1
|
Fatimah N, Ashraf S, Nayana R U K, Anju P, Showkat M, Perveen K, Bukhari NA, Sayyed R, Mastinu A. Evaluation of suitability and biodegradability of the organophosphate insecticides to mitigate insecticide pollution in onion farming. Heliyon 2024; 10:e32580. [PMID: 39005928 PMCID: PMC11239468 DOI: 10.1016/j.heliyon.2024.e32580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024] Open
Abstract
Organophosphates constitute a major class of pesticides widely employed in agriculture to manage insect pests. Their toxicity is attributed to their ability to inhibit the functioning of acetylcholinesterase (AChE), an essential enzyme for normal nerve transmission. Organophosphates, especially chlorpyrifos, have been a key component of the integrated pest management (IPM) in onions, effectively controlling onion maggot Delia antiqua, a severe pest of onions. However, the growing concerns over the use of this insecticide on human health and the environment compelled the need for an alternative organophosphate and a potential microbial agent for bioremediation to mitigate organophosphate pesticide pollution. In the present study, chloropyrifos along with five other organophosphate insecticides, phosmet, primiphos-methyl, isofenphos, iodofenphos and tribuphos, were screened against the target protein AChE of D. antiqua using molecular modeling and docking techniques. The results revealed that iodofenphos showed the best interaction, while tribuphos had the lowest interaction with the AChE based on comparative binding energy values. Further, protein-protein interaction analysis conducted using the STRING database and Cytoscap software revealed that AChE is linked with a network of 10 different proteins, suggesting that the function of AChE is disrupted through interaction with insecticides, potentially leading to disruption within the network of associated proteins. Additionally, an in silico study was conducted to predict the binding efficiency of two organophosphate degrading enzymes, organophosphohydrolase (OpdA) from Agrobacterium radiobacter and Trichoderma harzianum paraoxonase 1 like (ThPON1-like) protein from Trichoderma harzianum, with the selected insecticides. The analysis revealed their potential to degrade the pesticides, offering a promising alternative before going for cumbersome onsite remediation.
Collapse
Affiliation(s)
- Nusrat Fatimah
- Division of Entomology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190006, India
| | - Suhail Ashraf
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Krishna Nayana R U
- Department of Plant Biotechnology, Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, 680654, Kerala, India
| | - P.B. Anju
- Department of Plant Biotechnology, Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, 680654, Kerala, India
| | - Mansoor Showkat
- Department of Plant Biotechnology, University of Agricultural Sciences GKVK, Bengaluru, 560065, Karnataka, India
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Najat A. Bukhari
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11495, Saudi Arabia
| | - R.Z. Sayyed
- Department of Microbiology, PSGVP Mandal's S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, 425409, India
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123, Brescia, Italy
| |
Collapse
|
2
|
Mei X, Huang T, Chen A, Liu W, Jiang L, Zhong S, Shen D, Qiao P, Zhao Q. BmC/EBPZ gene is essential for the larval growth and development of silkworm, Bombyx mori. Front Physiol 2024; 15:1298869. [PMID: 38523808 PMCID: PMC10959570 DOI: 10.3389/fphys.2024.1298869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
The genetic male sterile line (GMS) of the silkworm Bombyx mori is a recessive mutant that is naturally mutated from the wild-type 898WB strain. One of the major characteristics of the GMS mutant is its small larvae. Through positional cloning, candidate genes for the GMS mutant were located in a region approximately 800.5 kb long on the 24th linkage group of the silkworm. One of the genes was Bombyx mori CCAAT/enhancer-binding protein zeta (BmC/EBPZ), which is a member of the basic region-leucine zipper transcription factor family. Compared with the wild-type 898WB strain, the GMS mutant features a 9 bp insertion in the 3'end of open reading frame sequence of BmC/EBPZ gene. Moreover, the high expression level of the BmC/EBPZ gene in the testis suggests that the gene is involved in the regulation of reproduction-related genes. Using the CRISPR/Cas9-mediated knockout system, we found that the BmC/EBPZ knockout strains had the same phenotypes as the GMS mutant, that is, the larvae were small. However, the larvae of BmC/EBPZ knockout strains died during the development of the third instar. Therefore, the BmC/EBPZ gene was identified as the major gene responsible for GMS mutation.
Collapse
Affiliation(s)
- Xinglin Mei
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Tianchen Huang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Anli Chen
- Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang, Shaanxi, China
| | - Weibin Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Li Jiang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Shanshan Zhong
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Dongxu Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Peitong Qiao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Qiaoling Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
3
|
Chen Y, Ou J, Liu Y, Wu Q, Wen L, Zheng S, Li S, Feng Q, Liu L. Transcriptomic analysis of the testicular fusion in Spodoptera litura. BMC Genomics 2020; 21:171. [PMID: 32075574 PMCID: PMC7029529 DOI: 10.1186/s12864-020-6494-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/14/2020] [Indexed: 01/28/2023] Open
Abstract
Background Lepidoptera is one group of the largest plant-feeding insects and Spodoptera litura (Lepidoptera: Noctuidae) is one of the most serious agricultural pests in Asia countries. An interesting and unique phenomenon for gonad development of Lepidoptera is the testicular fusion. Two separated testes fused into a single one during the larva-to-pupa metamorphosis, which is believed to contribute to sperm production and the prevalence in field. To study the molecular mechanism of the testicular fusion, RNA sequencing (RNA-seq) experiments of the testes from 4-day-old sixth instar larvae (L6D4) (before fusion), 6-day-old sixth instar larvae (L6D6, prepupae) (on fusing) and 4-day-old pupae (P4D) (after fusion) of S. litura were performed. Results RNA-seq data of the testes showed that totally 12,339 transcripts were expressed at L6D4, L6D6 and P4D stages. A large number of differentially expressed genes (DEGs) were up-regulated from L6D4 to L6D6, and then more genes were down-regulated from L6D6 to P4D. The DEGs mainly belongs to the genes related to the 20E signal transduction pathway, transcription factors, chitin metabolism related enzymes, the families of cytoskeleton proteins, extracellular matrix (ECM) components, ECM-related protein, its receptor integrins and ECM-remodeling enzymes. The expression levels of these genes that were up-regulated significantly during the testicular fusion were verified by qRT-PCR. The matrix metalloproteinases (MMPs) were found to be the main enzymes related to the ECM degradation and contribute to the testicular fusion. The testis was not able to fuse if MMPs inhibitor GM6001 was injected into the 5th abdomen region at L6D6 early stage. Conclusions The transcriptome and DEGs analysis of the testes at L6D4, L6D6 and P4D stages provided genes expression information related to the testicular fusion in S. litura. These results indicated that cytoskeleton proteins, ECM-integrin interaction genes and ECM-related proteins were involved in cell migration, adhesion and fusion during the testicular fusion. The ECM degradation enzymes MMPs probably play a critical role in the fusion of testis.
Collapse
Affiliation(s)
- Yaqing Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jun Ou
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yucheng Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qiong Wu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Liang Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China. .,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China. .,Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
4
|
Guo Z, Qin J, Zhou X, Zhang Y. Insect Transcription Factors: A Landscape of Their Structures and Biological Functions in Drosophila and beyond. Int J Mol Sci 2018; 19:ijms19113691. [PMID: 30469390 PMCID: PMC6274879 DOI: 10.3390/ijms19113691] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022] Open
Abstract
Transcription factors (TFs) play essential roles in the transcriptional regulation of functional genes, and are involved in diverse physiological processes in living organisms. The fruit fly Drosophila melanogaster, a simple and easily manipulated organismal model, has been extensively applied to study the biological functions of TFs and their related transcriptional regulation mechanisms. It is noteworthy that with the development of genetic tools such as CRISPR/Cas9 and the next-generation genome sequencing techniques in recent years, identification and dissection the complex genetic regulatory networks of TFs have also made great progress in other insects beyond Drosophila. However, unfortunately, there is no comprehensive review that systematically summarizes the structures and biological functions of TFs in both model and non-model insects. Here, we spend extensive effort in collecting vast related studies, and attempt to provide an impartial overview of the progress of the structure and biological functions of current documented TFs in insects, as well as the classical and emerging research methods for studying their regulatory functions. Consequently, considering the importance of versatile TFs in orchestrating diverse insect physiological processes, this review will assist a growing number of entomologists to interrogate this understudied field, and to propel the progress of their contributions to pest control and even human health.
Collapse
Affiliation(s)
- Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jianying Qin
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China.
| | - Xiaomao Zhou
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Ye YX, Pan PL, Xu JY, Shen ZF, Kang D, Lu JB, Hu QL, Huang HJ, Lou YH, Zhou NM, Zhang CX. Forkhead box transcription factor L2 activates Fcp3C to regulate insect chorion formation. Open Biol 2018; 7:rsob.170061. [PMID: 28615473 PMCID: PMC5493777 DOI: 10.1098/rsob.170061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/12/2017] [Indexed: 12/24/2022] Open
Abstract
Most animals are oviparous. However, the genes regulating egg shell formation remain not very clear. In this study, we found that Nilaparvata lugens Forkhead box transcription factor L2 (NlFoxL2) directly activated follicle cell protein 3C (NlFcp3C) to regulate chorion formation. NlFoxL2 and NlFcp3C had a similar expression pattern, both highly expressed in the follicular cells of female adults. Knockdown of NlFoxL2 or NlFcp3C also resulted in the same phenotypes: obesity and female infertility. RNA interference (RNAi) results suggested that NlFcp3C is a downstream gene of NlFoxL2. Furthermore, transient expression showed that NlFoxL2 could directly activate the NlFcp3C promoter. These results suggest that NlFcp3C is a direct target gene of NlFoxL2. Depletion of NlFoxL2 or NlFcp3C prevented normal chorion formation. Our results first revealed the functions of Fcp3C and FoxL2 in regulation of oocyte maturation in an oviparous animal.
Collapse
Affiliation(s)
- Yu-Xuan Ye
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Peng-Lu Pan
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ji-Yu Xu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zhang-Fei Shen
- College of life Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Dong Kang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jia-Bao Lu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qing-Lin Hu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hai-Jian Huang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yi-Han Lou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Nai-Ming Zhou
- College of life Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
6
|
Zhao Q, Ma D, Huang Y, He W, Li Y, Vasseur L, You M. Genome-wide investigation of transcription factors provides insights into transcriptional regulation in Plutella xylostella. Mol Genet Genomics 2017; 293:435-449. [PMID: 29147778 DOI: 10.1007/s00438-017-1389-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023]
Abstract
Transcription factors (TFs), which play a vital role in regulating gene expression, are prevalent in all organisms and characterization of them may provide important clues for understanding regulation in vivo. The present study reports a genome-wide investigation of TFs in the diamondback moth, Plutella xylostella (L.), a worldwide pest of crucifers. A total of 940 TFs distributed among 133 families were identified. Phylogenetic analysis of insect species showed that some of these families were found to have expanded during the evolution of P. xylostella or Lepidoptera. RNA-seq analysis showed that some of the TF families, such as zinc fingers, homeobox, bZIP, bHLH, and MADF_DNA_bdg genes, were highly expressed in certain tissues including midgut, salivary glands, fat body, and hemocytes, with an obvious sex-biased expression pattern. In addition, a number of TFs showed significant differences in expression between insecticide susceptible and resistant strains, suggesting that these TFs play a role in regulating genes related to insecticide resistance. Finally, we identified an expansion of the HOX cluster in Lepidoptera, which might be related to Lepidoptera-specific evolution. Knockout of this cluster using CRISPR/Cas9 showed that the egg cannot hatch, indicating that this cluster may be related to egg development and maturation. This is the first comprehensive study on identifying and characterizing TFs in P. xylostella. Our results suggest that some TF families are expanded in the P. xylostella genome, and these TFs may have important biological roles in growth, development, sexual dimorphism, and resistance to insecticides. The present work provides a solid foundation for understanding regulation via TFs in P. xylostella and insights into the evolution of the P. xylostella genome.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, People's Republic of China
| | - Dongna Ma
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, People's Republic of China
| | - Yuping Huang
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, People's Republic of China
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, People's Republic of China
| | - Yiying Li
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Liette Vasseur
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON, L2S 3A1, Canada
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China. .,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China. .,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
7
|
Liang LN, Zhang LL, Zeng BJ, Zheng SC, Feng QL. Transcription factor CAAT/enhancer-binding protein is involved in regulation of expression of sterol carrier protein x in Spodoptera litura. INSECT MOLECULAR BIOLOGY 2015; 24:551-560. [PMID: 26174044 DOI: 10.1111/imb.12182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The Spodoptera litura sterol carrier protein x (SlSCPx) gene is expressed in various tissues throughout the life cycle and plays important role in sterol absorption and transport. In this study, the effects of insect hormones (20-hydroexcdysone and juvenile hormone) and lipids (arachidonic acid, cholesterol) on the expression of SlSCPx was analysed by reverse-transcriptase PCR. The results showed that none of these substances significantly induced the expression of SlSCPx in Spodoptera litura-221 (Spli-221) cells. To identify the transcription factors responsible for regulation of SlSCPx expression, a 3311-bp promoter sequence of the gene was cloned. Transcriptional activity of the promoter was studied using an in vivo promoter/reporter system and a 29-bp sequence between -1000 and -1029 nucleotides (nt) upstream of this gene was found to be responsible for the up-regulation of the gene. Over-expression of CAAT/enhancer-binding protein (C/EBP) in Spli-221 cells increased the promoter activity 5.57-fold. An electrophoretic mobility shift assay showed that two nuclear proteins bound to this sequence. Recombinant C/EBP specifically bound with a putative cis-regulatory element (CRE). Mutation of the C/EBP CRE abolished the binding of the C/EBP with the CRE. These results suggest that the transcription factor C/EBP may regulate the expression of SlSCPx by binding to the CRE in the promoter of this gene.
Collapse
Affiliation(s)
- L-N Liang
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - L-L Zhang
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - B-J Zeng
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - S-C Zheng
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Q-L Feng
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
8
|
Tsatsarounos SP, Rodakis GC, Lecanidou R. Analysis of developmentally regulated chorion gene promoter architecture via electroporation of silk moth follicles. INSECT MOLECULAR BIOLOGY 2015; 24:71-81. [PMID: 25256090 DOI: 10.1111/imb.12136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the silk moth Bombyx mori, chorion genes of the same developmental specificity are organized in divergently transcribed α/β gene pairs, sharing a common 5' flanking promoter region. This bidirectional promoter contains a complete set of cis-elements responsible for developmentally accurate gene expression. In the present paper, based on the observation that Bombyx chorion gene promoters contain cis-elements for the same transcription factors without concrete evidence on which of them are essential, we address the question as to how promoter architecture (number, orientation and position of common factor binding sites) facilitates developmentally accurate chorion gene regulation. To this end, we constructed several mutated promoter regions of an early-middle gene pair and cloned them upstream of a reporter gene to introduce these plasmid constructs into silk moth follicle epithelial cells via electroporation as an efficient and quick method for transient expression. This is the first time that an ex vivo method had been applied to test the impact of systematic cis-element mutations on a chorion gene promoter. Our results confirmed the importance of the HMGA factor and the role of the GATA factor as an early repressor, and led to a more detailed understanding of which C/EBP sites participate in the regulation of early-middle chorion gene expression.
Collapse
Affiliation(s)
- S P Tsatsarounos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian, University of Athens, Athens, Greece
| | | | | |
Collapse
|
9
|
Papantonis A, Swevers L, Iatrou K. Chorion genes: a landscape of their evolution, structure, and regulation. ANNUAL REVIEW OF ENTOMOLOGY 2015; 60:177-194. [PMID: 25341099 DOI: 10.1146/annurev-ento-010814-020810] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Differential regulation at the level of transcription provides a means for controlling gene expression in eukaryotes, especially during development. Insect model systems have been extensively used to decipher the molecular basis of such regulatory cascades, and one of the oldest such model systems is the regulation of chorion gene expression during ovarian follicle maturation. Recent experimental and technological advances have shed new light onto the system, allowing us to revisit it. Thus, in this review we try to summarize almost 40 years' worth of studies on chorion gene regulation while-by comparing Bombyx mori and Drosophila melanogaster models-attempting to present a comprehensive, unified model of the various regulatory aspects of choriogenesis that takes into account the evolutionary conservation and divergence of the underlying mechanisms.
Collapse
Affiliation(s)
- Argyris Papantonis
- Research Group for Systems Biology of Chromatin, Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany;
| | | | | |
Collapse
|
10
|
Ou J, Deng HM, Zheng SC, Huang LH, Feng QL, Liu L. Transcriptomic analysis of developmental features of Bombyx mori wing disc during metamorphosis. BMC Genomics 2014; 15:820. [PMID: 25261999 PMCID: PMC4196006 DOI: 10.1186/1471-2164-15-820] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/17/2014] [Indexed: 12/27/2022] Open
Abstract
Background Wing discs of B. mori are transformed to pupal wings during the larva-to-pupa metamorphosis with dramatic morphological and structural changes. To understand these changes at a transcriptional level, RNA-seq of the wing discs from 6-day-old fifth instar larvae (L5D6), prepupae (PP) and pupae (P0) was performed. Results In total, 12,254 transcripts were obtained from the wing disc, out of which 5,287 were identified to be differentially expressed from L5D6 to PP and from PP to P0. The results of comprehensive analysis of RNA-seq data showed that during larvae-to-pupae metamorphosis, many genes of 20E signaling pathway were up-regulated and those of JH signaling pathway were down-regulated. Seventeen transcription factors were significantly up-regulated. Cuticle protein genes (especially wing cuticle protein genes), were most abundant and significantly up-regulated at P0 stage. Genes responsible for the degradation and de novo synthesis of chitin were significantly up-regulated. There were A and B two types of chitin synthases in B. mori, whereas only chitin synthase A was up-regulated. Both trehalose and D-fructose, which are precursors of chitin synthesis, were detected in the hemolymph of L5D6, PP and P0, suggesting de novo synthesis of chitin. However, most of the genes that are related to early wing disc differentiation were down-regulated. Conclusions Extensive transcriptome and DGE profiling data of wing disc during metamorphosis of silkworm have been generated, which provided comprehensive gene expression information at the transcriptional level. These results implied that during the larva-to-pupa metamorphosis, pupal wing development and transition might be mainly controlled by 20E signaling in B. mori. The 17 up-regulated transcription factors might be involved in wing development. Chitin required for pupal wing development might be generated from both degradation of componential chitin and de novo synthesis. Chitin synthase A might be responsible for the chitin synthesis in the pupal wing, while both trehalose and D-fructose might contribute to the de novo synthesis of chitin during the formation of pupal wing. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-820) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Qi-Li Feng
- Laboratory of Molecular and Developmental Entomology, Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | | |
Collapse
|
11
|
Carter JM, Baker SC, Pink R, Carter DRF, Collins A, Tomlin J, Gibbs M, Breuker CJ. Unscrambling butterfly oogenesis. BMC Genomics 2013; 14:283. [PMID: 23622113 PMCID: PMC3654919 DOI: 10.1186/1471-2164-14-283] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/05/2013] [Indexed: 12/16/2022] Open
Abstract
Background Butterflies are popular model organisms to study physiological mechanisms
underlying variability in oogenesis and egg provisioning in response to
environmental conditions. Nothing is known, however, about; the
developmental mechanisms governing butterfly oogenesis, how polarity in the
oocyte is established, or which particular maternal effect genes regulate
early embryogenesis. To gain insights into these developmental mechanisms
and to identify the conserved and divergent aspects of butterfly oogenesis,
we analysed a de novo ovarian transcriptome of the Speckled Wood
butterfly Pararge aegeria (L.), and compared the results with known
model organisms such as Drosophila melanogaster and Bombyx
mori. Results A total of 17306 contigs were annotated, with 30% possibly novel or highly
divergent sequences observed. Pararge aegeria females expressed
74.5% of the genes that are known to be essential for D.
melanogaster oogenesis. We discuss the genes involved in all
aspects of oogenesis, including vitellogenesis and choriogenesis, plus those
implicated in hormonal control of oogenesis and transgenerational hormonal
effects in great detail. Compared to other insects, a number of significant
differences were observed in; the genes involved in stem cell maintenance
and differentiation in the germarium, establishment of oocyte polarity, and
in several aspects of maternal regulation of zygotic development. Conclusions This study provides valuable resources to investigate a number of divergent
aspects of butterfly oogenesis requiring further research. In order to fully
unscramble butterfly oogenesis, we also now also have the resources to
investigate expression patterns of oogenesis genes under a range of
environmental conditions, and to establish their function.
Collapse
Affiliation(s)
- Jean-Michel Carter
- Evolutionary Developmental Biology Research Group, Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lecanidou R, Papantonis A. Modeling bidirectional transcription using silkmoth chorion gene promoters. Organogenesis 2012; 6:54-8. [PMID: 20592866 DOI: 10.4161/org.6.1.10696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 11/18/2009] [Accepted: 11/18/2009] [Indexed: 11/19/2022] Open
Abstract
Bidirectional transcription is an interesting feature of eukaryotic genomes; yet not all aspects of its mechanism are understood. Silkmoth choriogenesis is a model system for studying transcriptional regulation at the initiation level. As chorion genes comprise a large group of divergently transcribed gene pairs, we are presented with the possibility of investigating the intricacies of bidirectional transcription. Their well characterized 5' regulatory regions and expression profiles lay the foundation for investigating protein:protein and protein:DNA interactions, and RNA polymerase function during oocyte development. In this article we summarize current knowledge on chorion gene regulation and propose an approach to modeling bidirectional transcription using chorion promoters.
Collapse
Affiliation(s)
- Rena Lecanidou
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
13
|
Lecanidou R, Papantonis A. Silkmoth chorion gene regulation revisited: promoter architecture as a key player. INSECT MOLECULAR BIOLOGY 2010; 19:141-151. [PMID: 20002795 DOI: 10.1111/j.1365-2583.2009.00969.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Regulation of silkmoth chorion genes has long been used as a model system for studying differential gene expression. The large numbers of genes, their overlapping expression patterns and the overall complexity of the system hinted towards an elaborate mechanism for transcriptional control. Recent studies, however, offer evidence of a molecular pathway governed by the interplay between two general transcription factors, CCAAT enhancer binding proteins (C/EBP) and GATA, an architectural protein, high mobility group A and a chromatin remodeller, chromo-helicase/ATPase-DNA binding protein 1. In this review we present a parsimonious model that adequately describes regulation of transcription across all temporally regulated chorion genes, and propose a role for promoter architecture.
Collapse
Affiliation(s)
- R Lecanidou
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece.
| | | |
Collapse
|
14
|
Expression profile of cuticular genes of silkworm, Bombyx mori. BMC Genomics 2010; 11:173. [PMID: 20226095 PMCID: PMC2848646 DOI: 10.1186/1471-2164-11-173] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 03/15/2010] [Indexed: 11/16/2022] Open
Abstract
Background Insect cuticle plays essential roles in many physiological functions. During molting and metamorphosis tremendous changes occur in silkworm cuticle where multiple proteins exist and genes encoding them constitute about 1.5% of all Bombyx mori genes. Results In an effort to determine their expression profiles, a microarray-based investigation was carried out using mRNA collected from larvae to pupae. The results showed that a total of 6676 genes involved in various functions and physiological pathways were activated. The vast majority (93%) of cuticular protein genes were expressed in selected stages with varying expression patterns. There was no correlation between expression patterns and the presence of conserved motifs. Twenty-six RR genes distributed in chromosome 22 were co-expressed at the larval and wandering stages. The 2 kb upstream regions of these genes were further analyzed and three putative elements were identified. Conclusions Data from the present study provide, for the first time, a comprehensive expression profile of genes in silkworm epidermal tissues and evidence that putative elements exist to allow massive production of mRNAs from specific cuticular protein genes.
Collapse
|
15
|
Architectural factor HMGA induces promoter bending and recruits C/EBP and GATA during silkmoth chorion gene regulation. Biochem J 2008; 416:85-97. [DOI: 10.1042/bj20081012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A protein displaying significant similarity to mammalian HMGA (high-mobility group A) proteins, but also bearing unique structural features, was isolated from silkmoth (Bombyx mori) follicular cells. This factor, named BmHMGA, exhibits specific binding preference for chorion gene promoter elements and induces DNA bending thereon. BmHMGA deploys temporal-specific interaction with transcription factors BmC/EBP (C/EBP is CCAAT/enhancer-binding protein) and BmGATAβ during follicle maturation. The respective protein complexes can be detected on chorion gene promoters in vivo, with different developmental profiles each time. Analogous interaction takes place on the putative promoter of the BmC/EBP gene, hinting towards a transcriptional circuit that is responsible for the progress of choriogenesis as a whole. Finally, transient suppression of BmHMGA expression led to down-regulation of chorion genes and the BmC/EBP gene, and revealed recruitment of BmC/EBP, BmGATAβ and TFIID (transcription factor IID)/TBP (TATA-box-binding protein) by BmHMGA. A revised model for chorion gene regulation is discussed in view of these findings.
Collapse
|
16
|
Papantonis A, Tsatsarounos S, Vanden Broeck J, Lecanidou R. CHD1 assumes a central role during follicle development. J Mol Biol 2008; 383:957-69. [PMID: 18817785 DOI: 10.1016/j.jmb.2008.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 09/03/2008] [Accepted: 09/08/2008] [Indexed: 01/16/2023]
Abstract
During Bombyx mori follicle development, fine-tuning of chorion gene expression is under the control of bidirectional promoters. In this work, we show that the silkmoth chromo-helicase/ATPase-DNA binding protein 1 (CHD1) ortholog is responsible for repositioning of nucleosomes on chorion promoters, where the factor binds specifically. Chorion genes, occupying a single chromosomal locus, rely on an almost identical set of cis elements for their differential expression. As a direct consequence of remodeling, interaction of C/EBP and TFIID with promoter elements is facilitated and ultimately leads to initiation of transcription. Appending of methylation marks to H3K4 in a temporal-specific manner is dependent on CHD1 binding to cognate cis elements and signifies gene activation. Overall, CHD1 is a critical factor for proper development of the follicular epithelium in terms of whole-cell chromatin arrangement.
Collapse
Affiliation(s)
- Argyris Papantonis
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | | | | | | |
Collapse
|
17
|
Okamoto S, Futahashi R, Kojima T, Mita K, Fujiwara H. Catalogue of epidermal genes: genes expressed in the epidermis during larval molt of the silkworm Bombyx mori. BMC Genomics 2008; 9:396. [PMID: 18721459 PMCID: PMC2542385 DOI: 10.1186/1471-2164-9-396] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 08/22/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The insect cuticle is composed of various proteins and formed during the molt under hormonal regulation, although its precise composition and formation mechanism are largely unknown. The exhaustive catalogue of genes expressed in epidermis at the molt constitutes a massive amount of information from which to draw a complete picture of the molt and cuticle formation in insects. Therefore, we have catalogued a library of full-length cDNAs (designated epM) from epidermal cells during the last larval molt of Bombyx mori. RESULTS Of the 10,368 sequences in the library, we isolated 6,653 usable expressed sequence tags (ESTs), which were categorized into 1,451 nonredundant gene clusters. Seventy-one clusters were considered to be isoforms or premature forms of other clusters. Therefore, we have identified 1,380 putative genes. Of the 6,653 expressed sequences, 48% were derived from 92 cuticular protein genes (RR-1, 24; RR-2, 17; glycine-rich, 29; other classes, 22). A comparison of epM with another epidermal EST data set, epV3 (feeding stage: fifth instar, day 3), showed marked differences in cuticular protein gene. Various types of cuticular proteins are expressed in epM but virtually only RR-1 proteins were expressed in epV3. Cuticular protein genes expressed specifically in epidermis, with several types of expression patterns during the molt, suggest different types of responses to the ecdysteroid pulse. Compared with other Bombyx EST libraries, 13 genes were preferentially included in epM data set. We isolated 290 genes for proteins other than cuticular proteins, whose amino acid sequences retain putative signal peptides, suggesting that they play some role in cuticle formation or in other molting events. Several gene groups were also included in this data set: hormone metabolism, P450, modifier of cuticular protein structure, small-ligand-binding protein, transcription factor, and pigmentation genes. CONCLUSION We have identified 1,380 genes in epM data set and 13 preferentially expressed genes in epidermis at the molt. The comparison of the epM and other EST libraries clarified the totally different gene expression patterns in epidermis between the molting and feeding stages and many novel tissue- and stage-specifically expressed epidermal genes. These data should further our understanding of cuticle formation and the insect molt.
Collapse
Affiliation(s)
- Shun Okamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| | | | | | | | | |
Collapse
|
18
|
Papantonis A, Sourmeli S, Lecanidou R. Chorion gene activation and repression is dependent on BmC/EBP expression and binding to cognate cis-elements. Biochem Biophys Res Commun 2008; 369:905-9. [DOI: 10.1016/j.bbrc.2008.02.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 02/25/2008] [Indexed: 10/22/2022]
|
19
|
A modified chromatin-immunoprecipitation protocol for silkmoth ovarian follicular cells reveals C/EBP and GATA binding modes on an early chorion gene promoter. Mol Biol Rep 2008; 36:733-6. [DOI: 10.1007/s11033-008-9236-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 03/20/2008] [Indexed: 10/22/2022]
|
20
|
Akiduki G, Imanishi S. Establishment of a lipid accumulation model in an insect cell line. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 66:109-121. [PMID: 17966127 DOI: 10.1002/arch.20203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The study of adipocyte differentiation and lipid accumulation in insects has been limited by the lack of a system suitable for analysis of molecular mechanisms. Here, we describe the establishment of a model system of lipid accumulation in BmN4 cells, which are derived from silkworm ovary. In BmN4 cells, dexamethasone treatment induced accumulation of lipid, suppressed cellular proliferation, and caused the cells to form aggregates. We isolated the Bombyx mori fatty acid binding protein 1 gene (BmFABP1), which is the silkworm homologue of mouse Fabp4 (aP2), a marker of adipocyte differentiation in mammals. BmFABP1 expression was increased by dexamethasone treatment. We also isolated the BmFABP1 promoter, and found that it was activated by a combination of drugs that included dexamethasone. The demonstration of dexamethasone-stimulated lipid accumulation and BmFABP1 expression in BmN4 cells provides a useful model of inducible adipogenesis. This system should be valuable for investigation of the molecular mechanisms of fat body formation, adipocyte differentiation, and lipid accumulation in the silkworm and other Lepidopteran insects.
Collapse
Affiliation(s)
- Gaku Akiduki
- Transgenic Animal Research Center, National Institute of Agrobiological Sciences, Ibaraki, Japan.
| | | |
Collapse
|
21
|
Sourmeli S, Papantonis A, Lecanidou R. BmCbZ, an insect-specific factor featuring a composite DNA-binding domain, interacts with BmC/EBPγ. Biochem Biophys Res Commun 2005; 338:1957-65. [PMID: 16288982 DOI: 10.1016/j.bbrc.2005.10.174] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 10/28/2005] [Indexed: 10/25/2022]
Abstract
A novel factor featuring a composite AT hook/basic region-leucine zipper DNA-binding domain was isolated from Bombyx mori follicular cells. Screening of EST databases derived from a variety of metazoans revealed the exclusive presence of BmCbZ homologues in insect species. BmCbZ characteristic features and gene organization are discussed, in comparison to other known bZIP factors. We concordantly propose that this factor establishes a new insect-specific bZIP family. We further present the isolation of the silkmoth homologue of mammalian C/EBPgamma, BmC/EBPgamma, and in vitro evidence for its interaction with BmCbZ. The formation of a BmCbZ-BmC/EBPgamma heterodimer is a prerequisite for binding to specific C/EBP recognition sites on chorion gene promoters, most probably via both major and minor groove interactions.
Collapse
Affiliation(s)
- S Sourmeli
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15701, Greece
| | | | | |
Collapse
|