1
|
Mohanraj L, Wolf H, Silvey S, Liu J, Toor A, Swift-Scanlan T. DNA Methylation Changes in Autologous Hematopoietic Stem Cell Transplant Patients. Biol Res Nurs 2023; 25:310-325. [PMID: 36321693 PMCID: PMC10236442 DOI: 10.1177/10998004221135628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Blood cancers may be potentially cured with hematopoietic stem cell transplantation (HCT); however, standard pre-assessments for transplant eligibility do not capture all contributing factors for transplant outcomes. Epigenetic biomarkers predict outcomes in various diseases. This pilot study aims to explore epigenetic changes (epigenetic age and differentially methylated genes) in patients before and after autologous HCT, that can serve as potential biomarkers to better predict HCT outcomes. METHODS This study used a prospective longitudinal study design to compare genome wide DNA methylation changes in 36 autologous HCT eligible patients recruited from the Cellular Immunotherapies and Transplant clinic at a designated National Cancer Center. RESULTS Genome-wide DNA methylation, measured by the Illumina Infinium Human Methylation 850K BeadChip, showed a significant difference in DNA methylation patterns post-HCT compared to pre-HCT. Compared to baseline levels of DNA methylation pre-HCT, 3358 CpG sites were hypo-methylated and 3687 were hyper-methylated. Identified differentially methylated positions overlapped with genes involved in hematopoiesis, blood cancers, inflammation and immune responses. Enrichment analyses showed significant alterations in biological processes such as immune response and cell structure organization, however no significant pathways were noted. Though participants had an advanced epigenetic age compared to chronologic age before and after HCT, both epigenetic age and accelerated age decreased post-HCT. CONCLUSION Epigenetic changes, both in epigenetic age and differentially methylated genes were observed in autologous HCT recipients, and should be explored as biomarkers to predict transplant outcomes after autologous HCT in larger, longitudinal studies.
Collapse
Affiliation(s)
- Lathika Mohanraj
- Department of Adult Health and Nursing
Systems, VCU School of Nursing, Richmond, VA, USA
| | - Hope Wolf
- Department of Human and Molecular Genetics, VCU School of Medicine, Richmond, VA, USA
| | - Scott Silvey
- Department of Biostatistics, VCU School of Medicine, Richmond, VA, USA
| | - Jinze Liu
- Department of Biostatistics, VCU School of Medicine, Richmond, VA, USA
| | - Amir Toor
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA, USA
| | - Theresa Swift-Scanlan
- Endowed Professor and Director,
Biobehavioral Research Lab, VCU School of Nursing, Richmond, VA, USA
| |
Collapse
|
2
|
Wang J, Yang ZY, Guo YF, Kuang JY, Bian XW, Yu SC. Targeting different domains of gap junction protein to control malignant glioma. Neuro Oncol 2019; 20:885-896. [PMID: 29106645 DOI: 10.1093/neuonc/nox207] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A rational treatment strategy for glioma, the most common primary central nervous system tumor, should focus on early invasive growth and resistance to current therapeutics. Connexin 43 (Cx43), a gap junction protein, plays important roles not only in the development of the central nervous system and but also in the progression of glioma. The different structural domains of Cx43, including extracellular loops, transmembrane domains, and an intracellular carboxyl terminal, have distinct functions in the invasion and proliferation of gliomas. Targeting these domains of Cx43, which is expressed in distinct patterns in the heterogeneous glioma cell population, can inhibit tumor cell invasion and new tumor formation. Thus, this review summarizes the structural characteristics of Cx43, the effects of regulating different Cx43 domains on the biological characteristics of glioma cells, intervention strategies targeting different domains of Cx43, and future research directions.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Ze-Yu Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Yu-Feng Guo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Jing-Ya Kuang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| |
Collapse
|
3
|
Zhang Q, Jia GJ, Zhang GB, Wang L, Wu Z, Jia W, Hao SY, Ni M, Li D, Wang K, Zhang JT. A Logistic Regression Model for Detecting the Presence of Malignant Progression in Atypical Meningiomas. World Neurosurg 2019; 126:e392-e401. [PMID: 30822595 DOI: 10.1016/j.wneu.2019.02.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To develop a method to distinguish atypical meningiomas (AMs) with malignant progression (MP) from primary AMs without a clinical history. METHODS The clinical, radiologic, and pathologic data of 33 previously Simpson grade I resected (if any) as well as no radiotherapy treated intracranial AMs between January 2008 and December 2015 were reviewed. Immunohistochemical staining for connexin 43 (Cx43) and Ki-67 was performed. Descriptive analysis and univariate and multivariate logistic regression analyses were used to explore independent predictors of MP. A multivariable logistic model was developed to estimate the risk of MP, and its diagnostic value was determined from a receiver operating characteristic curve. RESULTS There were 11 AMs (33.3%) with histopathologically confirmed MP from benign meningiomas. The other 22 (66.7%) were initially diagnosed AMs with no histopathologically confirmed MP during a median 60.5 months (range, 42-126 months) of follow-up. Univariate and multivariate logistic analyses showed that irregular tumor shape (P = 0.010) and low Cx43 expression (P = 0.010) were independent predictors of the presence of MP, and the predicted probability was calculated by the following formula: P = 1/[1+exp.{1.218-(3.202×Shape)+(3.814×Cx43)}]. P > 0.5 for an irregularly shaped (score 1) AM with low Cx43 expression (score 0) indicated a high probability of MP. The sensitivity, specificity, positive predictive value, negative predictive value, and overall predictive accuracy were 63.6, 95.6, 87.5, 84.0, and 84.8%, respectively. CONCLUSIONS Low Cx43 expression and irregular tumor shape were independent predictors of the presence of MP. The relevant logistic regression model was found to be effective in distinguishing MP-AMs from primary AMs.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Gui-Jun Jia
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Guo-Bin Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Liang Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Shu-Yu Hao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Ming Ni
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Da Li
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Jun-Ting Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Patel N, Anand D, Monies D, Maddirevula S, Khan AO, Algoufi T, Alowain M, Faqeih E, Alshammari M, Qudair A, Alsharif H, Aljubran F, Alsaif HS, Ibrahim N, Abdulwahab FM, Hashem M, Alsedairy H, Aldahmesh MA, Lachke SA, Alkuraya FS. Novel phenotypes and loci identified through clinical genomics approaches to pediatric cataract. Hum Genet 2016; 136:205-225. [PMID: 27878435 DOI: 10.1007/s00439-016-1747-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/16/2016] [Indexed: 01/17/2023]
Abstract
Pediatric cataract is highly heterogeneous clinically and etiologically. While mostly isolated, cataract can be part of many multisystem disorders, further complicating the diagnostic process. In this study, we applied genomic tools in the form of a multi-gene panel as well as whole-exome sequencing on unselected cohort of pediatric cataract (166 patients from 74 families). Mutations in previously reported cataract genes were identified in 58% for a total of 43 mutations, including 15 that are novel. GEMIN4 was independently mutated in families with a syndrome of cataract, global developmental delay with or without renal involvement. We also highlight a recognizable syndrome that resembles galactosemia (a fulminant infantile liver disease with cataract) caused by biallelic mutations in CYP51A1. A founder mutation in RIC1 (KIAA1432) was identified in patients with cataract, brain atrophy, microcephaly with or without cleft lip and palate. For non-syndromic pediatric cataract, we map a novel locus in a multiplex consanguineous family on 4p15.32 where exome sequencing revealed a homozygous truncating mutation in TAPT1. We report two further candidates that are biallelically inactivated each in a single cataract family: TAF1A (cataract with global developmental delay) and WDR87 (non-syndromic cataract). In addition to positional mapping data, we use iSyTE developmental lens expression and gene-network analysis to corroborate the proposed link between the novel candidate genes and cataract. Our study expands the phenotypic, allelic and locus heterogeneity of pediatric cataract. The high diagnostic yield of clinical genomics supports the adoption of this approach in this patient group.
Collapse
Affiliation(s)
- Nisha Patel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Arif O Khan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Talal Algoufi
- Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohammed Alowain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Department of Pediatrics, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Muneera Alshammari
- Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Qudair
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hadeel Alsharif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fatimah Aljubran
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hessa S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous M Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Haifa Alsedairy
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed A Aldahmesh
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Wang K, Xu BC, Duan HY, Zhang H, Hu FS. Late cardioprotection of exercise preconditioning against exhaustive exercise-induced myocardial injury by up-regulatation of connexin 43 expression in rat hearts. ASIAN PAC J TROP MED 2015; 8:658-63. [DOI: 10.1016/j.apjtm.2015.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/20/2015] [Accepted: 07/15/2015] [Indexed: 11/29/2022] Open
|
6
|
Kelly JJ, Simek J, Laird DW. Mechanisms linking connexin mutations to human diseases. Cell Tissue Res 2014; 360:701-21. [DOI: 10.1007/s00441-014-2024-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/26/2014] [Indexed: 11/30/2022]
|
7
|
Dominant De Novo Mutations in GJA1 Cause Erythrokeratodermia Variabilis et Progressiva, without Features of Oculodentodigital Dysplasia. J Invest Dermatol 2014; 135:1540-1547. [PMID: 25398053 PMCID: PMC4430428 DOI: 10.1038/jid.2014.485] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/15/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
Abstract
Genetic investigation of inherited skin disorders has informed understanding of skin self-renewal, differentiation, and barrier function. Erythrokeratodermia variabilis et progressiva (EKVP) is a rare, inherited skin disease characterized by transient figurate patches of erythema, localized or generalized scaling, and frequent palmoplantar keratoderma. By employing exome sequencing, we show that de novo missense mutations in GJA1 (gap junction protein alpha 1) cause EKVP. The severe, progressive skin disease in EKVP subjects with GJA1 mutations is distinct from limited cutaneous findings rarely found in the systemic disorder oculodentodigital dysplasia, also caused by dominant GJA1 mutations. GJA1 encodes connexin 43 (Cx43), the most widely expressed gap junction protein. We show that the GJA1 mutations in EKVP subjects lead to disruption of Cx43 membrane localization, and aggregation within the Golgi. These findings reveal a critical role for Cx43 in epidermal homeostasis, and provide evidence of organ-specific pathobiology resulting from different mutations within GJA1.
Collapse
|
8
|
Hooli BV, Kovacs-Vajna ZM, Mullin K, Blumenthal MA, Mattheisen M, Zhang C, Lange C, Mohapatra G, Bertram L, Tanzi RE. Rare autosomal copy number variations in early-onset familial Alzheimer's disease. Mol Psychiatry 2014; 19:676-81. [PMID: 23752245 DOI: 10.1038/mp.2013.77] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/19/2013] [Accepted: 04/15/2013] [Indexed: 01/08/2023]
Abstract
Over 200 rare and fully penetrant pathogenic mutations in amyloid precursor protein (APP), presenilin 1 and 2 (PSEN1 and PSEN2) cause a subset of early-onset familial Alzheimer's disease (EO-FAD). Of these, 21 cases of EO-FAD families carrying unique APP locus duplications remain the only pathogenic copy number variations (CNVs) identified to date in Alzheimer's disease (AD). Using high-density DNA microarrays, we performed a comprehensive genome-wide analysis for the presence of rare CNVs in 261 EO-FAD and early/mixed-onset pedigrees. Our analysis revealed 10 novel private CNVs in 10 EO-FAD families overlapping a set of genes that includes: A2BP1, ABAT, CDH2, CRMP1, DMRT1, EPHA5, EPHA6, ERMP1, EVC, EVC2, FLJ35024 and VLDLR. In addition, CNVs encompassing two known frontotemporal dementia genes, CHMP2B and MAPT were found. To our knowledge, this is the first study reporting rare gene-rich CNVs in EO-FAD and early/mixed-onset AD that are likely to underlie pathogenicity in familial AD and perhaps related dementias.
Collapse
Affiliation(s)
- B V Hooli
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
| | - Z M Kovacs-Vajna
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - K Mullin
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
| | - M A Blumenthal
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
| | - M Mattheisen
- Channing Laboratory, Brigham and Women's Hospital, Boston MA, USA
| | - C Zhang
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
| | - C Lange
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - G Mohapatra
- Molecular Pathology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - L Bertram
- Max-Planck Institute for Molecular Genetics, Neuropsychiatric Genetics Group, Berlin, Germany
| | - R E Tanzi
- Department of Neurology, Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
9
|
Hebert C, Stains JP. An intact connexin43 is required to enhance signaling and gene expression in osteoblast-like cells. J Cell Biochem 2014; 114:2542-50. [PMID: 23744706 DOI: 10.1002/jcb.24603] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 05/16/2013] [Indexed: 11/09/2022]
Abstract
The cytoplasmic C-terminus of connexin43 (Cx43) interacts with numerous signaling complexes. We hypothesize that signal complex docking to the Cx43 C-terminus (CT) is required to propagate the molecules being shared by gap junctions. We have previously shown that Cx43 impacts the responsiveness of osteoblasts to FGF2 in a PKCδ- and ERK-dependent manner, converging on Runx2 activity. Here, we mapped the interaction domain of Cx43 and PKCδ to amino acids 243-302 of the Cx43 CT by GST pulldown assay. Using Runx2-responsive luciferase reporter assays, a Cx43 deletion construct (Cx43 S244Stop), which lacks the C-terminus (amino acids 244-382), failed to support the Cx43-dependent potentiation of transcription following FGF2 treatment in MC3T3 osteoblast-like cells. Similarly, overexpression of Cx43 S244Stop could not mimic the ability of the full length Cx43 to stimulate expression of osteoblast genes. In contrast to full length Cx43, overexpression of just the Cx43 CT (amino acids 236-382) inhibited both transcription from a Runx2 reporter and signaling via PKCδ and ERK. Inhibition of signaling by the CT did not occur in HeLa cells, which lack endogenous Cx43. In summary, the data support a model in which an intact Cx43 is required for both signal propagation/permeability (i.e., channel function) and local recruitment of signaling complexes to the CT (i.e., docking function) in order to mediate its cellular effects. Further, while the CT alone has channel independent activity, it is opposing to the effect of overexpression of the full length Cx43 channel in this cell context.
Collapse
Affiliation(s)
- Carla Hebert
- Department of Orthopedics, University of Maryland, School of Medicine, Baltimore, Maryland, 21201
| | | |
Collapse
|
10
|
Iwakawa R, Takenaka M, Kohno T, Shimada Y, Totoki Y, Shibata T, Tsuta K, Nishikawa R, Noguchi M, Sato-Otsubo A, Ogawa S, Yokota J. Genome-wide identification of genes with amplification and/or fusion in small cell lung cancer. Genes Chromosomes Cancer 2013; 52:802-16. [PMID: 23716474 PMCID: PMC3806277 DOI: 10.1002/gcc.22076] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/25/2013] [Indexed: 02/04/2023] Open
Abstract
To obtain a landscape of gross genetic alterations in small cell lung cancer (SCLC), genome-wide copy number analysis and whole-transcriptome sequencing were performed in 58 and 42 SCLCs, respectively. Focal amplification of known oncogene loci, MYCL1 (1p34.2), MYCN (2p24.3), and MYC (8q24.21), was frequently and mutually exclusively detected. MYCL1 and MYC were co-amplified with other regions on either the same or the different chromosome in several cases. In addition, the 9p24.1 region was identified as being amplified in SCLCs without amplification of MYC family oncogenes. Notably, expression of the KIAA1432 gene in this region was significantly higher in KIAA1432 amplified cells than in non-amplified cells, and its mRNA expression showed strong correlations with the copy numbers. Thus, KIAA1432 is a novel gene activated by amplification in SCLCs. By whole-transcriptome sequencing, a total of 60 fusion transcripts, transcribed from 95 different genes, were identified as being expressed in SCLC cells. However, no in-frame fusion transcripts were recurrently detected in ≥2 SCLCs, and genes in the amplified regions, such as PVT1 neighboring MYC and RLF in MYCL1 amplicons, were recurrently fused with genes in the same amplicons or with those in different amplicons on either the same or different chromosome. Thus, it was indicated that amplification and fusion of several genes on chromosomes 1 and 8 occur simultaneously but not sequentially through chromothripsis in the development of SCLC, and amplification rather than fusion of genes plays an important role in its development.
Collapse
Affiliation(s)
- Reika Iwakawa
- Division of Multistep Carcinogenesis, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Pusapati GV, Luchetti G, Pfeffer SR. Ric1-Rgp1 complex is a guanine nucleotide exchange factor for the late Golgi Rab6A GTPase and an effector of the medial Golgi Rab33B GTPase. J Biol Chem 2012; 287:42129-37. [PMID: 23091056 DOI: 10.1074/jbc.m112.414565] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rab GTPases are master regulators of membrane trafficking events and template the directionality of protein transport through the secretory and endocytic pathways. Certain Rabs recruit the guanine nucleotide exchange factor (GEF) that activates a subsequent acting Rab protein in a given pathway; this process has been termed a Rab cascade. We show here that the medial Golgi-localized Rab33B GTPase has the potential to link functionally to the late Golgi, Rab6 GTPase, by its capacity for association with Ric1 and Rgp1 proteins. In yeast, Ric1p and Rgp1p form a complex that catalyzes guanine nucleotide exchange by Ypt6p, the Rab6 homolog. Human Ric1 and Rgp1 both bind Rab6A with preference for the GDP-bound conformation, characteristic of a GEF. Nevertheless, both Ric1 and Rgp1 proteins are needed to catalyze nucleotide exchange on Rab6A protein. Ric1 and Rgp1 form a complex, but unlike their yeast counterparts, most of the subunits are not associated, and most of the proteins are cytosolic. Loss of Ric1 or Rgp1 leads to destabilization of Rab6, concomitant with a block in Rab6-dependent retrograde transport of mannose 6-phosphate receptors to the Golgi. The C terminus of Ric1 protein contains a distinct binding site for Rab33B-GTP, supporting the existence of a Rab cascade between the medial and trans Golgi. This study thus identifies a GEF for Rab6A in human cells.
Collapse
Affiliation(s)
- Ganesh V Pusapati
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307, USA
| | | | | |
Collapse
|
12
|
The role of the C-terminus in functional expression and internalization of rat connexin46 (rCx46). J Bioenerg Biomembr 2012; 45:59-70. [PMID: 23065326 DOI: 10.1007/s10863-012-9480-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/01/2012] [Indexed: 12/17/2022]
Abstract
The C-terminus (CT) of rCx46 consists of 186 residues (H230-I416). Recent studies showed that rCx46(28.2), truncated after H243, altered the formation of functional hemichannels when expressed in Xenopus oocytes, while rCx46(37.7), truncated after A333 formed gap junction hemichannels similarly to rCx46(wt). To analyze the role of the CT up to A333 in functional expression with cell imaging and dye-transfer techniques, different mutants were generated by C-terminal truncation between H243-A333, labeled with EGFP and expressed in HeLa cells. These rCx46 variants were characterized according to their compartmentalization in organelles, their presence in microscopic detectable vesicles and their ability to form gap junction plaques. rCx46 truncated after A311 (rCx46(35.3)) was compartmentalized, was found in vesicles and formed functional gap junction plaques similarly to rCx46(wt). With a truncation after P284 (rCx46(32.6)), the protein was not compartmentalized and the amount of vesicles containing the protein were reduced; however, functional gap junction plaque formation was not affected as compared to rCx46(35.3). rCx46(28.2) did not form functional gap junction plaques; it was not found in vesicles or in cellular compartments. Live-cell imaging and detection of annular junctions for rCx46(32.6) and rCx46(35.3) revealed that the truncation after P284 reduced the frequency of vesicle budding from gap junction plaques and the formation of annular junctions. These results suggest that the C-terminal region of rCx46 up to A311 (rCx46(35.3)) is necessary for its correct compartmentalization and internalization in the form of annular junctions, while the H230-P284 C-terminal region (rCx46(32.6)) is sufficient for the formation of dye coupled gap junction channels.
Collapse
|
13
|
Gilleron J, Carette D, Chevallier D, Segretain D, Pointis G. Molecular connexin partner remodeling orchestrates connexin traffic: from physiology to pathophysiology. Crit Rev Biochem Mol Biol 2012; 47:407-23. [PMID: 22551357 DOI: 10.3109/10409238.2012.683482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Connexins, through gap junctional intercellular communication, are known to regulate many physiological functions involved in developmental processes such as cell proliferation, differentiation, migration and apoptosis. Strikingly, alterations of connexin expression and trafficking are often, if not always, associated with human developmental diseases and carcinogenesis. In this respect, disrupted trafficking dynamics and aberrant intracytoplasmic localization of connexins are considered as typical features of functionality failure leading to the pathological state. Recent findings demonstrate that interactions of connexins with numerous protein partners, which take place throughout connexin trafficking, are essential for gap junction formation, membranous stabilization and degradation. In the present study, we give an overview of the physiological molecular machinery and of the specific interactions between connexins and their partners, which are involved in connexin trafficking, and we highlight their changes in pathological situations.
Collapse
Affiliation(s)
- Jérôme Gilleron
- INSERM U 1065, University Nice Sophia Antipolis, Team 5, C3M, 151 route Saint-Antoine de Ginestière, France
| | | | | | | | | |
Collapse
|
14
|
Hervé JC, Derangeon M, Sarrouilhe D, Giepmans BNG, Bourmeyster N. Gap junctional channels are parts of multiprotein complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1844-65. [PMID: 22197781 DOI: 10.1016/j.bbamem.2011.12.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 11/28/2011] [Accepted: 12/06/2011] [Indexed: 12/16/2022]
Abstract
Gap junctional channels are a class of membrane channels composed of transmembrane channel-forming integral membrane proteins termed connexins, innexins or pannexins that mediate direct cell-to-cell or cell-to extracellular medium communication in almost all animal tissues. The activity of these channels is tightly regulated, particularly by intramolecular modifications as phosphorylations of proteins and via the formation of multiprotein complexes where pore-forming subunits bind to auxiliary channel subunits and associate with scaffolding proteins that play essential roles in channel localization and activity. Scaffolding proteins link signaling enzymes, substrates, and potential effectors (such as channels) into multiprotein signaling complexes that may be anchored to the cytoskeleton. Protein-protein interactions play essential roles in channel localization and activity and, besides their cell-to-cell channel-forming functions, gap junctional proteins now appear involved in different cellular functions (e.g. transcriptional and cytoskeletal regulations). The present review summarizes the recent progress regarding the proteins capable of interacting with junctional proteins and highlights the function of these protein-protein interactions in cell physiology and aberrant function in diseases. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and functions.
Collapse
Affiliation(s)
- Jean-Claude Hervé
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, Poitiers, France.
| | | | | | | | | |
Collapse
|
15
|
Wu J, Liu S, Liu G, Dombkowski A, Abrams J, Martin-Trevino R, Wicha MS, Ethier SP, Yang ZQ. Identification and functional analysis of 9p24 amplified genes in human breast cancer. Oncogene 2011; 31:333-41. [PMID: 21666724 DOI: 10.1038/onc.2011.227] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Previously, our group identified a novel amplicon at chromosome 9p24 in human esophageal and breast cancers, and cloned the novel gene, GASC1 (gene amplified in squamous cell carcinoma 1, also known as JMJD2C/KDM4C), from this amplicon. GASC1 is a histone demethylase involved in the deregulation of histone methylation in cancer cells. In the current study, we aimed to comprehensively characterize the genes in the 9p24 amplicon in human breast cancer. We performed extensive genomic analyses on a panel of cancer cell lines and narrowed the shortest region of overlap to approximately 2 Mb. Based on statistical analysis of copy number increase and overexpression, the 9p24 amplicon contains six candidate oncogenes. Among these, four genes (GASC1 UHRF2, KIAA1432 and C9orf123) are overexpressed only in the context of gene amplification while two genes (ERMP1 and IL33) are overexpressed independent of the copy number increase. We then focused our studies on the UHRF2 gene, which has a potential involvement in both DNA methylation and histone modification. Knocking down UHRF2 expression inhibited the growth of breast cancer cells specifically with 9p24 amplification. Conversely, ectopic overexpression of UHRF2 in non-tumorigenic MCF10A cells promoted cell proliferation. Furthermore, we demonstrated that UHRF2 has the ability to suppress the expression of key cell-cycle inhibitors, such as p16(INK4a), p21(Waf1/Cip1) and p27(Kip1). Taken together, our studies support the notion that the 9p24 amplicon contains multiple oncogenes that may integrate genetic and epigenetic codes and have important roles in human tumorigenesis.
Collapse
Affiliation(s)
- J Wu
- Breast Cancer Program, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Laird DW. The gap junction proteome and its relationship to disease. Trends Cell Biol 2010; 20:92-101. [DOI: 10.1016/j.tcb.2009.11.001] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 10/30/2009] [Accepted: 11/02/2009] [Indexed: 02/07/2023]
|
17
|
Kleopa KA, Orthmann-Murphy J, Sargiannidou I. Gap Junction Disorders of Myelinating Cells. Rev Neurosci 2010; 21:397-419. [DOI: 10.1515/revneuro.2010.21.5.397] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
del Castillo FJ, Cohen-Salmon M, Charollais A, Caille D, Lampe PD, Chavrier P, Meda P, Petit C. Consortin, a trans-Golgi network cargo receptor for the plasma membrane targeting and recycling of connexins. Hum Mol Genet 2009; 19:262-75. [PMID: 19864490 DOI: 10.1093/hmg/ddp490] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Targeting of numerous transmembrane proteins to the cell surface is thought to depend on their recognition by cargo receptors that interact with the adaptor machinery for anterograde traffic at the distal end of the Golgi complex. We report here on consortin, a novel integral membrane protein that is predicted to be intrinsically disordered, i.e. that contains large segments whose native state is unstructured. We identified consortin as a binding partner of connexins, the building blocks of gap junctions. Consortin is located at the trans-Golgi network (TGN), in tubulovesicular transport organelles, and at the plasma membrane. It directly interacts with the TGN clathrin adaptors GGA1 and GGA2, and disruption of this interaction by expression of a consortin mutant lacking the acidic cluster-dileucine (DXXLL) GGA interaction motif causes an intracellular accumulation of several connexins. RNA interference-mediated silencing of consortin expression in HeLa cells blocks the cell surface targeting of these connexins, which accumulate intracellularly, whereas partial depletion and redistribution of the consortin pool slows down the intracellular degradation of gap junction plaques. Altogether, our results show that, by studying connexin trafficking, we have identified the first TGN cargo receptor for the targeting of transmembrane proteins to the plasma membrane. The identification of consortin provides in addition a potential target for therapies aimed at diseases in which connexin traffic is altered, including cardiac ischemia, peripheral neuropathies, cataracts and hearing impairment. Sequence accession numbers. GenBank: Human CNST cDNA, NM_152609; mouse Cnst cDNA, NM_146105.
Collapse
|
19
|
Park DJ, Wallick CJ, Martyn KD, Lau AF, Jin C, Warn-Cramer BJ. Akt phosphorylates Connexin43 on Ser373, a "mode-1" binding site for 14-3-3. ACTA ACUST UNITED AC 2008; 14:211-26. [PMID: 18163231 DOI: 10.1080/15419060701755958] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Connexin43 (Cx43) is a membrane-spanning protein that forms channels that bridge the gap between adjacent cells and this allows for the intercellular exchange of information. Cx43 is regulated by phosphorylation and by interacting proteins. "Mode-1" interaction with 14-3-3 requires phosphorylation of Ser373 on Cx43 (Park et al. 2006). Akt phosphorylates and targets a number of proteins to interactions with 14-3-3. Here we demonstrate that Akt phosphorylates Cx43 on Ser373 and Ser369; antibodies recognizing Akt-phosphorylated sites or phospho-Ser "mode-1" 14-3-3-binding sites recognize a protein from EGF-treated cells that migrates as Cx43, and GST-14-3-3 binds to Cx43 phosphorylated endogenously in EGF-treated cells. Confocal microscopy supports the co-localization of Cx43 with Akt and with 14-3-3 at the outer edges of gap junctional plaques. These data suggest that Akt could target Cx43 to an interaction with 14-3-3 that may play a role in the forward trafficking of Cx43 multimers and/or their incorporation into existing gap junctional plaques.
Collapse
Affiliation(s)
- Darren J Park
- Natural Products & Cancer Biology Program, Cancer Research Center, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| | | | | | | | | | | |
Collapse
|
20
|
Schulz R, Boengler K, Totzeck A, Luo Y, Garcia-Dorado D, Heusch G. Connexin 43 in ischemic pre- and postconditioning. Heart Fail Rev 2007; 12:261-6. [PMID: 17516165 DOI: 10.1007/s10741-007-9032-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Connexin 43 (Cx43) is the predominant protein forming gap junctions and non-junctional hemichannels in ventricular myocardium, but Cx43 is also localized at the inner membrane of cardiomyocyte mitochondria. In cardiomyocytes, Cx43 is involved in the formation of reactive oxygen species, which are central to the signal transduction cascade of ischemic preconditioning's protection. Accordingly, genetically-induced or age-related loss of Cx43 abolishes infarct size reduction by ischemic preconditioning. Similarly, mitochondrial import inhibition of Cx43 completely blocks infarct size reduction by pharmacological preconditioning with diazoxide. In contrast to its importance for preconditioning-induced cardioprotection, Cx43 is not important for infarct size reduction by ischemic postconditioning. In summary, Cx43--especially Cx43 localized in mitochondria--appears to be one key element of the signal transduction cascade of the protection by preconditioning.
Collapse
Affiliation(s)
- Rainer Schulz
- Institut für Pathophysiologie, Zentrum für Innere Medizin, Universitätsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Hervé JC, Bourmeyster N, Sarrouilhe D, Duffy HS. Gap junctional complexes: From partners to functions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:29-65. [PMID: 17507078 DOI: 10.1016/j.pbiomolbio.2007.03.010] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gap junctions (GJ), specialised membrane structures that mediate cell-to-cell communication in almost all animal tissues, are composed of intercellular channel-forming integral membrane proteins termed connexins (Cxs), innexins or pannexins. The activity of these channels is closely regulated, particularly by intramolecular modifications as phosphorylation of proteins, via the formation of multiprotein complexes where pore-forming subunits bind to auxiliary channel subunits and associate with scaffolding proteins that play essential roles in channel localization and activity. Scaffolding proteins link signalling enzymes, substrates, and potential effectors (such as channels) into multiprotein signalling complexes that may be anchored to the cytoskeleton. Protein-protein interactions play essential roles in channel localization and activity and, besides their cell-to-cell channel-forming functions, gap junctional proteins now appear involved in different cellular functions (e.g. transcriptional and cytoskeletal regulation). The present review summarizes the recent progress regarding the proteins capable of interacting with junctional proteins and their functional importance.
Collapse
Affiliation(s)
- Jean-Claude Hervé
- Interactions et Communications Cellulaires, Université de Poitiers, Poitiers, France.
| | | | | | | |
Collapse
|
22
|
Evans WH, De Vuyst E, Leybaert L. The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 2006; 397:1-14. [PMID: 16761954 PMCID: PMC1479757 DOI: 10.1042/bj20060175] [Citation(s) in RCA: 331] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 03/22/2006] [Accepted: 03/23/2006] [Indexed: 02/07/2023]
Abstract
Cxs (connexins), the protein subunits forming gap junction intercellular communication channels, are transported to the plasma membrane after oligomerizing into hexameric assemblies called connexin hemichannels (CxHcs) or connexons, which dock head-to-head with partner hexameric channels positioned on neighbouring cells. The double membrane channel or gap junction generated directly couples the cytoplasms of interacting cells and underpins the integration and co-ordination of cellular metabolism, signalling and functions, such as secretion or contraction in cell assemblies. In contrast, CxHcs prior to forming gap junctions provide a pathway for the release from cells of ATP, glutamate, NAD+ and prostaglandin E2, which act as paracrine messengers. ATP activates purinergic receptors on neighbouring cells and forms the basis of intercellular Ca2+ signal propagation, complementing that occuring more directly via gap junctions. CxHcs open in response to various types of external changes, including mechanical, shear, ionic and ischaemic stress. In addition, CxHcs are influenced by intracellular signals, such as membrane potential, phosphorylation and redox status, which translate external stresses to CxHc responses. Also, recent studies demonstrate that cytoplasmic Ca2+ changes in the physiological range act to trigger CxHc opening, indicating their involvement under normal non-pathological conditions. CxHcs not only respond to cytoplasmic Ca2+, but also determine cytoplasmic Ca2+, as they are large conductance channels, suggesting a prominent role in cellular Ca2+ homoeostasis and signalling. The functions of gap-junction channels and CxHcs have been difficult to separate, but synthetic peptides that mimic short sequences in the Cx subunit are emerging as promising tools to determine the role of CxHcs in physiology and pathology.
Collapse
Affiliation(s)
- W Howard Evans
- Department of Medical Biochemistry and Immunology and the Wales Heart Research Institute, Cardiff University Medical School, Cardiff CF14 4XN, Wales, UK.
| | | | | |
Collapse
|
23
|
Yogo K, Ogawa T, Akiyama M, Ishida-Kitagawa N, Sasada H, Sato E, Takeya T. PKA Implicated in the Phosphorylation of Cx43 Induced by Stimulation with FSH in Rat Granulosa Cells. J Reprod Dev 2006; 52:321-8. [PMID: 16474210 DOI: 10.1262/jrd.17107] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Connexin 43 (Cx43)-mediated gap junctional communication in granulosa cells is crucial for germ line development and postnatal folliculogenesis. We previously showed that follicle-stimulating hormone (FSH) promoted phosphorylation of Cx43 in rat primary granulosa cells. We further identified Ser365, Ser368, Ser369, and Ser373 in the carboxy-terminal tail as the major sites of phosphorylation by FSH, and found that the phosphorylation of these residues was essential for channel activity. In this study, we investigated the protein kinase(s) responsible for FSH-induced phosphorylation. H89, a cyclic AMP-dependent protein kinase (PKA) inhibitor, inhibited FSH-induced phosphorylation both in vivo and in vitro, whereas PD98059, a mitogen-activated protein kinase kinase (MEK) inhibitor, had little effect on the phosphorylation level. Ca2+-dependent protein kinase (PKC) appeared to negatively regulate phosphorylation. Phosphopeptide mapping with or without H89 treatment indicated that PKA could be responsible for phosphorylation of the four serine residues. In addition, the purified catalytic subunit of PKA could phosphorylate the recombinant C-terminal region of Cx43, but not the variant in which all four serine residues were substituted with alanine. These results suggest that FSH positively regulates Cx43-mediated channel formation and activity through phosphorylation of specific sites by PKA.
Collapse
Affiliation(s)
- Keiichiro Yogo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Connexin (Cx) 43 is the predominant protein forming gap junctions and non-junctional hemichannels in ventricular myocardium. The Cx43 proteins are central to the cardioprotection afforded by ischaemic preconditioning (IP). The specific role of mitochondrial Cx43 in protection by IP is reviewed.
Collapse
Affiliation(s)
- K Boengler
- Institut für Pathophysiologie, Universitätsklinikum Essen, Essen, Germany
| | | | | |
Collapse
|