1
|
Mo W, Donahue JK. Gene therapy for atrial fibrillation. J Mol Cell Cardiol 2024; 196:84-93. [PMID: 39270930 PMCID: PMC11534567 DOI: 10.1016/j.yjmcc.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in adults. Current limitations of pharmacological and ablative therapies motivate the development of novel therapies as next generation treatments for AF. The arrhythmia mechanisms creating and sustaining AF are key elements in the development of this novel treatment. Gene therapy provides a useful platform that allows us to regulate the mechanisms of interest using a suitable transgene(s), vector, and delivery method. Effective gene therapy strategies in the literature have targeted maladaptive electrical or structural remodeling that increase vulnerability to AF. In this review, we will summarize key elements of gene therapy for AF, including molecular targets, gene transfer vectors, atrial gene delivery and preclinical efficacy and toxicity testing. Recent advances and challenges in the field will be also discussed.
Collapse
Affiliation(s)
- Weilan Mo
- From the Division of Cardiology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - J Kevin Donahue
- From the Division of Cardiology, University of Massachusetts Medical School, Worcester, MA, United States of America.
| |
Collapse
|
2
|
Li X, Zhang X, Zhang Q, Lin R. miR-182 contributes to cell proliferation, invasion and tumor growth in colorectal cancer by targeting DAB2IP. Int J Biochem Cell Biol 2019; 111:27-36. [DOI: 10.1016/j.biocel.2019.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/04/2019] [Accepted: 04/07/2019] [Indexed: 12/13/2022]
|
3
|
Pei N, Mao Y, Wan P, Chen X, Li A, Chen H, Li J, Wan R, Zhang Y, Du H, Chen B, Jiang G, Xia M, Sumners C, Hu G, Gu D, Li H. Angiotensin II type 2 receptor promotes apoptosis and inhibits angiogenesis in bladder cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:77. [PMID: 28599664 PMCID: PMC5466725 DOI: 10.1186/s13046-017-0542-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/19/2017] [Indexed: 12/27/2022]
Abstract
Background Bladder cancer (BCa) is the ninth most common form of cancer in the world. There is a continuing need not only for improving the accuracy of diagnostic markers but also for the development of new treatment strategies. Recent studies have shown that the renin-angiotensin system (RAS), which include the angiotensin type 1 (AT1R), type 2(AT2R), and Mas receptors, play an important role in tumorigenesis and may guide us in meeting those needs. Results In this study, we first observed that AT1R and Mas expression levels were significantly upregulated in BCa specimens while AT2R was significantly downregulated. Viral vector mediated overexpression of AT2R induced apoptosis and dramatically suppressed BCa cell proliferation in vitro, suggesting a therapeutic effect. Investigation into the mechanism revealed that the overexpression of AT2R increases the expression levels of caspase-3, caspase-8, and p38 and decreases the expression level of pErk. AT2R overexpression also leads to upregulation of 2 apoptosis-related genes (BCL2A1, TNFSF25) and downregulation of 8 apoptosis-related genes (CASP 6, CASP 9, DFFA, IGF1R, PYCARD, TNF, TNFRSF21, TNFSF10, NAIP) in transduced EJ cells as determined by PCR Array analysis. In vivo, we observed that AT2R overexpression caused significant reduction in xenograft tumors sizes by downregulation VEGF and induction of apoptosis. Conclusions Taken together, the data suggest that AT1R, AT2R or Mas could be used as a diagnostic marker of BCa and AT2R is a promising novel target gene for BCa gene therapy.
Collapse
Affiliation(s)
- Nana Pei
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.,School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China
| | - Yingying Mao
- School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China
| | - Pengfei Wan
- School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China
| | - Xinglu Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China
| | - Andrew Li
- Department of Biomedical Engineering, The Johns University School of Medicine, Baltimore, USA
| | - Huiying Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China
| | - Jinlong Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China
| | - Renqiang Wan
- Department of Otolaryngology-Head and Neck Surgery, Guangdong No. 2 Provincial People's Hospital, Guangzhou, Guangdong, China
| | - Yanling Zhang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China
| | - Hongyan Du
- School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China
| | - Baihong Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China
| | - Guangyu Jiang
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Minghan Xia
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Colin Sumners
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Guixue Hu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, People's Republic of China.
| | - Dongsheng Gu
- Department of Urology, the 421 St Hospital of PLA, No. 350, Xinggang Rd, Haizhu district, Guangzhou, Guangdong, 510318, China.
| | - Hongwei Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
4
|
Ruchaya PJ, Speretta GF, Blanch GT, Li H, Sumners C, Menani JV, Colombari E, Colombari DSA. Overexpression of AT2R in the solitary-vagal complex improves baroreflex in the spontaneously hypertensive rat. Neuropeptides 2016; 60:29-36. [PMID: 27469059 DOI: 10.1016/j.npep.2016.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/20/2016] [Accepted: 06/05/2016] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate the physiological effects of increased angiotensin II type 2 receptor (AT2R) expression in the solitary-vagal complex (nucleus of the solitary tract/dorsal motor nucleus of the vagus; NTS/DVM) on baroreflex function in non-anaesthetised normotensive (NT) and spontaneously hypertensive rats (SHR). Ten week old NT Holtzman and SHR were microinjected with either an adeno-associated virus expressing AT2R (AAV2-CBA-AT2R) or enhanced green fluorescent protein (control; AAV2-CBA-eGFP) into the NTS/DVM. Baroreflex and telemetry recordings were performed on four experimental groups: 1) NTeGFP, 2) NTAT2R, 3) SHReGFP and 4) SHRAT2R (n=4-7/group). Following in-vivo experimental procedures, brains were harvested for gene expression analysis. Impaired bradycardia in SHReGFP was restored in SHR rats overexpressing AT2R in the NTS/DMV. mRNA levels of angiotensin converting enzyme decreased and angiotensin converting enzyme 2 increased in the NTS/DMV of SHRAT2R compared to SHReGFP. Increased levels of pro-inflammatory cytokine mRNA levels in the SHReGFP group also decreased in the SHRAT2R group. AT2R overexpression did not elicit any significant change in mean arterial pressure (MAP) in all groups from baseline to 4weeks post viral transfection. Both SHReGFP and SHRAT2R showed a significant elevation in MAP compared to the NTeGFP and NTAT2R groups. Increased AT2R expression within the NTS/DMV of SHR was effective at improving baroreflex function but not MAP. We propose possible mediators involved in improving baroreflex are in the ANG II/ACE2 axis, suggesting a potential beneficial modulatory effect of AT2R overexpression in the NTS/DMV of neurogenic hypertensive rats.
Collapse
Affiliation(s)
- Prashant J Ruchaya
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil
| | - Guilherme F Speretta
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil
| | - Graziela Torres Blanch
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil
| | - Hongwei Li
- School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Colin Sumners
- Department of Physiology and Functional Genomics and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - José V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil.
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil.
| |
Collapse
|
5
|
Li J, Luo J, Gu D, Jie F, Pei N, Li A, Chen X, Zhang Y, Du H, Chen B, Gu W, Sumners C, Li H. Adenovirus-Mediated Angiotensin II Type 2 Receptor Overexpression Inhibits Tumor Growth of Prostate Cancer In Vivo. J Cancer 2016; 7:184-91. [PMID: 26819642 PMCID: PMC4716851 DOI: 10.7150/jca.12841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/17/2015] [Indexed: 12/29/2022] Open
Abstract
The renin-angiotensin system (RAS) plays important roles in tumorigenesis and is involved with several hallmarks of cancer. Evidence shows that angiotensin II (AngII) type 1 receptor (AT1R) blockers may be associated with improved outcome in prostate cancer patients. Furthermore, our previous studies indicate that increased expression of Ang II type 2 receptor (AT2R) alone induced apoptosis in human prostate cancer lines, an effect that did not require Ang II. This study aimed to investigate the effects of AT2R on tumor growth in vivo and we hypothesized that AT2R over-expression would inhibit proliferation and induce apoptosis in vivo. Human prostate cancer DU145 xenograft mouse model was used to assess the effect of AT2R on tumor growth in vivo. Mice bearing a palpable tumor were chosen and divided randomly into three treatment groups: AT2R, GFP, and PBS. Then we directly injected into the xenograft tumors of the mice every three days with recombinant adenoviruses encoding AT2R (Ad5-CMV-AT2R-EGFP), EGFP (Ad5-CMV-EGFP) and PBS, respectively. The tumor sizes of the tumor bearing mice were then measured. Immunohistochemical Ki-67 staining and TUNEL assay were performed to examine the inhibitory effect of AT2R on tumor cell proliferation. The results showed that AT2R overexpression can inhibit tumor growth of prostate cancer in vivo by inhibiting proliferation and inducing apoptosis of tumor cells. GADD45A is involved in the AT2R-induced antitumor activity. This suggests that AT2R is a potentially useful gene for prostate gene therapy.
Collapse
Affiliation(s)
- Jinlong Li
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Luo
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Dongsheng Gu
- 5. Department of Urology, the 421st Hospital of PLA, Guangzhou, Guangdong, China
| | - Feilong Jie
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Nana Pei
- 6. Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Andrew Li
- 3. Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Xinglu Chen
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanling Zhang
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyan Du
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Baihong Chen
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Weiwang Gu
- 2. Institute of Comparative Medicine and Center of Laboratory Animals, Southern Medical University, Guangzhou, Guangdong, China
| | - Colin Sumners
- 4. Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA; and
| | - Hongwei Li
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Wu X, Chen J, Cao Y, Xie B, Li H, Zhou P, Qiu Y, Pang J. Antitumor effect of COOH-terminal polypeptide of human TERT is associated with the declined expression of hTERT and NF-κB p65 in HeLa cells. Oncol Rep 2015; 34:2909-16. [PMID: 26398300 DOI: 10.3892/or.2015.4298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/03/2015] [Indexed: 11/06/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT) plays an important role in the development of tumors and has been investigated as a potent target for anticancer therapy. In the present study, we constructed a recombinant adenovirus, Ad-EGFP-C197 which was capable of expressing COOH‑terminal polypeptide of hTERT (amino acid 936-1,132, termed as C197 for the reason that it contains 197 amino acids). Infection of HeLa cells with Ad-EGFP-C197 suppressed the activity of telomerase, decreased the expression of hTERT and NF-κB p65, and induced rapid growth delay and apoptosis of HeLa cells in vitro. In nude mice xenografted with HeLa tumors, injection of Ad-EGFP-C197 into the tumor nodule significantly slowed tumor growth and promoted tumor cell apoptosis, as well as reduced the expression of NF-κB p65 in tumor tissues. In the present study, we suggest that the antitumor effect of C197 is associated with the declined expression of hTERT and NF-κB p65. Our results highlight the potential of C197 in tumor therapy.
Collapse
Affiliation(s)
- Xian Wu
- Center for Drug Evaluation and Research, School of Pharmaceutical Sciences, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| | - Jiasheng Chen
- Center for Drug Evaluation and Research, School of Pharmaceutical Sciences, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| | - Ying Cao
- Center for Drug Evaluation and Research, School of Pharmaceutical Sciences, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| | - Baoping Xie
- Center for Drug Evaluation and Research, School of Pharmaceutical Sciences, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| | - Hongwei Li
- School of Biotechnology, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| | - Pingzheng Zhou
- Center for Drug Evaluation and Research, School of Pharmaceutical Sciences, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| | - Yuchang Qiu
- Center for Drug Evaluation and Research, School of Pharmaceutical Sciences, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| | - Jianxin Pang
- Center for Drug Evaluation and Research, School of Pharmaceutical Sciences, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
7
|
Pereverzev AP, Markina NM, Ianushevich IG, Gorodnicheva TV, Minasian BE, Luk'ianov KA, Gurskaia NG. [Intron 2 of human beta-globin in 3'-untranslated region enhances expression of chimeric genes]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 40:293-6. [PMID: 25898735 DOI: 10.1134/s106816201403011x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Possibility to enhance heterologous gene expression in mammalian cells by introduction of an intron in 3' untranslated region (UTR) was investigated. To this end, a fragment of human beta-globin gene with intron 2 and flanked exon regions was introduced into vector encoding green fluorescent protein TagGFP2 after the TagGFP2 stop-codon (Int+). The distance between the stop-codon and the exonjunction was 35 nucleotides. It ensured that Int+ mRNA was resistant to degradation by nonsense mediated decay (NMD) machinery. A control vector Int- contained corresponding intronless sequence of the beta-globin mRNA. On the same plasmid, the second gene encoded far-red fluorescent protein Katushka was used to normalize fluorescence for transfection efficiency and expression level in individual cells. Transiently transfected HEK293T cells were analysed by flow cytometry. It was shown that cells transfected with plasmid carrying the Int+ gene possess 1.8 ± 0.2 fold higher green fluorescence compared to Int- cells. The observed effect was used to enhance expression of destabilized variants of yellow fluorescent protein TurboYFP-dest with high degradation rate in mammalian cells. We believe that introduction of beta-globin intron in the 3'-UTR of the chimeric gene can be used to enhance its expression and may be advantageous in some cases when usage of 5'-UTR intron is inappropriate.
Collapse
|
8
|
Pei N, Jie F, Luo J, Wan R, Zhang Y, Chen X, Liang Z, Du H, Li A, Chen B, Zhang Y, Sumners C, Li J, Gu W, Li H. Gene expression profiling associated with angiotensin II type 2 receptor-induced apoptosis in human prostate cancer cells. PLoS One 2014; 9:e92253. [PMID: 24658029 PMCID: PMC3962398 DOI: 10.1371/journal.pone.0092253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/19/2014] [Indexed: 11/30/2022] Open
Abstract
Increased expression of angiotensin II type 2 receptor (AT2R) induces apoptosis in numerous tumor cell lines, with either Angiotensin II-dependent or Angiotensin II-independent regulation, but its molecular mechanism remains poorly understood. Here, we used PCR Array analysis to determine the gene and microRNA expression profiles in human prostate cancer cell lines transduced with AT2R recombinant adenovirus. Our results demonstrated that AT2R over expression leads to up-regulation of 6 apoptosis-related genes (TRAIL-R2, BAG3, BNIPI, HRK, Gadd45a, TP53BP2), 2 cytokine genes (IL6 and IL8) and 1 microRNA, and down-regulation of 1 apoptosis-related gene TNFSF10 and 2 cytokine genes (BMP6, BMP7) in transduced DU145 cells. HRK was identified as an up-regulated gene in AT2R-transduced PC-3 cells by real-time RT-PCR. Next, we utilized siRNAs to silence the up-regulated genes to further determine their roles on AT2R overexpression mediated apoptosis. The results showed downregulation of Gadd45a reduced the apoptotic effect by ∼30% in DU145 cells, downregulation of HRK reduced AT2R-mediated apoptosis by more than 50% in PC-3 cells, while downregulation of TRAIL-R2 enhanced AT2R-mediated apoptosis more than 4 times in DU145 cells. We also found that the effects on AT2R-mediated apoptosis caused by downregulation of Gadd45a, TRAIL-R2 and HRK were independent in activation of p38 MAPK, p44/42 MAPK and p53. Taken together, our results demonstrated that TRAIL-R2, Gadd45a and HRK may be novel target genes for further study of the mechanism of AT2R-mediated apoptosis in prostate cancer cells.
Collapse
Affiliation(s)
- Nana Pei
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Feilong Jie
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Luo
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Renqiang Wan
- Department of Otolaryngology-Head and Neck Surgery, Guangdong No. 2 Provincial People’s Hospital, Guangzhou, Guangdong, China
| | - Yanling Zhang
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinglu Chen
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhibing Liang
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyan Du
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Andrew Li
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America
| | - Baihong Chen
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Zhang
- Department of Pharmacology, University of Florida, Gainesville, Florida, United States of America
| | - Colin Sumners
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, United States of America
| | - Jinlong Li
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (JL); (WG); (HL)
| | - Weiwang Gu
- Institute of Comparative Medicine and Center of Laboratory Animals, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (JL); (WG); (HL)
| | - Hongwei Li
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (JL); (WG); (HL)
| |
Collapse
|
9
|
Effects of angiotensin II type 2 receptor overexpression on the growth of hepatocellular carcinoma cells in vitro and in vivo. PLoS One 2013; 8:e83754. [PMID: 24391821 PMCID: PMC3877089 DOI: 10.1371/journal.pone.0083754] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/07/2013] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence suggests that the renin-angiotensin system (RAS) plays an important role in tumorigenesis. The interaction between Angiotensin II (AngII) and angiotensin type 1 receptor (AT1R) may have a pivotal role in hepatocellular carcinoma (HCC) and therefore, AT1R blocker and angiotensin I-converting enzyme (ACE) inhibitors may have therapeutic potential in the treatment of hepatic cancer. Although the involvement of AT1R has been well explored, the role of the angiotensin II Type 2 receptor (AT2R) in HCC progression remains poorly understood. Thus, the aim of this study was to explore the effects of AT2R overexpression on HCC cells in vitro and in mouse models of human HCC. An AT2R recombinant adenoviral vector (Ad-G-AT2R-EGFP) was transduced into HCC cell lines and orthotopic tumor grafts. The results indicate that the high dose of Ad-G-AT2R-EGFP–induced overexpression of AT2R in transduced HCC cell lines produced apoptosis. AT2R overexpression in SMMC7721 cells inhibited cell proliferation with a significant reduction of S-phase cells and an enrichment of G1-phase cells through changing expression of CDK4 and cyclinD1. The data also indicate that overexpression of AT2R led to apoptosis via cell death signaling pathway that is dependent on activation of p38 MAPK, pJNK, caspase-8 and caspase-3 and inactivation of pp42/44 MAPK (Erk1/2). Finally, we demonstrated that moderately increasing AT2R expression could increase the growth of HCC tumors and the proliferation of HCC cells in vivo. Our findings suggest that AT2R overexpression regulates proliferation of hepatocellular carcinoma cells in vitro and in vivo, and the precise mechanisms of this phenomenon are yet to be fully determined.
Collapse
|
10
|
Zhang Y, Gao Y, Speth RC, Jiang N, Mao Y, Sumners C, Li H. Adenoviral and adeno-associated viral vectors-mediated neuronal gene transfer to cardiovascular control regions of the rat brain. Int J Med Sci 2013; 10:607-16. [PMID: 23569423 PMCID: PMC3619099 DOI: 10.7150/ijms.5700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/11/2013] [Indexed: 02/03/2023] Open
Abstract
Viral vectors have been utilized extensively to introduce genetic material into the central nervous system. In order to investigate gene functions in cardiovascular control regions of rat brain, we applied WPRE (woodchuck hepatitis virus post-transcriptional regulatory element) enhanced-adenoviral (Ad) and adeno-assoicated virus (AAV) type 2 vectors to mediate neuronal gene delivery to the paraventricular nucleus of the hypothalamus, the nucleus tractus solitarius and the rostral ventrolateral medulla, three important cardiovascular control regions known to express renin-angiotensin system (RAS) genes. Ad or AAV2 harboring an enhanced green fluorescent protein (EGFP) reporter gene or the angiotensin type 2 receptor gene were microinjected into these brain regions in adult rats. Our results demonstrated that both AAV2 and Ad vectors elicited long-term neuronal transduction in these regions. Interestingly, we found that the WPRE caused expression of GFP driven by the synapsin1 promoter in pure glial cultures or co-cultures of neurons and glia derived from rat hypothalamus and brainstem. However, in rat paraventricular nucleus WPRE did not cause expression of GFP in glia. This demonstrates the potential use of these vectors in studies of physiological functions of certain genes in the cardiovascular control regions of the brain.
Collapse
Affiliation(s)
- Yanling Zhang
- School of Biotechnology, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Zhang L, Yin S, Tan W, Xiao D, Weng Y, Wang W, Li T, Shi J, Shuai L, Li H, Zhou J, Allain JP, Li C. Recombinant interferon-γ lentivirus co-infection inhibits adenovirus replication ex vivo. PLoS One 2012; 7:e42455. [PMID: 22916129 PMCID: PMC3420869 DOI: 10.1371/journal.pone.0042455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/05/2012] [Indexed: 11/19/2022] Open
Abstract
Recombinant interferon-γ (IFNγ) production in cultured lentivirus (LV) was explored for inhibition of target virus in cells co-infected with adenovirus type 5 (Ad5). The ability of three different promoters of CMV, EF1α and Ubiquitin initiating the enhanced green fluorescence protein (GFP) activities within lentiviruses was systematically assessed in various cell lines, which showed that certain cell lines selected the most favorable promoter driving a high level of transgenic expression. Recombinant IFNγ lentivirus carrying CMV promoter (LV-CMV-IFNγ) was generated to co-infect 293A cells with a viral surrogate of recombinant GFP Ad5 in parallel with LV-CMV-GFP control. The best morphologic conditions were observed from the two lentiviruses co-infected cells, while single adenovirus infected cells underwent clear pathologic changes. Viral load of adenoviruses from LV-CMV-IFNγ or LV-CMV-GFP co-infected cell cultures was significantly lower than that from adenovirus alone infected cells (P=0.005-0.041), and the reduction of adenoviral load in the co-infected cells was 86% and 61%, respectively. Ad5 viral load from LV-CMV-IFNγ co-infected cells was significantly lower than that from LV-CMV-GFP co-infection (P=0.032), which suggested that IFNγ rather than GFP could further enhance the inhibition of Ad5 replication in the recombinant lentivirus co-infected cells. The results suggest that LV-CMV-IFNγ co-infection could significantly inhibit the target virus replication and might be a potential approach for alternative therapy of severe viral diseases.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Sen Yin
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Wanlong Tan
- Department of Urology, Southern Medical University, Guangzhou, China
| | - Dong Xiao
- Institute of Oncology, Southern Medical University, Guangzhou, China
| | - Yunceng Weng
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Wenjing Wang
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Tingting Li
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Junwen Shi
- Institute of Oncology, Southern Medical University, Guangzhou, China
| | - Lifang Shuai
- Guangzhou Military Centre of Disease Control, Guangzhou, China
| | - Hongwei Li
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Jianhua Zhou
- Laboratory of Lentiviruses and Horse Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jean-Pierre Allain
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
| | - Chengyao Li
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
- * E-mail:
| |
Collapse
|
12
|
DNA prime-adenovirus boost immunization induces a vigorous and multifunctional T-cell response against hepadnaviral proteins in the mouse and woodchuck model. J Virol 2012; 86:9297-310. [PMID: 22718818 DOI: 10.1128/jvi.00506-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Induction of hepatitis B virus (HBV)-specific cytotoxic T cells by therapeutic immunization may be a strategy to treat chronic hepatitis B. In the HBV animal model, woodchucks, the application of DNA vaccine expressing woodchuck hepatitis virus (WHV) core antigen (WHcAg) in combination with antivirals led to the prolonged control of viral replication. However, it became clear that the use of more potent vaccines is required to overcome WHV persistence. Therefore, we asked whether stronger and more functional T-cell responses could be achieved using the modified vaccines and an optimized prime-boost vaccination regimen. We developed a new DNA plasmid (pCGWHc) and recombinant adenoviruses (AdVs) showing high expression levels of WHcAg. Mice vaccinated with the improved plasmid pCGWHc elicited a stronger WHcAg-specific CD8(+) T-cell response than with the previously used vaccines. Using multicolor flow cytometry and an in vivo cytotoxicity assay, we showed that immunization in a DNA prime-AdV boost regimen resulted in an even more vigorous and functional T-cell response than immunization with the new plasmid alone. Immunization of naïve woodchucks with pCGWHc plasmid or AdVs induced a significant WHcAg-specific degranulation response prior to the challenge, this response had not been previously detected. Consistently, this response led to a rapid control of infection after the challenge. Our results demonstrate that high antigen expression levels and the DNA prime-AdV boost immunization improved the T-cell response in mice and induced significant T-cell responses in woodchucks. Therefore, this new vaccination strategy may be a candidate for a therapeutic vaccine against chronic HBV infection.
Collapse
|
13
|
Kosinska AD, Zhang E, Lu M, Roggendorf M. Therapeutic vaccination in chronic hepatitis B: preclinical studies in the woodchuck. HEPATITIS RESEARCH AND TREATMENT 2010; 2010:817580. [PMID: 21188201 PMCID: PMC3003998 DOI: 10.1155/2010/817580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/29/2010] [Indexed: 02/07/2023]
Abstract
Recommended treatment of chronic hepatitis B with interferon-α and/or nucleos(t)ide analogues does not lead to a satisfactory result. Induction of HBV-specific T cells by therapeutic vaccination or immunotherapies may be an innovative strategy to overcome virus persistence. Vaccination with commercially available HBV vaccines in patients did not result in effective control of HBV infection, suggesting that new formulations of therapeutic vaccines are needed. The woodchuck (Marmota monax) is a useful preclinical model for developing the new therapeutic approaches in chronic hepadnaviral infections. Several innovative approaches combining antiviral treatments with nucleos(t)ide analogues, DNA vaccines, and protein vaccines were tested in the woodchuck model. In this paper we summarize the available data concerning therapeutic immunization and gene therapy using recombinant viral vectors approaches in woodchucks, which show encouraging results. In addition, we present potential innovations in immunomodulatory strategies to be evaluated in this animal model.
Collapse
Affiliation(s)
- Anna D. Kosinska
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Virchowstraβe 179, 45122, Essen, Germany
| | - Ejuan Zhang
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Virchowstraβe 179, 45122, Essen, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Virchowstraβe 179, 45122, Essen, Germany
| | - Michael Roggendorf
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Virchowstraβe 179, 45122, Essen, Germany
| |
Collapse
|
14
|
Li H, Qi Y, Li C, Braseth LN, Gao Y, Shabashvili AE, Katovich MJ, Sumners C. Angiotensin type 2 receptor–mediated apoptosis of human prostate cancer cells. Mol Cancer Ther 2009; 8:3255-65. [DOI: 10.1158/1535-7163.mct-09-0237] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Stanisławska-Sachadyn A, Brown KS, Mitchell LE, Woodside JV, Young IS, Scott JM, Murray L, Boreham CA, McNulty H, Strain JJ, Whitehead AS. An insertion/deletion polymorphism of the dihydrofolate reductase (DHFR) gene is associated with serum and red blood cell folate concentrations in women. Hum Genet 2008; 123:289-95. [PMID: 18247058 DOI: 10.1007/s00439-008-0475-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
A low serum folate and high homocysteine phenotype is associated with an increased risk of neural tube defects (NTDs), cardiovascular diseases and other pathologies. Thus defining both genetic and non-genetic factors that may impact folate/homocysteine metabolism will enhance our understanding of the etiologic mechanisms underlying these conditions and facilitate risk assessment. Dihydrofolate reductase catalyzes the reduction of folic acid to dihydrofolate and thereafter to tetrahydrofolate. The impact of the dihydrofolate reductase (DHFR) c.86 + 60_78 insertion/deletion (ins/del) polymorphism on folate and homocysteine concentrations was analyzed using data from healthy young adults from Northern Ireland, collected as part of visit three of the Young Hearts Project. Among men the DHFR c.86 + 60_78 polymorphism was not significantly associated with serum or red blood cell folate concentrations, or with homocysteine concentrations. Among women the DHFR c.86 + 60_78 polymorphism explained 2% of the variation in RBC folate levels and 5% of the variation in serum folate levels, but did not appear to have an independent effect on homocysteine. Relative to women with the DHFR c.86 + 60_78 ins/ins and ins/del genotypes, del/del homozygotes had increased serum and red blood cell folate concentrations and may therefore be at decreased risk of having offspring affected by NTDs and of other adverse reproductive and health outcomes attributable to low folate.
Collapse
Affiliation(s)
- Anna Stanisławska-Sachadyn
- Department of Pharmacology and Center for Pharmacogenetics, University of Pennsylvania School of Medicine, 153 Johnson Pavilion, 3620 Hamilton Walk, Philadelphia, PA, 19104-6084, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li H, Gao Y, Grobe JL, Raizada MK, Katovich MJ, Sumners C. Potentiation of the antihypertensive action of losartan by peripheral overexpression of the ANG II type 2 receptor. Am J Physiol Heart Circ Physiol 2006; 292:H727-35. [PMID: 17085538 DOI: 10.1152/ajpheart.00938.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous studies demonstrated that peripheral overexpression of angiotensin II (ANG II) type 2 receptors (AT(2)R) prevents hypertension-induced cardiac hypertrophy and remodeling without altering high blood pressure. This, coupled with the observations that AT(2)R play a role in the antihypertensive actions of ANG II type 1 receptor (AT(1)R) blockers (ARBs), led us to propose that peripheral overexpression of AT(2)R would improve the antihypertensive action of losartan (Los) in Sprague-Dawley (SD) rats made hypertensive via chronic infusion of ANG II. Here we utilized adenoviral vector-mediated AT(2)R gene transfer to test this hypothesis. A single intracardiac injection of adenoviral vector containing genomic AT(2)R (G-AT(2)R) DNA and enhanced green fluorescent protein (EGFP) gene controlled by cytomegalovirus (CMV) promoters (Ad-G-AT(2)R-EGFP; 5 x 10(9) infectious units) into adult SD rats produced robust AT(2)R overexpression in cardiovascular tissues (kidney, lung, heart, aorta, mesenteric artery, and renal artery) that persisted for 3-5 days postinjection. By 7 days post viral injection, the overexpressed AT(2)R are reduced toward basal values in certain tissues (lung, kidney, and heart) and are undetectable in others (kidney and blood vessels). In two separate protocols, we demonstrated that the hypotensive effect of Los (0.125, 0.5, and 1.0 mg/kg iv) was significantly greater in the AT(2)R-overexpressing animals (-40.7 +/- 4.3, -41.8 +/- 4.8, and -48.1 +/- 2.6 mmHg, respectively) compared with control vector (Ad-CMV-EGFP)-treated rats (-12.4 +/- 2.2, -20.2 +/- 3.4, and -27.3 +/- 3.4 mmHg, respectively). These results provide support for a depressor role of AT(2)R and the proposal that combined AT(2)R agonist and ARB treatment may be an improved therapeutic strategy for controlling hypertension.
Collapse
MESH Headings
- Adenoviridae/genetics
- Angiotensin II/metabolism
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Antihypertensive Agents/pharmacology
- Blood Pressure/drug effects
- Cardiovascular System/drug effects
- Cardiovascular System/metabolism
- Cells, Cultured
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Fibroblasts/metabolism
- Genetic Vectors
- Hypertension/chemically induced
- Hypertension/drug therapy
- Hypertension/metabolism
- Hypertension/physiopathology
- Imidazoles/pharmacology
- Losartan/pharmacology
- Male
- Myocardium/cytology
- Myocardium/metabolism
- Pyridines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 2/biosynthesis
- Receptor, Angiotensin, Type 2/drug effects
- Receptor, Angiotensin, Type 2/genetics
- Time Factors
- Transduction, Genetic
- Up-Regulation
Collapse
Affiliation(s)
- Hongwei Li
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610-0274, USA
| | | | | | | | | | | |
Collapse
|