent sequences and execute diverse roles within the cell while sharing a common fold: the cyclin box domain. Structural studies of cyclins have played a key role in our characterization and understanding of cellular processes that they control, though to date only ten of the 29 CDK-activating cyclins have been structurally characterized by X-ray crystallography or cryo-electron microscopy with or without their cognate kinases. In this review, we survey the available structures of human cyclins, highlighting their molecular features in the context of their cellular roles. We pay particular attention to how cyclin activity is regulated through fine control of degradation motif recognition and ubiquitination. Finally, we discuss the emergent roles of cyclins independent of their roles as cyclin-dependent protein kinase activators, demonstrating the cyclin box domain to be a versatile and generalized scaffolding domain for protein-protein interactions across the cellular machinery.
Collapse
Affiliation(s)
- Natalie J Tatum
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Jane A Endicott
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
2
|
Lack of cyclin D3 induces skeletal muscle fiber-type shifting, increased endurance performance and hypermetabolism. Sci Rep 2018; 8:12792. [PMID: 30143714 PMCID: PMC6109157 DOI: 10.1038/s41598-018-31090-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 08/10/2018] [Indexed: 12/25/2022] Open
Abstract
The mitogen-induced D-type cyclins (D1, D2 and D3) are regulatory subunits of the cyclin-dependent kinases CDK4 and CDK6 that drive progression through the G1 phase of the cell cycle. In skeletal muscle, cyclin D3 plays a unique function in controlling the proliferation/differentiation balance of myogenic progenitor cells. Here, we show that cyclin D3 also performs a novel function, regulating muscle fiber type-specific gene expression. Mice lacking cyclin D3 display an increased number of myofibers with higher oxidative capacity in fast-twitch muscle groups, primarily composed of myofibers that utilize glycolytic metabolism. The remodeling of myofibers toward a slower, more oxidative phenotype is accompanied by enhanced running endurance and increased energy expenditure and fatty acid oxidation. In addition, gene expression profiling of cyclin D3-/- muscle reveals the upregulation of genes encoding proteins involved in the regulation of contractile function and metabolic markers specifically expressed in slow-twitch and fast-oxidative myofibers, many of which are targets of MEF2 and/or NFAT transcription factors. Furthermore, cyclin D3 can repress the calcineurin- or MEF2-dependent activation of a slow fiber-specific promoter in cultured muscle cells. These data suggest that cyclin D3 regulates muscle fiber type phenotype, and consequently whole body metabolism, by antagonizing the activity of MEF2 and/or NFAT.
Collapse
|
3
|
Corley SM, Canales CP, Carmona-Mora P, Mendoza-Reinosa V, Beverdam A, Hardeman EC, Wilkins MR, Palmer SJ. RNA-Seq analysis of Gtf2ird1 knockout epidermal tissue provides potential insights into molecular mechanisms underpinning Williams-Beuren syndrome. BMC Genomics 2016; 17:450. [PMID: 27295951 PMCID: PMC4907016 DOI: 10.1186/s12864-016-2801-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/26/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Williams-Beuren Syndrome (WBS) is a genetic disorder associated with multisystemic abnormalities, including craniofacial dysmorphology and cognitive defects. It is caused by a hemizygous microdeletion involving up to 28 genes in chromosome 7q11.23. Genotype/phenotype analysis of atypical microdeletions implicates two evolutionary-related transcription factors, GTF2I and GTF2IRD1, as prime candidates for the cause of the facial dysmorphology. RESULTS Using a targeted Gtf2ird1 knockout mouse, we employed massively-parallel sequencing of mRNA (RNA-Seq) to understand changes in the transcriptional landscape associated with inactivation of Gtf2ird1 in lip tissue. We found widespread dysregulation of genes including differential expression of 78 transcription factors or coactivators, several involved in organ development including Hey1, Myf6, Myog, Dlx2, Gli1, Gli2, Lhx2, Pou3f3, Sox2, Foxp3. We also found that the absence of GTF2IRD1 is associated with increased expression of genes involved in cellular proliferation, including growth factors consistent with the observed phenotype of extreme thickening of the epidermis. At the same time, there was a decrease in the expression of genes involved in other signalling mechanisms, including the Wnt pathway, indicating dysregulation in the complex networks necessary for epidermal differentiation and facial skin patterning. Several of the differentially expressed genes have known roles in both tissue development and neurological function, such as the transcription factor Lhx2 which regulates several genes involved in both skin and brain development. CONCLUSIONS Gtf2ird1 inactivation results in widespread gene dysregulation, some of which may be due to the secondary consequences of gene regulatory network disruptions involving several transcription factors and signalling molecules. Genes involved in growth factor signalling and cell cycle progression were identified as particularly important for explaining the skin dysmorphology observed in this mouse model. We have noted that a number of the dysregulated genes have known roles in brain development as well as epidermal differentiation and maintenance. Therefore, this study provides clues as to the underlying mechanisms that may be involved in the broader profile of WBS.
Collapse
Affiliation(s)
- Susan M Corley
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, NSW, Australia.
| | - Cesar P Canales
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Paulina Carmona-Mora
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | | | | | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Stephen J Palmer
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| |
Collapse
|
4
|
Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nat Rev Mol Cell Biol 2016; 17:280-92. [PMID: 27033256 DOI: 10.1038/nrm.2016.27] [Citation(s) in RCA: 351] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The roles of cyclins and their catalytic partners, the cyclin-dependent kinases (CDKs), as core components of the machinery that drives cell cycle progression are well established. Increasing evidence indicates that mammalian cyclins and CDKs also carry out important functions in other cellular processes, such as transcription, DNA damage repair, control of cell death, differentiation, the immune response and metabolism. Some of these non-canonical functions are performed by cyclins or CDKs, independently of their respective cell cycle partners, suggesting that there was a substantial divergence in the functions of these proteins during evolution.
Collapse
|
5
|
Chi Y, Huang S, Liu M, Guo L, Shen X, Wu J. Cyclin D3 predicts disease-free survival in breast cancer. Cancer Cell Int 2015; 15:89. [PMID: 26412984 PMCID: PMC4583737 DOI: 10.1186/s12935-015-0245-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/17/2015] [Indexed: 01/27/2023] Open
Abstract
Background Cyclin D3, which induces progression through the G1 phase of the cell cycle, is a regulator of Cyclin-dependent kinases 4 and 6. Previous studies revealed that abnormal expression of Cyclin D3 was found in many different cancers. However, the role of Cyclin D3 in breast cancer (BC) remains unknown. The aim of this study is to examine the expression pattern of Cyclin D3 in BC and to evaluate its biological role and clinical significance in prognosis prediction. The mechanism involved is also evaluated. Methods Immunohistochemical staining was used to detect the expression of Cyclin D3. qRT-PCR was used to detect the mRNA level of Cyclin D3 in BC tissues and BC cell lines. Transwell assay was used to examine the role of Cyclin D3 in the migration and invasion of BC cells. Mass Spectrometry was used to search for the interacting protein with Cyclin D3. Co-Immunoprecipitation assay and GST-Pull Down assay were used to validate the interaction of Cyclin D3 and its interaction protein. Results Through detecting Cyclin D3 expression in 243 breast cancer patients’ tissue array, we found Cyclin D3 expression was correlated with ER status (p = 0.000), PR status (p = 0.001), HER2 status (p = 0.002) and tumor differentiation (p = 0.045). The Kaplan–Meier survival curves indicated that the disease free survival (DFS) was significantly poor in high Cyclin D3 expression BC patients (p = 0.004). Furthermore, expression of Cyclin D3 was significantly associated with BC prognosis and was shown to be an independent prognostic marker in breast cancer (p = 0.028). By IHC staining and qPCR detection, Cyclin D3 expression was found to be down-regulated both in BC tissues and in BC cell lines compared with the corresponding normal controls. Further investigation showed Cyclin D3 was involved in the metastasis of BC cells and physically interacted with actin in vivo and in vitro. Conclusion Our studies revealed that Cyclin D3 was upregulated in breast cancer and represented a novel predictor of BC prognosis. Electronic supplementary material The online version of this article (doi:10.1186/s12935-015-0245-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yayun Chi
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Building 7, No. 270 Dong An Road, Shanghai, 200032 China
| | - Sheng Huang
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Building 7, No. 270 Dong An Road, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Mengying Liu
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Building 7, No. 270 Dong An Road, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Liang Guo
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Building 7, No. 270 Dong An Road, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Xuxia Shen
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Jiong Wu
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Building 7, No. 270 Dong An Road, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
6
|
|
7
|
Irazoqui AP, Heim NB, Boland RL, Buitrago CG. 1α,25 dihydroxi-vitamin D₃ modulates CDK4 and CDK6 expression and localization. Biochem Biophys Res Commun 2015; 459:137-42. [PMID: 25721671 DOI: 10.1016/j.bbrc.2015.02.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 02/14/2015] [Indexed: 12/18/2022]
Abstract
We recently reported that the vitamin D receptor (VDR) and p38 MAPK participate in pro-differentiation events triggered by 1α,25(OH)₂-vitamin D₃ [1,25D] in skeletal muscle cells. Specifically, our studies demonstrated that 1,25D promotes G0/G1 arrest of cells inducing cyclin D3 and cyclin dependent kinases inhibitors (CKIs) p21(Waf1/Cip1) and p27(Kip1) expression in a VDR and p38 MAPK dependent manner. In this work we present data indicating that cyclin-dependent kinases (CDKs) 4 and 6 also play a role in the mechanism by which 1,25D stimulates myogenesis. To investigate VDR involvement in hormone regulation of CDKs 4 and 6, we significantly reduced its expression by the use of a shRNA against mouse VDR, generating the skeletal muscle cell line C2C12-VDR. Investigation of changes in cellular cycle regulating proteins by immunoblotting showed that the VDR is involved in the 1,25D -induced CDKs 4 and 6 protein levels at 6 h of hormone treatment. CDK4 levels remains high during S phase peak and G0/G1 arrest while CDK6 expression decreases at 12 h and increases again al 24 h. The up-regulation of CDKs 4 and 6 by 1,25D (6 h) was abolished in C2C12 cells pre-treated with the ERK1/2 inhibitor, UO126. Moreover, CDKs 4 and 6 expression induced by the hormone nor was detected when α and β isoforms of p38 MAPK were inhibited by compound SB203580. Confocal images show that there is not co-localization between VDR and CDKs at 6 h of hormone treatment, however CDK4 and VDR co-localizates in nucleus after 12 h of 1,25D exposure. Of relevance, at this time 1,25D promotes CDK6 localization in a peri-nuclear ring. Our data demonstrate that the VDR, ERK1/2 and p38 MAPK are involved in the control of CDKs 4 and 6 by 1,25D in skeletal muscle cells sustaining the operation of a VDR and MAPKs -dependent mechanism in hormone modulation of myogenesis.
Collapse
Affiliation(s)
- Ana P Irazoqui
- INBIOSUR-CONICET y Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Nadia B Heim
- INBIOSUR-CONICET y Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Ricardo L Boland
- INBIOSUR-CONICET y Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Claudia G Buitrago
- INBIOSUR-CONICET y Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
8
|
Irazoqui AP, Boland RL, Buitrago CG. Actions of 1,25(OH)2-vitamin D3 on the cellular cycle depend on VDR and p38 MAPK in skeletal muscle cells. J Mol Endocrinol 2014; 53:331-43. [PMID: 25316911 DOI: 10.1530/jme-14-0102] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Previously, we have reported that 1,25(OH)2-vitamin D3 (1,25D) activates p38 MAPK (p38) in a vitamin D receptor (VDR)-dependent manner in proliferative C2C12 myoblast cells. It was also demonstrated that 1,25D promotes muscle cell proliferation and differentiation. However, we did not study these hormone actions in depth. In this study we have investigated whether the VDR and p38 participate in the signaling mechanism triggered by 1,25D. In C2C12 cells, the VDR was knocked down by a shRNA, and p38 was specifically inhibited using SB-203580. Results from cell cycle studies indicated that hormone stimulation prompts a peak of S-phase followed by an arrest in the G0/G1-phase, events which were dependent on VDR and p38. Moreover, 1,25D increases the expression of cyclin D3 and the cyclin-dependent kinase inhibitors, p21(Waf1/Cip1) and p27(Kip1), while cyclin D1 protein levels did not change during G0/G1 arrest. In all these events, p38 and VDR were required. At the same time, a 1,25D-dependent acute increase in myogenin expression was observed, indicating that the G0/G1 arrest of cells is a pro-differentiative event. Immunocytochemical assays revealed co-localization of VDR and cyclin D3, promoted by 1,25D in a p38-dependent manner. When cyclin D3 expression was silenced, VDR and myogenin levels were downregulated, indicating that cyclin D3 was required for 1,25D-induced VDR expression and the concomitant entrance into the differentiation process. In conclusion, the VDR and p38 are involved in control of the cellular cycle by 1,25D in skeletal muscle cells, providing key information on the mechanisms underlying hormone regulation of myogenesis.
Collapse
Affiliation(s)
- Ana P Irazoqui
- INBIOSUR - CONICETDepartamento de Biología, Bioquímica and Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Ricardo L Boland
- INBIOSUR - CONICETDepartamento de Biología, Bioquímica and Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Claudia G Buitrago
- INBIOSUR - CONICETDepartamento de Biología, Bioquímica and Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| |
Collapse
|
9
|
Abstract
Crystal structures represent the static picture in the life of a molecule giving a sneak preview what it might be in reality. Hence, it is very hard to extrapolate from these photos toward dynamic processes such as transcriptional regulation. Mechanistically VDR may be considered as molecular machine able to perform ligand-, DNA- and protein recognition, and interaction in a multi-task manner. Taking this into account the functional net effect will be the combination of all these processes. The long awaited answer to explain the differences in physiological effects for various ligands was one of the biggest disappointment that crystal structures provided since no substantial distinction could be made for the conformation of the active VDR-ligand complexes. This may have come from the limitation on the complexity of the available ligand-VDR structures. The recent studies with full length VDR-RXRα showed somewhat more comprehensive perspective for the 3D organization and possible function of the VDR-RXRα-cofactor complex. In addition to in vitro approaches, also computational tools had been introduced with the aim to get understanding on the mechanic and dynamic properties of the VDR complexes with some success. Using these methods and based on measurable descriptors such as pocket size and positions of side chains it is possible to note subtle differences between the structures. The meaning of these differences has not been fully understood yet but the possibility of a “butterfly effect” may have more extreme consequences in terms of VDR signaling. In this review, the three functional aspects (ligand-, DNA- and protein recognition, and binding) will be discussed with respect to available data as well as possible implication and questions that may be important to address in the future.
Collapse
Affiliation(s)
- Ferdinand Molnár
- Faculty of Health Sciences, School of Pharmacy, Institute of Biopharmacy, University of Eastern Finland Kuopio, Finland
| |
Collapse
|
10
|
Hu XT, Zuckerman KS. Role of cell cycle regulatory molecules in retinoic acid- and vitamin D3-induced differentiation of acute myeloid leukaemia cells. Cell Prolif 2014; 47:200-10. [PMID: 24646031 PMCID: PMC6496847 DOI: 10.1111/cpr.12100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/28/2013] [Indexed: 02/06/2023] Open
Abstract
The important role of cell cycle regulatory molecules in all trans-retinoic acid (ATRA)- and vitamin D3-induced growth inhibition and differentiation induction has been intensively studied in both acute myeloid leukaemia primary cells and a variety of leukaemia cell lines. Cyclin-dependent kinases (CDK)-activating kinase has been demonstrated to interact with retinoic acid receptor (RAR)α in acute promyelocytic leukaemia cells, and inhibition of CDK-activating kinase by ATRA causes hypophosphorylation of PML-RARα, leading to myeloid differentiation. In many cases, downregulation of CDK activity by ATRA and vitamin D3 is a result of elevated p21- and p27-bound CDKs. Activation of p21 is regulated at the transcriptional level, whereas elevated p27 results from both (indirectly) transcriptional activation and post-translational modifications. CDK inhibitors (CKIs) of the INK family, such as p15, p16 and p18, are mainly involved in inhibition of cell proliferation, whereas CIP/KIP members, such as p21, regulate both growth arrest and induction of differentiation. ATRA and vitamin D3 can also downregulate expression of G1 CDKs, especially CDK2 and CDK6. Inhibition of cyclin E expression has only been observed in ATRA- but not in vitamin D3-treated leukaemic cells. In vitro, not only dephosphorylation of pRb but also elevation of total pRb is required for ATRA and vitamin D3 to suppress growth and trigger their differentiation. Finally, sharp reduction in c-Myc has been observed in several leukaemia cell lines treated with ATRA, which may regulate expression of CDKs and CKIs.
Collapse
Affiliation(s)
- X. T. Hu
- Department of BiologyCollege of Arts & SciencesBarry UniversityMiami ShoresFL33161USA
| | - K. S. Zuckerman
- Department of Malignant HematologyH. Lee Moffitt Cancer Center and Research InstituteTampaFL33612USA
- Departments of Oncologic Sciences and Internal MedicineUniversity of South FloridaTampaFL33612USA
| |
Collapse
|
11
|
Irazoqui AP, Boland RL, Buitrago CG. WITHDRAWN: VDR involvement in 1a,25-dihydroxyvitamin D3-action on cellular cycle in C2C12 skeletal muscle cells. J Steroid Biochem Mol Biol 2013:S0960-0760(13)00214-8. [PMID: 24184698 DOI: 10.1016/j.jsbmb.2013.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/18/2013] [Accepted: 10/23/2013] [Indexed: 11/30/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Ana P Irazoqui
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
| | | | | |
Collapse
|
12
|
Monoallelic loss of tumor suppressor GRIM-19 promotes tumorigenesis in mice. Proc Natl Acad Sci U S A 2013; 110:E4213-22. [PMID: 24145455 DOI: 10.1073/pnas.1303760110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gene-associated with retinoid-interferon induced mortality-19 (GRIM-19), a STAT3-inhibitory protein, was isolated as a growth-suppressive gene product using a genome-wide expression knockdown screen. We and others have shown a loss of expression and occurrence of mutations in the GRIM-19 gene in a variety of primary human cancers, indicating its potential role as tumor suppressor. To help investigate its role in tumor development in vivo, we generated a genetically modified mouse in which Grim-19 can be conditionally inactivated. Deletion of Grim-19 in the skin significantly increased the susceptibility of mice to chemical carcinogenesis, resulting in development of squamous cell carcinomas. These tumors had high Stat3 activity and an increased expression of Stat3-responsive genes. Loss of Grim-19 also caused mitochondrial electron transport dysfunction resulting from failure to assemble electron transport chain complexes and altered the expression of several cellular genes involved in glycolysis. Surprisingly, the deletion of a single copy of the Grim-19 gene was sufficient to promote carcinogenesis and formation of invasive squamous cell carcinomas. These observations highlight the critical role of GRIM-19 as a tumor suppressor.
Collapse
|
13
|
Gonzalez-Pardo V, D'Elia N, Verstuyf A, Boland R, Russo de Boland A. NFκB pathway is down-regulated by 1α,25(OH)(2)-vitamin D(3) in endothelial cells transformed by Kaposi sarcoma-associated herpes virus G protein coupled receptor. Steroids 2012; 77:1025-32. [PMID: 22683670 DOI: 10.1016/j.steroids.2012.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/18/2012] [Accepted: 05/23/2012] [Indexed: 11/13/2022]
Abstract
We have previously demonstrated that 1α,25 dihydroxy-vitamin D(3) (1α,25(OH)(2)D(3)) has antiproliferative effects on the growth of endothelial cells transformed by the viral G protein-coupled receptor associated to Kaposi sarcoma (vGPCR). In this work, we have investigated whether 1α,25(OH)(2)D(3) exerts its growth inhibitory effects by inhibiting the Nuclear Factor κ B (NFκB) pathway which is highly activated by vGPCR. Cell proliferation studies demonstrated that 1α,25(OH)(2)D(3), similarly to bortezomib, a proteosome inhibitor that suppresses the activation of NFκB, reduced the proliferation of endothelial cells transformed by vGPCR (SVEC-vGPCR). The activity of NFκB in these cells decreased by 70% upon 1α,25(OH)(2)D(3) treatment. Furthermore, time and dose response studies showed that the hormone significantly decreased NFκB and increased IκBα mRNA and protein levels in SVEC-vGPCR cells, whereas in SVEC only IκBα increased significantly. Moreover, NFκB translocation to the nucleus was inhibited and occurred by a mechanism independent of NFκB association with vitamin D(3) receptor (VDR). 1α,25(OH)(2)D(3)-induced increase in IκBα required de novo protein synthesis, and was independent of MAPK and PI3K/Akt pathways. Altogether, these results suggest that down-regulation of the NFκB pathway is part of the mechanism involved in the antiproliferative effects of 1α,25(OH)(2)D(3) on endothelial cells transformed by vGPCR.
Collapse
Affiliation(s)
- Verónica Gonzalez-Pardo
- Departamento de Biología, Bioquímica & Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina.
| | | | | | | | | |
Collapse
|
14
|
Lee KS, Suarez AL, Claypool DJ, Armstrong TK, Buckingham EM, van Dyk LF. Viral cyclins mediate separate phases of infection by integrating functions of distinct mammalian cyclins. PLoS Pathog 2012; 8:e1002496. [PMID: 22319441 PMCID: PMC3271081 DOI: 10.1371/journal.ppat.1002496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/06/2011] [Indexed: 12/12/2022] Open
Abstract
Gammaherpesvirus cyclins have expanded biochemical features relative to mammalian cyclins, and promote infection and pathogenesis including acute lung infection, viral persistence, and reactivation from latency. To define the essential features of the viral cyclin, we generated a panel of knock-in viruses expressing various viral or mammalian cyclins from the murine gammaherpesvirus 68 cyclin locus. Viral cyclins of both gammaherpesvirus 68 and Kaposi's sarcoma-associated herpesvirus supported all cyclin-dependent stages of infection, indicating functional conservation. Although mammalian cyclins could not restore lung replication, they did promote viral persistence and reactivation. Strikingly, distinct and non-overlapping mammalian cyclins complemented persistence (cyclin A, E) or reactivation from latency (cyclin D3). Based on these data, unique biochemical features of viral cyclins (e.g. enhanced kinase activation) are not essential to mediate specific processes during infection. What is essential for, and unique to, the viral cyclins is the integration of the activities of several different mammalian cyclins, which allows viral cyclins to mediate multiple, discrete stages of infection. These studies also demonstrated that closely related stages of infection, that are cyclin-dependent, are in fact genetically distinct, and thus predict that cyclin requirements may be used to tailor potential therapies for virus-associated diseases.
Collapse
Affiliation(s)
- Katherine S. Lee
- Department of Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Andrea L. Suarez
- Department of Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - David J. Claypool
- Department of Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Taylor K. Armstrong
- Department of Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Erin M. Buckingham
- Department of Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Linda F. van Dyk
- Department of Microbiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
15
|
Wang H, Kumar TR. Segment- and cell-specific expression of D-type cyclins in the postnatal mouse epididymis. Gene Expr Patterns 2012; 12:136-44. [PMID: 22289519 DOI: 10.1016/j.gep.2012.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/13/2012] [Accepted: 01/14/2012] [Indexed: 01/17/2023]
Abstract
Sperm transport, maturation and storage are the essential functions of the epididymis. The epididymis in the mouse is structurally characterized by regional and segmental organization including caput, corpus and cauda epididymis that are comprised of 10 segments. Although several growth factor signaling pathways have been discovered in the epididymis, how these converge onto the cell cycle components is unknown. To begin to elucidate the growth factor control of cell cycle events in the epididymis, we analyzed the expression of D-type cyclins at different postnatal ages. At 7d, cyclin D1 was mainly expressed in the cauda epithelium, by 14d its expression occurred in the epithelium of caput, corpus and cauda that persisted up to 21d. By 42d, cyclin D1 was mostly detectable in the principal cells of the caput and corpus (segments 1-7) but not in the cauda epididymis. Expression of cyclin D2, unlike that of cyclin D1, was evident only at 42d but not earlier, and was mostly confined to corpus and cauda epithelium. In contrast to both cyclins D1 and D2, cyclin D3 was expressed primarily in the interstitium at 7d and by 21d its expression was localized to the epithelium of the corpus and cauda epididymis. By 42d, expression of cyclin D3 peaked in segments 6-10 and confined to basal and principal cells of the corpus and apical cells of the cauda epithelium. Ki67 immunoreactivity confirmed absence of cell proliferation despite continued expression of D-type cyclins in the adult epididymis. Collectively, on the basis of our immunophenotyping and protein expression data, we conclude that the D-type cyclins are expressed in a development-, segment-, and cell-specific manner in the postnatal mouse epididymis.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - T Rajendra Kumar
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States; Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, United States
| |
Collapse
|
16
|
Cekic M, Sayeed I, Stein DG. Combination treatment with progesterone and vitamin D hormone may be more effective than monotherapy for nervous system injury and disease. Front Neuroendocrinol 2009; 30:158-72. [PMID: 19394357 PMCID: PMC3025702 DOI: 10.1016/j.yfrne.2009.04.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/06/2009] [Accepted: 04/14/2009] [Indexed: 12/22/2022]
Abstract
More than two decades of pre-clinical research and two recent clinical trials have shown that progesterone (PROG) and its metabolites exert beneficial effects after traumatic brain injury (TBI) through a number of metabolic and physiological pathways that can reduce damage in many different tissues and organ systems. Emerging data on 1,25-dihydroxyvitamin D(3) (VDH), itself a steroid hormone, have begun to provide evidence that, like PROG, it too is neuroprotective, although some of its actions may involve different pathways. Both agents have high safety profiles, act on many different injury and pathological mechanisms, and are clinically relevant, easy to administer, and inexpensive. Furthermore, vitamin D deficiency is prevalent in a large segment of the population, especially the elderly and institutionalized, and can significantly affect recovery after CNS injury. The combination of PROG and VDH in pre-clinical and clinical studies is a novel and compelling approach to TBI treatment.
Collapse
Affiliation(s)
- Milos Cekic
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
17
|
Patil MA, Lee SA, Macias E, Lam ET, Xu C, Jones KD, Ho C, Rodriguez-Puebla M, Chen X. Role of cyclin D1 as a mediator of c-Met- and beta-catenin-induced hepatocarcinogenesis. Cancer Res 2009; 69:253-61. [PMID: 19118010 DOI: 10.1158/0008-5472.can-08-2514] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Activation of c-Met signaling and beta-catenin mutations are frequent genetic events observed in liver cancer development. Recently, we demonstrated that activated beta-catenin can cooperate with c-Met to induce liver cancer formation in a mouse model. Cyclin D1 (CCND1) is an important cell cycle regulator that is considered to be a downstream target of beta-catenin. To determine the importance of CCND1 as a mediator of c-Met- and beta-catenin-induced hepatocarcinogenesis, we investigated the genetic interactions between CCND1, beta-catenin, and c-Met in liver cancer development using mouse models. We coexpressed CCND1 with c-Met in mice and found CCND1 to cooperate with c-Met to promote liver cancer formation. Tumors induced by CCND1/c-Met had a longer latency period, formed at a lower frequency, and seemed to be more benign compared with those induced by beta-catenin/c-Met. In addition, when activated beta-catenin and c-Met were coinjected into CCND1-null mice, liver tumors developed despite the absence of CCND1. Intriguingly, we observed a moderate accelerated tumor growth and increased tumor malignancy in these CCND1-null mice. Molecular analysis showed an up-regulation of cyclin D2 (CCND2) expression in CCND1-null tumor samples, indicating that CCND2 may replace CCND1 in hepatic tumorigenesis. Together, our results suggest that CCND1 functions as a mediator of beta-catenin during HCC pathogenesis, although other molecules may be required to fully propagate beta-catenin signaling. Moreover, our data suggest that CCND1 expression is not essential for liver tumor development induced by c-Met and beta-catenin.
Collapse
Affiliation(s)
- Mohini A Patil
- Department of Biopharmaceutical Sciences, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0446, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Vitamin D deficiency has been widely reported in all age groups in recent years. Rickets has never been eradicated in developed countries, and it most commonly affects children from recent immigrant groups. There is much evidence that current vitamin D guidelines for the neonatal period, 5-10 microg (200-400 IU)/day, prevent rickets at the typical calcium intakes in developed countries. The annual incidence of vitamin D-deficiency rickets in developed countries ranges between 2.9 and 7.5 cases per 100,000 children. The prevalence of vitamin D deficiency in mothers and their neonates is remarkable, and the results of one study suggest that third-trimester 25-hydroxyvitamin D (25(OH)D) is associated with fetal bone mineral accrual that may affect prepubertal bone mass accumulation. Beyond infancy, the evidence indicates that 5 microg (200 IU)/day of vitamin D has little effect on vitamin D status as measured by the serum 25(OH)D concentration. Two randomized clinical trials show that higher vitamin D intake improves one-year gain in bone density in adolescent girls. The functions of vitamin D extend beyond bone to include immune system regulation and anti-proliferative effects on cells. Early life vitamin D inadequacy is implicated in the risk of bone disease, autoimmune disease, and certain cancers later in life; however, long-term interventional studies do not exist to validate the widespread implementation of greater vitamin D consumption. Here we review the available data concerning vitamin D status and health effects of vitamin D in pregnancy through to and including adolescence.
Collapse
Affiliation(s)
- Samantha Kimball
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|
19
|
Abstract
Prostate cancer (PCa) cell proliferation is dependent on activation of the androgen receptor (AR), a ligand-dependent transcription factor. AR activation controls G1-S phase progression through fostering enhanced translation of the D-type cyclins, which promote cell cycle progression through activation of CDK4/6. However, the D-type cyclins harbor additional, CDK4/6 kinase-independent, functions through manipulation of transcription factors, including AR. It was previously established that cyclins D1 and D3 have the potential to modulate AR, and with regard to cyclin D1, disruption of this function occurs in human tumors. Therefore, it was essential to interrogate cyclin D3 function in this tumor type. Here, we show that cyclin D3 is found in association with AR in PCa cells, as mediated through a conserved motif. Cyclin D3 functions to attenuate AR activity through defined mechanisms that include modulation of ligand-dependent conformational changes and modulation of chromatin binding activity. Accumulated cyclin D3 slows cell proliferation in AR-dependent cells, thus suggesting that androgen-induced D-type cyclin production serves to temper the mitogenic response to androgen. Supporting this hypothesis, it is shown that cyclin D3 expression is reduced in primary PCas as a function of tumor grade, and inversely correlates with the proliferative index. In total, these data identify cyclin D3 as a critical modulator of the androgen response, whose deregulation may foster unchecked AR activity in PCa.
Collapse
|
20
|
Upton JW, Speck SH. Evidence for CDK-dependent and CDK-independent functions of the murine gammaherpesvirus 68 v-cyclin. J Virol 2006; 80:11946-59. [PMID: 17005668 PMCID: PMC1676255 DOI: 10.1128/jvi.01722-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gamma-2 herpesviruses encode homologues of mammalian D-type cyclins (v-cyclins), which likely function to manipulate the cell cycle, thereby providing a cellular environment conducive to virus replication and/or reactivation from latency. We have previously shown that the v-cyclin of murine gammaherpesvirus 68 is an oncogene that binds and activates cellular cyclin-dependent kinases (CDKs) and is required for efficient reactivation from latency. To determine the contribution of v-cyclin-mediated cell cycle regulation to the viral life cycle, recombinant viruses in which specific point mutations (E133V or K104E) were introduced into the v-cyclin open reading frame were generated, resulting in the disruption of CDK binding and activation. While in vitro growth of these mutant viruses was unaffected, lytic replication in the lungs following low-dose intranasal inoculation was attenuated for both mutants deficient in CDK binding as well as virus in which the entire v-cyclin open reading frame was disrupted by the insertion of a translation termination codon. This replication defect was not apparent in spleens of mice following intraperitoneal inoculation, suggesting a cell type- and/or route-specific dependence on v-cyclin-CDK interactions during the acute phase of virus infection. Notably, although a v-cyclin-null virus was highly attenuated for reactivation from latency, the E133V v-cyclin CDK-binding mutant exhibited only a modest defect in virus reactivation from splenocytes, and neither the E133V nor K104E v-cyclin mutants were compromised in reactivation from peritoneal exudate cells. Taken together, these data suggest that lytic replication and reactivation in vivo are differentially regulated by CDK-dependent and CDK-independent functions of v-cyclin, respectively.
Collapse
Affiliation(s)
- Jason W Upton
- Department of Microbiology and Immunology, Emory University School of Medicine, 1462 Clifton Road, Suite 429, Atlanta, GA 30322, USA
| | | |
Collapse
|
21
|
Sun J, Kong J, Duan Y, Szeto FL, Liao A, Madara JL, Li YC. Increased NF-kappaB activity in fibroblasts lacking the vitamin D receptor. Am J Physiol Endocrinol Metab 2006; 291:E315-22. [PMID: 16507601 DOI: 10.1152/ajpendo.00590.2005] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1,25-Dihydroxyvitamin D [1,25(OH)2D3] is known to have anti-inflammatory activity; however, the molecular mechanism remains poorly defined. Here we show that the nuclear vitamin D receptor (VDR) is directly involved in the regulation of NF-kappaB activation, a pathway essential for inflammatory response. In mouse embryonic fibroblasts (MEFs) derived from VDR-/- mice, the basal level of kappaB inhibitor (IkappaB) alpha protein was markedly decreased compared with VDR+/- MEFs; however, degradation of IkappaBalpha and its phosphorylation in response to TNF-alpha treatment or Salmonella infection were not altered in VDR-/- cells, neither were the levels of IkappaB kinase-alpha and IkappaB kinase-beta proteins. Consistent with IkappaBalpha reduction, p65 accumulation in the nucleus was markedly increased in unstimulated VDR-/- cells. In addition, the physical interaction between VDR and p65 was absent in VDR-/- MEFs, which may free p65 and increase its activity. Consequently, these alterations combined led to a marked increase in nuclear p65 DNA binding and NF-kappaB transcriptional activity; consistently, induction of IL-6 by TNF-alpha or IL-1beta was much more robust in VDR-/- than in VDR+/- cells, indicating that VDR-/- cells are more susceptible to inflammatory stimulation. Therefore, cells lacking VDR appear to be more proinflammatory due to the intrinsic high NF-kappaB activity. The reduction of IkappaBalpha in VDR-/- MEFs may be partially explained by the lack of VDR-mediated stabilization of IkappaBalpha by 1,25(OH)2D3. This is supported by the observation that IkappaBalpha degradation induced by TNF-alpha was inhibited by 1,25(OH)2D3 in VDR+/- cells, but not in VDR-/- cells. Taken together, these data suggest that VDR plays an inhibitory role in the regulation of NF-kappaB activation.
Collapse
Affiliation(s)
- Jun Sun
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Bibliography. Current world literature. Mineral metabolism. Curr Opin Nephrol Hypertens 2006; 15:464-7. [PMID: 16775463 DOI: 10.1097/01.mnh.0000232889.65895.ae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Sun M, Wei Y, Yao L, Xie J, Chen X, Wang H, Jiang J, Gu J. Identification of extracellular signal-regulated kinase 3 as a new interaction partner of cyclin D3. Biochem Biophys Res Commun 2005; 340:209-14. [PMID: 16360641 DOI: 10.1016/j.bbrc.2005.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 12/01/2005] [Indexed: 12/13/2022]
Abstract
Cyclin D3, like cyclin D1 and D2 isoforms, is a crucial component of the core cell cycle machinery in mammalian cells. It also exhibits its unique properties in many other physiological processes. In the present study, using yeast two-hybrid screening, we identified ERK3, an atypical mitogen-activated protein kinase (MAPK), as a cyclin D3 binding partner. GST pull-down assays showed that cyclin D3 interacts directly and specifically with ERK3 in vitro. The binding of cyclin D3 and ERK3 was further confirmed in vivo by co-immunoprecipitation assay and confocal microscopic analysis. Moreover, carboxy-terminal extension of ERK3 was responsible for its association with intact cyclin D3. These findings further expand distinct roles of cyclin D3 and suggest the potential activity of ERK3 in cell proliferation.
Collapse
Affiliation(s)
- Maoyun Sun
- State Key Laboratory of Genetic Engineering and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | | | |
Collapse
|