1
|
Gutierrez R, Chan AYS, Lai SWT, Itoh S, Lee DH, Sun K, Battad A, Chen S, O'Connor TR, Shuck SC. Lack of mismatch repair enhances resistance to methylating agents for cells deficient in oxidative demethylation. J Biol Chem 2024; 300:107492. [PMID: 38925328 PMCID: PMC11326903 DOI: 10.1016/j.jbc.2024.107492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The human alkylation B (AlkB) homologs, ALKBH2 and ALKBH3, respond to methylation damage to maintain genomic integrity and cellular viability. Both ALKBH2 and ALKBH3 are direct reversal repair enzymes that remove 1-methyladenine (1meA) and 3-methylcytosine (3meC) lesions commonly generated by alkylating chemotherapeutic agents. Thus, the existence of deficiencies in ALKBH proteins can be exploited in synergy with chemotherapy. In this study, we investigated possible interactions between ALKBH2 and ALKBH3 with other proteins that could alter damage response and discovered an interaction with the mismatch repair (MMR) system. To test whether the lack of active MMR impacts ALKBH2 and/or ALKBH3 response to methylating agents, we generated cells deficient in ALKBH2, ALKBH3, or both in addition to Mlh homolog 1 (MLH1), another MMR protein. We found that MLH1koALKBH3ko cells showed enhanced resistance toward SN1- and SN2-type methylating agents, whereas MLH1koALKBH2ko cells were only resistant to SN1-type methylating agents. Concomitant loss of ALKBH2 and ALKBH3 (ALKBH2ko3ko) rendered cells sensitive to SN1- and SN2-agents, but the additional loss of MLH1 enhanced resistance to both types of damage. We also showed that ALKBH2ko3ko cells have an ATR-dependent arrest at the G2/M checkpoint, increased apoptotic signaling, and replication fork stress in response to methylation. However, these responses were not observed with the loss of functional MLH1 in MLH1koALKBH2ko3ko cells. Finally, in MLH1koALKBH2ko3ko cells, we observed elevated mutant frequency in untreated and temozolomide treated cells. These results suggest that obtaining a more accurate prognosis of chemotherapeutic outcome requires information on the functionality of ALKBH2, ALKBH3, and MLH1.
Collapse
Affiliation(s)
- Roberto Gutierrez
- Department of Cancer Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Annie Yin S Chan
- Department of Cancer Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Seigmund Wai Tsuen Lai
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Shunsuke Itoh
- Department of Cancer Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Dong-Hyun Lee
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, South Korea
| | - Kelani Sun
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Alana Battad
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Shiuan Chen
- Department of Cancer Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at the City of Hope, Duarte, California, USA
| | - Timothy R O'Connor
- Department of Cancer Biology, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute at the City of Hope, Duarte, California, USA.
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute at the City of Hope, Duarte, California, USA.
| |
Collapse
|
2
|
Benjaskulluecha S, Boonmee A, Haque M, Wongprom B, Pattarakankul T, Pongma C, Sri-ngern-ngam K, Keawvilai P, Sukdee T, Saechue B, Kueanjinda P, Palaga T. O 6-methylguanine DNA methyltransferase regulates β-glucan-induced trained immunity of macrophages via farnesoid X receptor and AMPK. iScience 2024; 27:108733. [PMID: 38235325 PMCID: PMC10792243 DOI: 10.1016/j.isci.2023.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Trained immunity is the heightened state of innate immune memory that enhances immune response resulting in nonspecific protection. Epigenetic changes and metabolic reprogramming are critical steps that regulate trained immunity. In this study, we reported the involvement of O6-methylguanine DNA methyltransferase (MGMT), a DNA repair enzyme of lesion induced by alkylating agents, in regulation the trained immunity induced by β-glucan (BG). Pharmacological inhibition or silencing of MGMT expression altered LPS stimulated pro-inflammatory cytokine productions in BG-trained bone marrow derived macrophages (BMMs). Targeted deletion of Mgmt in BMMs resulted in reduction of the trained responses both in vitro and in vivo models. The transcriptomic analysis revealed that the dampening trained immunity in MGMT KO BMMs is partially mediated by ATM/FXR/AMPK axis affecting the MAPK/mTOR/HIF1α pathways and the reduction in glycolysis function. Taken together, a failure to resolve a DNA damage may have consequences for innate immune memory.
Collapse
Affiliation(s)
- Salisa Benjaskulluecha
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atsadang Boonmee
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - MdFazlul Haque
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjawan Wongprom
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chitsuda Pongma
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittitach Sri-ngern-ngam
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornlapat Keawvilai
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thadaphong Sukdee
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjawan Saechue
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- One Health Research Unit, Faculty of Veterinary Science, Mahasarakham University, Mahasarakham 44000, Thailand
| | - Patipark Kueanjinda
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Interdisciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Gharouni M, Mosaddeghi H. Evaluation of mutations on O 6-methylguanine methyl transferase structure and its interactions: molecular dynamics simulation study. J Biomol Struct Dyn 2024:1-13. [PMID: 38166600 DOI: 10.1080/07391102.2023.2300133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
O6-methylguanine DNA methyl transferase (MGMT) is a significant vehicle for the cellular clearance of alkyl lesions, particularly the methyl group of the O-6 and O-4 positions of guanine and thymine, respectively. Many publications have studied the correlation between polymorphisms in MGMT and susceptibility to various cancers. In the present study, we investigated the consequence of L84F, common single-nucleotide polymorphism, K125E, site-specific mutagenesis, and L84F/K125E on conformation, stability, and behavior of MGMT in the free form and interaction with proliferating cell nuclear antigen (PCNA) and DNA as partners in the biochemical network by using molecular dynamics simulation method. Our results showed that all free variants of MGMT differed from the native form. However, among all free variants of MGMT, the L84F/K125E variant exhibited similar properties compared with the wild-type. In contrast, in complex modes, only amino acid residues of the L84F variant are involved in the interactions with PCNA and DNA somewhat differently relative to the wild-type. Furthermore, L84F SNP showed the highest binding free energy compared to other variants and native forms. These alterations in the amino acids and binding free energy of L84F relative to the native are the reasons for changing its region connection compared to the native form. Therefore, we propose conducting further investigations into the impact of inhibitors or chemotherapeutic agents to assess their effectiveness on MGMT variants compared to the wild-type, aiming to reduce the cost of cancer treatment that will depend on inhibiting native MGMT protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Marzieh Gharouni
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Hamid Mosaddeghi
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
4
|
Tessmer I, Margison GP. The DNA Alkyltransferase Family of DNA Repair Proteins: Common Mechanisms, Diverse Functions. Int J Mol Sci 2023; 25:463. [PMID: 38203633 PMCID: PMC10779285 DOI: 10.3390/ijms25010463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
DNA alkyltransferase and alkyltransferase-like family proteins are responsible for the repair of highly mutagenic and cytotoxic O6-alkylguanine and O4-alkylthymine bases in DNA. Their mechanism involves binding to the damaged DNA and flipping the base out of the DNA helix into the active site pocket in the protein. Alkyltransferases then directly and irreversibly transfer the alkyl group from the base to the active site cysteine residue. In contrast, alkyltransferase-like proteins recruit nucleotide excision repair components for O6-alkylguanine elimination. One or more of these proteins are found in all kingdoms of life, and where this has been determined, their overall DNA repair mechanism is strictly conserved between organisms. Nevertheless, between species, subtle as well as more extensive differences that affect target lesion preferences and/or introduce additional protein functions have evolved. Examining these differences and their functional consequences is intricately entwined with understanding the details of their DNA repair mechanism(s) and their biological roles. In this review, we will present and discuss various aspects of the current status of knowledge on this intriguing protein family.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Geoffrey P. Margison
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
5
|
Shaw R, Karmakar S, Basu M, Ghosh MK. DDX5 (p68) orchestrates β-catenin, RelA and SP1 mediated MGMT gene expression in human colon cancer cells: Implication in TMZ chemoresistance. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194991. [PMID: 37793472 DOI: 10.1016/j.bbagrm.2023.194991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
DDX5 (p68) upregulation has been linked with various cancers of different origins, especially Colon Adenocarcinomas. Similarly, across cancers, MGMT has been identified as the major contributor of chemoresistance against DNA alkylating agents like Temozolomide (TMZ). TMZ is an emerging potent chemotherapeutic agent across cancers under the arena of drug repurposing. Recent studies have established that patients with open MGMT promoters are prone to be innately resistant or acquire resistance against TMZ compared to its closed conformation. However, not much is known about the transcriptional regulation of MGMT gene in the context of colon cancer. This necessitates studying MGMT gene regulation which directly impacts the cellular potential to develop chemoresistance against alkylating agents. Our study aims to uncover an unidentified mechanism of DDX5-mediated MGMT gene regulation. Experimentally, we found that both mRNA and protein expression levels of MGMT were elevated in response to p68 overexpression in multiple human colon cancer cell lines and vice-versa. Since p68 cannot directly interact with the MGMT promoter, transcription factors viz., β-catenin, RelA (p65) and SP1 were also studied as reported contributors. Through co-immunoprecipitation and GST-pull-down studies, p68 was established as an interacting partner of SP1 in addition to β-catenin and NF-κB (p50-p65). Mechanistically, luciferase reporter and chromatin-immunoprecipitation assays demonstrated that p68 interacts with the MGMT promoter via TCF4-LEF, RelA and SP1 sites to enhance its transcription. To the best of our knowledge, this is the first report of p68 as a transcriptional co-activator of MGMT promoter and our study identifies p68 as a novel and master regulator of MGMT gene expression.
Collapse
Affiliation(s)
- Rajni Shaw
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas, 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
6
|
Liu MH, Yu WT, Yang XY, Li Y, Zhang Y, Zhang CY. A simple and rapid mix-and-read assay for sensitive detection of O 6-methylguanine DNA methyltransferase. Chem Commun (Camb) 2022; 58:8662-8665. [PMID: 35822530 DOI: 10.1039/d2cc03084e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a simple and rapid mix-and-read assay for the sensitive detection of O6-methylguanine DNA methyltransferase (MGMT) activity based on exonuclease III-assisted signal amplification under completely isothermal conditions (37 °C). This method is very simple and rapid (60 min) with ultrahigh sensitivity and good specificity, and it can detect MGMT activity at the single-cell level. Moreover, this method can be applied for the screening of MGMT inhibitors and the discrimination of MGMT in different cancer cells.
Collapse
Affiliation(s)
- Ming-Hao Liu
- A College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Wan-Tong Yu
- A College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Xiao-Yun Yang
- Department of Pathology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yueying Li
- Institute of Immunity and Infectious Diseases, School of Medicine and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Yan Zhang
- A College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Chun-Yang Zhang
- A College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
7
|
Resolving the subtle details of human DNA alkyltransferase lesion search and repair mechanism by single-molecule studies. Proc Natl Acad Sci U S A 2022; 119:e2116218119. [PMID: 35259021 PMCID: PMC8931253 DOI: 10.1073/pnas.2116218119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We directly visualize DNA translocation and lesion recognition by the O6-alkylguanine DNA alkyltransferase (AGT). Our data show bidirectional movement of AGT monomers and clusters on undamaged DNA that depended on Zn2+ occupancy of AGT. A role of cooperative AGT clusters in enhancing lesion search efficiencies by AGT has previously been proposed. Surprisingly, our data show no enhancement of DNA translocation speed by AGT cluster formation, suggesting that AGT clusters may serve a different role in AGT function. Our data support preferential cluster formation by AGT at alkyl lesions, suggesting a role of these clusters in stabilizing lesion-bound complexes. From our data, we derive a new model for the lesion search and repair mechanism of AGT. The O6-alkylguanine DNA alkyltransferase (AGT) is an important DNA repair protein. AGT repairs highly mutagenic and cytotoxic alkylguanine lesions that result from metabolic products but are also deliberately introduced during chemotherapy, making a better understanding of the working mechanism of AGT essential. To investigate lesion interactions by AGT, we present a protocol to insert a single alkylguanine lesion at a well-defined position in long DNA substrates for single-molecule fluorescence microscopy coupled with dual-trap optical tweezers. Our studies address the longstanding enigma in the field of how monomeric AGT complexes at alkyl lesions seen in crystal structures can be reconciled with AGT clusters on DNA at high protein concentrations that have been observed from atomic force microscopy (AFM) and biochemical studies. A role of AGT clusters in enhancing lesion search efficiencies by AGT has previously been proposed. Surprisingly, our data show no enhancement of DNA translocation speed by AGT cluster formation, suggesting that AGT clusters may serve a different role in AGT function. Interestingly, a possible role of these clusters is indicated by preferential cluster formation at alkyl lesions in our studies. From our data, we derive a model for the lesion search and repair mechanism of AGT.
Collapse
|
8
|
Murawska GM, Vogel C, Jan M, Lu X, Schild M, Slabicki M, Zou C, Zhanybekova S, Manojkumar M, Petzold G, Kaiser P, Thomä N, Ebert B, Gillingham D. Repurposing the Damage Repair Protein Methyl Guanine Methyl Transferase as a Ligand Inducible Fusion Degron. ACS Chem Biol 2022; 17:24-31. [PMID: 34982531 DOI: 10.1021/acschembio.1c00771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We successfully repurpose the DNA repair protein methylguanine methyltransferase (MGMT) as an inducible degron for protein fusions. MGMT is a suicide protein that removes alkyl groups from the O6 position of guanine (O6G) and is thereafter quickly degraded by the ubiquitin proteasome pathway (UPP). Starting with MGMT pseudosubstrates (benzylguanine and lomeguatrib), we first demonstrate that these lead to potent MGMT depletion while affecting little else in the proteome. We then show that fusion proteins of MGMT undergo rapid UPP-dependent degradation in response to pseudosubstrates. Mechanistic studies confirm the involvement of the UPP, while revealing that at least two E3 ligase classes can degrade MGMT depending on cell-line and expression type (native or ectopic). We also demonstrate the technique's versatility with two clinically relevant examples: degradation of KRASG12C and a chimeric antigen receptor.
Collapse
Affiliation(s)
- Gosia M. Murawska
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Caspar Vogel
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Max Jan
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Xinyan Lu
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Matthias Schild
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Mikolaj Slabicki
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Charles Zou
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Saule Zhanybekova
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Manisha Manojkumar
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Georg Petzold
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, California 92697, United States
| | - Nicolas Thomä
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Benjamin Ebert
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Dennis Gillingham
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
9
|
Gharouni M, Mosaddeghi H, Mehrzad J, Es-haghi A, Motavalizadehkakhky A. Detecting a novel motif of O6-methyl guanine DNA methyltransferase, a DNA repair enzyme, involved in interaction with proliferating cell nuclear antigen through a computer modeling approach. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Gharouni M, Mosaddeghi H, Mehrzad J, Es-Haghi A, Motavalizadehkakhky A. In silico profiling and structural insights of zinc metal ion on O6-methylguanine methyl transferase and its interactions using molecular dynamics approach. J Mol Model 2021; 27:40. [PMID: 33454889 DOI: 10.1007/s00894-020-04631-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
O6-methylguanine DNA methyl transferase (MGMT) is a metalloenzyme participating in the repair of alkylated DNA. In this research, we performed a comparative study for evaluating the impact of zinc metal ion on the behavior and interactions of MGMT in the both enzymatic forms of apo MGMT and holo MGMT. DNA and proliferating cell nuclear antigen (PCNA), as partners of MGMT, were utilized to evaluate molecular interactions by virtual microscopy of molecular dynamics simulation. The stability and conformational alterations of each forms (apo and holo) MGMT-PCNA, and (apo and holo) MGMT-DNA complexes were calculated by MM/PBSA method. A total of seven systems including apo MGMT, holo MGMT, free PCNA, apo MGMT-PCNA, holo MGMT-PCNA, apo MGMT-DNA, and holo MGMT-DNA complexes were simulated. In this study, we found that holo MGMT was more stable and had better folding and functional properties than that of apo MGMT. Simulation analysis of (apo and holo) MGMT-PCNA complexes displayed that the sequences of the amino acids involved in the interactions were different in the two forms of MGMT. The important amino acids of holo MGMT involved in its interaction with PCNA included E92, K101, A119, G122, N123, P124, and K125, whereas the important amino acids of apo MGMT included R128, R135, S152, N157, Y158, and L162. Virtual microscopy of molecular dynamics simulation showed that the R128 and its surrounding residues were important amino acids involved in the interaction of holo MGMT with DNA that was exactly consistent with X-ray crystallography structure. In the apo form of the protein, the N157 and its surrounding residues were important amino acids involved in the interaction with DNA. The binding free energies of - 387.976, - 396.226, - 622.227, and - 617.333 kcal/mol were obtained for holo MGMT-PCNA, apo MGMT-PCNA, holo MGMT-DNA, and apo MGMT-DNA complexes, respectively. The principle result of this research was that the area of molecular interactions differed between the two states of MGMT. Therefore, in investigations of metalloproteins, the metal ion must be preserved in their structures. Finally, it is recommended to use the holo form of metalloproteins in in vitro and in silico researches.
Collapse
Affiliation(s)
- Marzieh Gharouni
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Hamid Mosaddeghi
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran. .,Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
| | - Jamshid Mehrzad
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
| | - Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
11
|
Chen Z, Chen J. Mass spectrometry-based protein‒protein interaction techniques and their applications in studies of DNA damage repair. J Zhejiang Univ Sci B 2021; 22:1-20. [PMID: 33448183 PMCID: PMC7818012 DOI: 10.1631/jzus.b2000356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
Proteins are major functional units that are tightly connected to form complex and dynamic networks. These networks enable cells and organisms to operate properly and respond efficiently to environmental cues. Over the past decades, many biochemical methods have been developed to search for protein-binding partners in order to understand how protein networks are constructed and connected. At the same time, rapid development in proteomics and mass spectrometry (MS) techniques makes it possible to identify interacting proteins and build comprehensive protein‒protein interaction networks. The resulting interactomes and networks have proven informative in the investigation of biological functions, such as in the field of DNA damage repair. In recent years, a number of proteins involved in DNA damage response and DNA repair pathways have been uncovered with MS-based protein‒protein interaction studies. As the technologies for enriching associated proteins and MS become more sophisticated, the studies of protein‒protein interactions are entering a new era. In this review, we summarize the strategies and recent developments for exploring protein‒protein interaction. In addition, we discuss the application of these tools in the investigation of protein‒protein interaction networks involved in DNA damage response and DNA repair.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Advances in DNA Repair-Emerging Players in the Arena of Eukaryotic DNA Repair. Int J Mol Sci 2020; 21:ijms21113934. [PMID: 32486270 PMCID: PMC7313471 DOI: 10.3390/ijms21113934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Genomic DNA is constantly damaged by factors produced during natural metabolic processes as well as agents coming from the external environment. Considering such a wide array of damaging agents, eukaryotic cells have evolved a DNA damage response (DRR) that opposes the influence of deleterious factors. Despite the broad knowledge regarding DNA damage and repair, new areas of research are emerging. New players in the field of DDR are constantly being discovered. The aim of this study is to review current knowledge regarding the roles of sirtuins, heat shock proteins, long-noncoding RNAs and the circadian clock in DDR and distinguish new agents that may have a prominent role in DNA damage response and repair.
Collapse
|
13
|
Serpe M, Forenza C, Adamo A, Russo N, Perugino G, Ciaramella M, Valenti A. The DNA Alkylguanine DNA Alkyltransferase-2 (AGT-2) Of Caenorhabditis Elegans Is Involved In Meiosis And Early Development Under Physiological Conditions. Sci Rep 2019; 9:6889. [PMID: 31053748 PMCID: PMC6499797 DOI: 10.1038/s41598-019-43394-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
DNA alkylguanine DNA alkyltransferases (AGTs) are evolutionary conserved proteins that repair alkylation damage in DNA, counteracting the effects of agents inducing such lesions. Over the last years AGTs have raised considerable interest for both the peculiarity of their molecular mechanism and their relevance in cancer biology. AGT knock out mice show increased tumour incidence in response to alkylating agents, and over-expression of the human AGT protein in cancer cells is frequently associated with resistance to alkylating chemotherapy. While all data available point to a function of AGT proteins in the cell response to alkylation lesions, we report for the first time that one of the two AGT paralogs of the model organism C. elegans, called AGT-2, also plays unexpected roles in meiosis and early development under physiological conditions. Our data suggest a role for AGT-2 in conversion of homologous recombination intermediates into post-strand exchange products in meiosis, and show that agt-2 gene down-regulation, or treatment of animals with an AGT inhibitor results in increased number of germ cells that are incompatible with producing viable offspring and are eliminated by apoptosis. These results suggest possible functions for AGTs in cell processes distinct from repair of alkylating damage.
Collapse
Affiliation(s)
- Mario Serpe
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, Naples, 80131, Italy
| | - Chiara Forenza
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, Naples, 80131, Italy
| | - Adele Adamo
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, Naples, 80131, Italy
| | - Noemi Russo
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, Naples, 80131, Italy
| | - Giuseppe Perugino
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, Naples, 80131, Italy
| | - Maria Ciaramella
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, Naples, 80131, Italy
| | - Anna Valenti
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, Naples, 80131, Italy.
| |
Collapse
|
14
|
Kewitz-Hempel S, Kurch L, Cepelova M, Volkmer I, Sauerbrey A, Conrad E, Knirsch S, Pöpperl G, Steinbach D, Beer AJ, Kramm CM, Sahlmann CO, Erdlenbruch B, Reinbold WD, Odparlik A, Sabri O, Kluge R, Staege MS. Impact of rs12917 MGMT Polymorphism on [ 18F]FDG-PET Response in Pediatric Hodgkin Lymphoma (PHL). Mol Imaging Biol 2019; 21:1182-1191. [PMID: 30945122 DOI: 10.1007/s11307-019-01350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE The enzyme O6-methylguanine-DNA methyltransferase (MGMT) is an important component of the DNA repair machinery. MGMT removes O6-methylguanine from the DNA by transferring the methyl group to a cysteine residue in its active site. Recently, we detected the single nucleotide polymorphism (SNP) rs12917 (C/T) in the MGMT sequence adjacent to the active site in Hodgkin lymphoma (HL) cell line KM-H2. We now investigated whether this SNP is also present in other HL cell lines and patient samples. Furthermore, we asked whether this SNP might have an impact on metabolic response in 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography ([18F]FDG-PET), and on overall treatment outcome based on follow-up intervals of at least 34 months. PROCEDURES We determined the frequency of this MGMT polymorphism in 5 HL cell lines and in 29 pediatric HL (PHL) patients. The patient cohort included 17 female and 12 male patients aged between 4 and 18 years. After characterization of the sequence, we tested a possible association between rs12917 and age, gender, Ann Arbor stage, treatment group, metabolic response following two courses of OEPA (vincristine, etoposide, prednisone, and doxorubicin) chemotherapy, radiotherapy indication, and relapse status. RESULTS We detected the minor T allele in four of five HL cell lines. 11/29 patients carried the minor T allele whereas 18/29 patients showed homozygosity for the major C allele. Interestingly, we observed significantly better metabolic response in PHL patients carrying the rs12917 C allele resulting in a lower frequency of radiotherapy indication. CONCLUSION MGMT polymorphism rs12917 seems to affect chemotherapy response in PHL. The prognostic value of this polymorphism should be investigated in a larger patient cohort.
Collapse
Affiliation(s)
- Stefanie Kewitz-Hempel
- Department of Pediatrics I, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle, Germany.,Department of Pediatric Hematology and Oncology, Justus Liebig University, Giessen, Germany.,Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Lars Kurch
- Department of Nuclear Medicine, University Hospital of Leipzig, 04103, Leipzig, Germany
| | - Michaela Cepelova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Praha, Czech Republic
| | - Ines Volkmer
- Department of Pediatrics I, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle, Germany
| | | | - Elke Conrad
- Department of Nuclear Medicine, Helios Hospital Erfurt, Erfurt, Germany
| | - Stephanie Knirsch
- Pediatrics 5 (Oncology, Hematology, and Immunology), Klinikum Stuttgart, Olgahospital, Stuttgart, Germany
| | - Gabriele Pöpperl
- Department of Nuclear Medicine, Klinikum Stuttgart, Olgahospital, Stuttgart, Germany
| | - Daniel Steinbach
- Department of Pediatric Hematology and Oncology, University Hospital Ulm, Ulm, Germany
| | - Ambros J Beer
- Department of Nuclear Medicine, University Hospital, Ulm, Germany
| | - Christof M Kramm
- Department of Pediatrics I, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle, Germany.,Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Bernhard Erdlenbruch
- University Hospital for Children and Adolescents, Johannes Wesling Klinikum Minden, Ruhr University Hospital, Bochum, Germany
| | - Wolf-Dieter Reinbold
- Universitätsinstitut für Diagnostische Radiologie, Neuroradiologie und Nuklearmedizin, Johannes Wesling Klinikum Minden, Ruhr University Hospital, Bochum, Germany
| | - Andreas Odparlik
- Department of Nuclear Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital of Leipzig, 04103, Leipzig, Germany
| | - Regine Kluge
- Department of Nuclear Medicine, University Hospital of Leipzig, 04103, Leipzig, Germany.
| | - Martin S Staege
- Department of Pediatrics I, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle, Germany.
| |
Collapse
|
15
|
Bobustuc GC, Kassam AB, Rovin RA, Jeudy S, Smith JS, Isley B, Singh M, Paranjpe A, Srivenugopal KS, Konduri SD. MGMT inhibition in ER positive breast cancer leads to CDC2, TOP2A, AURKB, CDC20, KIF20A, Cyclin A2, Cyclin B2, Cyclin D1, ERα and Survivin inhibition and enhances response to temozolomide. Oncotarget 2018; 9:29727-29742. [PMID: 30038716 PMCID: PMC6049872 DOI: 10.18632/oncotarget.25696] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
Abstract
The DNA damage repair enzyme, O6-methylguanine DNA methyltransferase (MGMT) is overexpressed in breast cancer, correlating directly with estrogen receptor (ER) expression and function. In ER negative breast cancer the MGMT promoter is frequently methylated. In ER positive breast cancer MGMT is upregulated and modulates ER function. Here, we evaluate MGMT's role in control of other clinically relevant targets involved in cell cycle regulation during breast cancer oncogenesis. We show that O6-benzylguanine (BG), an MGMT inhibitor decreases CDC2, CDC20, TOP2A, AURKB, KIF20A, cyclin B2, A2, D1, ERα and survivin and induces c-PARP and p21 and sensitizes ER positive breast cancer to temozolomide (TMZ). Further, siRNA inhibition of MGMT inhibits CDC2, TOP2A, AURKB, KIF20A, Cyclin B2, A2 and survivin and induces p21. Combination of BG+TMZ decreases CDC2, CDC20, TOP2A, AURKB, KIF20A, Cyclin A2, B2, D1, ERα and survivin. Temozolomide alone inhibits MGMT expression in a dose and time dependent manner and increases p21 and cytochrome c. Temozolomide inhibits transcription of TOP2A, AURKB, KIF20A and does not have any effect on CDC2 and CDC20 and induces p21. BG+/-TMZ inhibits breast cancer growth. In our orthotopic ER positive breast cancer xenografts, BG+/-TMZ decreases ki-67, CDC2, CDC20, TOP2A, AURKB and induces p21 expression. In the same model, BG+TMZ combination inhibits breast tumor growth in vivo compared to single agent (TMZ or BG) or control. Our results show that MGMT inhibition is relevant for inhibition of multiple downstream targets involved in tumorigenesis. We also show that MGMT inhibition increases ER positive breast cancer sensitivity to alkylator based chemotherapy.
Collapse
Affiliation(s)
- George C. Bobustuc
- Aurora Research Institute, Milwaukee, WI, USA
- Aurora Neurosciences Innovation Institute, Milwaukee, WI, USA
| | - Amin B. Kassam
- Aurora Research Institute, Milwaukee, WI, USA
- Aurora Neurosciences Innovation Institute, Milwaukee, WI, USA
| | - Richard A. Rovin
- Aurora Research Institute, Milwaukee, WI, USA
- Aurora Neurosciences Innovation Institute, Milwaukee, WI, USA
| | | | | | | | - Maharaj Singh
- Aurora Research Institute, Milwaukee, WI, USA
- Aurora Neurosciences Innovation Institute, Milwaukee, WI, USA
| | - Ameya Paranjpe
- Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | | | - Santhi D. Konduri
- Aurora Research Institute, Milwaukee, WI, USA
- Aurora Neurosciences Innovation Institute, Milwaukee, WI, USA
| |
Collapse
|
16
|
Sottile ML, Nadin SB. Heat shock proteins and DNA repair mechanisms: an updated overview. Cell Stress Chaperones 2018; 23:303-315. [PMID: 28952019 PMCID: PMC5904076 DOI: 10.1007/s12192-017-0843-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/13/2017] [Indexed: 02/02/2023] Open
Abstract
Heat shock proteins (HSPs), also known as molecular chaperones, participate in important cellular processes, such as protein aggregation, disaggregation, folding, and unfolding. HSPs have cytoprotective functions that are commonly explained by their antiapoptotic role. Their involvement in anticancer drug resistance has been the focus of intense research efforts, and the relationship between HSP induction and DNA repair mechanisms has been in the spotlight during the past decades. Because DNA is permanently subject to damage, many DNA repair pathways are involved in the recognition and removal of a diverse array of DNA lesions. Hence, DNA repair mechanisms are key to maintain genome stability. In addition, the interactome network of HSPs with DNA repair proteins has become an exciting research field and so their use as emerging targets for cancer therapy. This article provides a historical overview of the participation of HSPs in DNA repair mechanisms as part of their molecular chaperone capabilities.
Collapse
Affiliation(s)
- Mayra L Sottile
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Adrián Ruiz Leal s/n Parque Gral. San Martín, 5500, Mendoza, Argentina
| | - Silvina B Nadin
- Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Av. Adrián Ruiz Leal s/n Parque Gral. San Martín, 5500, Mendoza, Argentina.
| |
Collapse
|
17
|
Mostofa A, Punganuru SR, Madala HR, Srivenugopal KS. S-phase Specific Downregulation of Human O 6-Methylguanine DNA Methyltransferase (MGMT) and its Serendipitous Interactions with PCNA and p21 cip1 Proteins in Glioma Cells. Neoplasia 2018; 20:305-323. [PMID: 29510343 PMCID: PMC5909491 DOI: 10.1016/j.neo.2018.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 01/28/2023] Open
Abstract
Whether the antimutagenic DNA repair protein MGMT works solo in human cells and if it has other cellular functions is not known. Here, we show that human MGMT associates with PCNA and in turn, with the cell cycle inhibitor, p21cip1 in glioblastoma and other cancer cell lines. MGMT protein was shown to harbor a nearly perfect PCNA-Interacting Protein (PIP box) motif. Isogenic p53-null H1299 cells were engineered to express the p21 protein by two different procedures. Reciprocal immunoprecipitation/western blotting, Far-western blotting, and confocal microscopy confirmed the specific association of MGMT with PCNA and the ability of p21 to strongly disrupt the MGMT-PCNA complexes in tumor cells. Alkylation DNA damage resulted in a greater colocalization of MGMT and PCNA proteins, particularly in HCT116 cells deficient in p21 expression. p21 expression in isogenic cell lines directly correlated with markedly higher levels of MGMT mRNA, protein, activity and greater resistance to alkylating agents. In other experiments, four glioblastoma cell lines synchronized at the G1/S phase using either double thymidine or thymidine-mimosine blocks and subsequent cycling consistently showed a loss of MGMT protein at mid- to late S-phase, irrespective of the cell line, suggesting such a downregulation is fundamental to cell cycle control. MGMT protein was also specifically degraded in extracts from S-phase cells and evidence strongly suggested the involvement of PCNA-dependent CRL4Cdt2 ubiquitin-ligase in the reaction. Overall, these data provide the first evidence for non-repair functions of MGMT in cell cycle and highlight the involvement of PCNA in MGMT downregulation, with p21 attenuating the process.
Collapse
Affiliation(s)
- Agm Mostofa
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter Drive, Amarillo, TX 79106, USA
| | - Surendra R Punganuru
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter Drive, Amarillo, TX 79106, USA
| | - Hanumantha Rao Madala
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter Drive, Amarillo, TX 79106, USA
| | - Kalkunte S Srivenugopal
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter Drive, Amarillo, TX 79106, USA.
| |
Collapse
|
18
|
Patyka M, Sharifi Z, Petrecca K, Mansure J, Jean-Claude B, Sabri S. Sensitivity to PRIMA-1MET is associated with decreased MGMT in human glioblastoma cells and glioblastoma stem cells irrespective of p53 status. Oncotarget 2018; 7:60245-60269. [PMID: 27533246 PMCID: PMC5312382 DOI: 10.18632/oncotarget.11197] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/18/2016] [Indexed: 12/20/2022] Open
Abstract
Alterations of the TP53 tumor suppressor gene occur in ~30% of primary glioblastoma (GBM) with a high frequency of missense mutations associated with the acquisition of oncogenic “gain-of-function” (GOF) mutant (mut)p53 activities. PRIMA-1MET/APR-246, emerged as a promising compound to rescue wild-type (wt)p53 function in different cancer types. Previous studies suggested the role of wtp53 in the negative regulation of the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT), a major determinant in resistance to therapy in GBM treatment. The potential role of MGMT in expression of p53 and the efficacy of PRIMA-1MET with respect to TP53 status and expression of MGMT in GBM remain unknown. We investigated response to PRIMA-1MET of wtp53/MGMT-negative (U87MG, A172), mutp53/MGMT-positive U138, LN-18, T98/Empty vector (T98/EV) and its isogenic MGMT/shRNA gene knockdown counterpart (T98/shRNA). We show that MGMT silencing decreased expression of mutp53/GOF in T98/shRNA. PRIMA-1MET further cleared T98/shRNA cells of mutp53, decreased proliferation and clonogenic potential, abrogated the G2 checkpoint control, increased susceptibility to apoptotic cell death, expression of GADD45A and sustained expression of phosphorylated Erk1/2. PRIMA-1MET increased expression of p21 protein in U87MG and A172 and promoted senescence in U87MG cell line. Importantly, PRIMA-1MET decreased relative cell numbers, disrupted the structure of neurospheres of patient-derived GBM stem cells (GSCs) and enabled activation of wtp53 with decreased expression of MGMT in MGMT-positive GSCs or decreased expression of mutp53. Our findings highlight the cell-context dependent effects of PRIMA-1MET irrespective of p53 status and suggest the role of MGMT as a potential molecular target of PRIMA-1MET in MGMT-positive GSCs.
Collapse
Affiliation(s)
- Mariia Patyka
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Zeinab Sharifi
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, McGill University, The Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Jose Mansure
- Department of Urologic Oncology Research, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bertrand Jean-Claude
- Department of Medicine, Division of Experimental Medicine, McGill University, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Siham Sabri
- Department of Oncology, Division of Radiation Oncology, McGill University, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Identification of novel cancer therapeutic targets using a designed and pooled shRNA library screen. Sci Rep 2017; 7:43023. [PMID: 28223711 PMCID: PMC5320502 DOI: 10.1038/srep43023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/17/2017] [Indexed: 01/08/2023] Open
Abstract
Targeted cancer therapeutics aim to exploit tumor-specific, genetic vulnerabilities specifically affecting neoplastic cells without similarly affecting normal cells. Here we performed sequencing-based screening of an shRNA library on a panel of cancer cells of different origins as well as normal cells. The shRNA library was designed to target a subset of genes previously identified using a whole genome screening approach. This focused shRNA library was infected into cells followed by analysis of enrichment and depletion of the shRNAs over the course of cell proliferation. We developed a bootstrap likelihood ratio test for the interpretation of the effects of multiple shRNAs over multiple cell line passages. Our analysis identified 44 genes whose depletion preferentially inhibited the growth of cancer cells. Among these genes ribosomal protein RPL35A, putative RNA helicase DDX24, and coatomer complex I (COPI) subunit ARCN1 most significantly inhibited growth of multiple cancer cell lines without affecting normal cell growth and survival. Further investigation revealed that the growth inhibition caused by DDX24 depletion is independent of p53 status underlining its value as a drug target. Overall, our study establishes a new approach for the analysis of proliferation-based shRNA selection strategies and identifies new targets for the development of cancer therapeutics.
Collapse
|
20
|
Role of Eukaryotic Initiation Factors during Cellular Stress and Cancer Progression. J Nucleic Acids 2016; 2016:8235121. [PMID: 28083147 PMCID: PMC5204094 DOI: 10.1155/2016/8235121] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
Protein synthesis can be segmented into distinct phases comprising mRNA translation initiation, elongation, and termination. Translation initiation is a highly regulated and rate-limiting step of protein synthesis that requires more than 12 eukaryotic initiation factors (eIFs). Extensive evidence shows that the transcriptome and corresponding proteome do not invariably correlate with each other in a variety of contexts. In particular, translation of mRNAs specific to angiogenesis, tumor development, and apoptosis is altered during physiological and pathophysiological stress conditions. In cancer cells, the expression and functions of eIFs are hampered, resulting in the inhibition of global translation and enhancement of translation of subsets of mRNAs by alternative mechanisms. A precise understanding of mechanisms involving eukaryotic initiation factors leading to differential protein expression can help us to design better strategies to diagnose and treat cancer. The high spatial and temporal resolution of translation control can have an immediate effect on the microenvironment of the cell in comparison with changes in transcription. The dysregulation of mRNA translation mechanisms is increasingly being exploited as a target to treat cancer. In this review, we will focus on this context by describing both canonical and noncanonical roles of eIFs, which alter mRNA translation.
Collapse
|
21
|
Paranjpe A, Bailey NI, Konduri S, Bobustuc GC, Ali-Osman F, Yusuf MA, Punganuru SR, Madala HR, Basak D, Mostofa A, Srivenugopal KS. New insights into estrogenic regulation of O6-methylguanine DNA-methyltransferase (MGMT) in human breast cancer cells: Co-degradation of ER-α and MGMT proteins by fulvestrant or O6-benzylguanine indicates fresh avenues for therapy. J Biomed Res 2016; 30:393-410. [PMID: 27845303 PMCID: PMC5044712 DOI: 10.7555/jbr.30.20160040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 04/10/2016] [Accepted: 05/10/2016] [Indexed: 01/13/2023] Open
Abstract
Endocrine therapy using estrogen receptor-α (ER-α) antagonists for attenuating horm2one-driven cell proliferation is a major treatment modality for breast cancers. To exploit any DNA repair deficiencies associated with endocrine therapy, we investigated the functional and physical interactions of ER-α with O6-methylguanine DNA methyltransferase (MGMT), a unique DNA repair protein that confers tumor resistance to various anticancer alkylating agents. The ER-α -positive breast cancer cell lines (MCF-7, T47D) and ER- negative cell lines (MDAMB-468, MDAMB-231), and established inhibitors of ER-α and MGMT, namely, ICI-182,780 (Faslodex) and O6-benzylguanine, respectively, were used to study MGMT- ER interactions. The MGMT gene promoter was found to harbor one full and two half estrogen-responsive elements (EREs) and two antioxidant-responsive elements (AREs). MGMT expression was upregulated by estrogen, downregulated by tamoxifen in Western blot and promoter-linked reporter assays. Similarly, both transient and stable transfections of Nrf-2 (nuclear factor-erythroid 2-related factor-2) increased the levels of MGMT protein and activity 3 to 4-fold reflecting novel regulatory nodes for this drug-resistance determinant. Of the different ER-α antagonists tested, the pure anti-estrogen fulvestrant was most potent in inhibiting the MGMT activity in a dose, time and ER-α dependent manner, similar to O6-benzylguanine. Interestingly, fulvestrant exposure led to a degradation of both ER-α and MGMT proteins and O6-benzylguanine also induced a specific loss of ER-α and MGMT proteins in MCF-7 and T47D breast cancer cells with similar kinetics. Immunoprecipitation revealed a specific association of ER-α and MGMT proteins in breast cancer cells. Furthermore, silencing of MGMT gene expression triggered a decrease in the levels of both MGMT and ER-α proteins. The involvement of proteasome in the drug-induced degradation of both proteins was also demonstrated. Fulvestrant enhanced the cytotoxicity of MGMT-targeted alkylating agents, namely, temozolomide and BCNU by 3 to 4-fold in ER-α positive cells, but not in ER-negative cells. We conclude that MGMT and ER-α proteins exist as a complex and are co-targeted for ubiquitin-conjugation and subsequent proteasomal degradation. The findings offer a clear rationale for combining alkylating agents with endocrine therapy.
Collapse
Affiliation(s)
- Ameya Paranjpe
- Department of Biomedical Sciences and Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Nathan I Bailey
- Department of Biomedical Sciences and Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Santhi Konduri
- Neuro-Oncology Section, Aurora Advanced Cancer Care, Milwaukee, WI 53215, USA
| | - George C Bobustuc
- Neuro-Oncology Section, Aurora Advanced Cancer Care, Milwaukee, WI 53215, USA
| | - Francis Ali-Osman
- Department of Surgery, The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC 27710, USA
| | - Mohd A Yusuf
- Department of Biomedical Sciences and Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Surendra R Punganuru
- Department of Biomedical Sciences and Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Hanumantha Rao Madala
- Department of Biomedical Sciences and Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Debasish Basak
- Department of Biomedical Sciences and Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Agm Mostofa
- Department of Biomedical Sciences and Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Kalkunte S Srivenugopal
- Department of Biomedical Sciences and Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
| |
Collapse
|
22
|
Chen S, Zhang Y, Zhang D. Endoplasmic reticulum protein 29 (ERp29) confers radioresistance through the DNA repair gene, O(6)-methylguanine DNA-methyltransferase, in breast cancer cells. Sci Rep 2015; 5:14723. [PMID: 26420420 PMCID: PMC4588584 DOI: 10.1038/srep14723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 09/03/2015] [Indexed: 11/23/2022] Open
Abstract
Resistance of cancer cells to radiotherapy is a major clinical problem in cancer treatment. Therefore, understanding the molecular basis of cellular resistance to radiotherapy and identification of novel targets are essential for improving treatment efficacy for cancer patients. Our previous studies have demonstrated a significant role of ERp29 in breast cancer cell survival against doxorubicin-induced genotoxic stress. We here reported that ERp29 expression in the triple negative MDA-MB-231 breast cancer cells significantly increased cell survival against ionizing radiation. Methylation PCR array analysis identified that ERp29 expression increased promoter hypomethylation of the DNA repair gene, O6-methylguanine DNA-methyltransferase (MGMT), by downregulating DNA methyltransferase 1. Knockdown of MGMT in the ERp29-transfected cancer cells increased radiosensitivity, leading to a decreased post-irradiation survival. In addition, radiation treatment in the MGMT-knockdown cells elevated phosphorylation of γ-H2AX and cleavage of caspase 3, indicating that depletion of MGMT facilitates DNA double strands breaks and increases cell apoptosis. Hence, our studies prove a novel function of ERp29\MGMT in cancer cell survival against radiation. Targeting ERp29\MGMT axis may be useful for providing better treatment efficacy in combination with radiotherapy in breast cancer.
Collapse
Affiliation(s)
- Shaohua Chen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- Department of Oncology, Zhejiang Hospital, Hangzhou, China
| | - Daohai Zhang
- Caner Research Group, The Canberra Hospital, ANU Medical School, Australia National University, ACT 2605, Australia
| |
Collapse
|
23
|
Abstract
OBJECTIVES Survivin, an antiapoptotic gene inhibited by p53, is overexpressed in human cancers and correlates with chemotherapy resistance. Here, we investigated the mutual regulatory mechanism between MGMT (O-methylguanine DNA methyltransferase) and survivin. METHODS This study used standard techniques for protein and messenger RNA levels, promoter activity, protein-DNA interaction, cell viability, and correlative animal model. RESULTS O-benzylguanine (BG), a potent inhibitor of MGMT (a DNA repair protein), curtails the expression of survivin in pancreatic cancer. Silencing MGMT by small interfering RNA down-regulates survivin transcription. p53 inhibition enhances MGMT and survivin expressions. When p53 was silenced, BG-induced MGMT inhibition was not associated with the down-regulation of survivin, underscoring the regulatory role of p53 in the MGMT-survivin axis. O-benzylguanine inhibits survivin and PCNA (proliferating cell nuclear antigen) at messenger RNA and protein levels in PANC-1 and L3.6pl cells and decreases survivin promoter activity via increased p53 recruitment to the survivin promoter. In orthotopic pancreatic xenografts established in nude mice, BG ± gemcitabine (GEM) decrease survivin expression in tumor tissue; protein levels and immunohistochemistry show significant decrease in survivin and PCNA levels, which correlate with increased sensitivity to GEM. CONCLUSIONS MGMT inhibition is associated with decrease in survivin expression and increase in sensitivity to GEM in pancreatic cancer.
Collapse
|
24
|
Chen S, Zhang D. Friend or foe: Endoplasmic reticulum protein 29 (ERp29) in epithelial cancer. FEBS Open Bio 2015; 5:91-8. [PMID: 25709888 PMCID: PMC4329646 DOI: 10.1016/j.fob.2015.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/21/2015] [Accepted: 01/21/2015] [Indexed: 12/12/2022] Open
Abstract
ERp29 regulates epithelial cell plasticity and the mesenchymal–epithelial transition. ERp29 shows a tumor suppressive function in primary tumor development. ERp29 is potentially associated with distant metastasis in cancer. ERp29 modulates cell survival against genotoxic stress. Thus, ERp29 displays dual functions as a “friend or foe” in epithelial cancer.
The endoplasmic reticulum (ER) protein 29 (ERp29) is a molecular chaperone that plays a critical role in protein secretion from the ER in eukaryotic cells. Recent studies have also shown that ERp29 plays a role in cancer. It has been demonstrated that ERp29 is inversely associated with primary tumor development and functions as a tumor suppressor by inducing cell growth arrest in breast cancer. However, ERp29 has also been reported to promote epithelial cell morphogenesis, cell survival against genotoxic stress and distant metastasis. In this review, we summarize the current understanding on the biological and pathological functions of ERp29 in cancer and discuss the pivotal aspects of ERp29 as “friend or foe” in epithelial cancer.
Collapse
Affiliation(s)
- Shaohua Chen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Daohai Zhang
- Cancer Research Group, The Canberra Hospital, ANU Medical School, Australia National University, ACT 2605, Australia
| |
Collapse
|
25
|
Canello T, Ovadia H, Refael M, Zrihan D, Siegal T, Lavon I. Antineoplastic effect of decoy oligonucleotide derived from MGMT enhancer. PLoS One 2014; 9:e113854. [PMID: 25460932 PMCID: PMC4252043 DOI: 10.1371/journal.pone.0113854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/31/2014] [Indexed: 12/13/2022] Open
Abstract
Silencing of O(6)-methylguanine-DNA-methyltransferase (MGMT) in tumors, mainly through promoter methylation, correlates with a better therapeutic response and with increased survival. Therefore, it is conceivable to consider MGMT as a potential therapeutic target for the treatment of cancers. Our previous results demonstrated the pivotal role of NF-kappaB in MGMT expression, mediated mainly through p65/NF-kappaB homodimers. Here we show that the non-canonical NF-KappaB motif (MGMT-kappaB1) within MGMT enhancer is probably the major inducer of MGMT expression following NF-kappaB activation. Thus, in an attempt to attenuate the transcription activity of MGMT in tumors we designed locked nucleic acids (LNA) modified decoy oligonucleotides corresponding to the specific sequence of MGMT-kappaB1 (MGMT-kB1-LODN). Following confirmation of the ability of MGMT-kB1-LODN to interfere with the binding of p65/NF-kappaB to the NF-KappaB motif within MGMT enhancer, the efficacy of the decoy was studied in-vitro and in-vivo. The results of these experiments show that the decoy MGMT-kB1-LODN have a substantial antineoplastic effect when used either in combination with temozolomide or as monotherapy. Our results suggest that MGMT-kB1-LODN may provide a novel strategy for cancer therapy.
Collapse
Affiliation(s)
- Tamar Canello
- Leslie and Michael Gaffin Center for Neuro-Oncology and Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Haim Ovadia
- Leslie and Michael Gaffin Center for Neuro-Oncology and Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Miri Refael
- Leslie and Michael Gaffin Center for Neuro-Oncology and Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Daniel Zrihan
- Leslie and Michael Gaffin Center for Neuro-Oncology and Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Tali Siegal
- Leslie and Michael Gaffin Center for Neuro-Oncology and Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Iris Lavon
- Leslie and Michael Gaffin Center for Neuro-Oncology and Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
26
|
Beck JL, Urathamakul T, Watt SJ, Sheil MM, Schaeffer PM, Dixon NE. Proteomic dissection of DNA polymerization. Expert Rev Proteomics 2014; 3:197-211. [PMID: 16608433 DOI: 10.1586/14789450.3.2.197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA polymerases replicate the genome by associating with a range of other proteins that enable rapid, high-fidelity copying of DNA. This complex of proteins and nucleic acids is termed the replisome. Proteins of the replisome must interact with other networks of proteins, such as those involved in DNA repair. Many of the proteins involved in DNA polymerization and the accessory proteins are known, but the array of proteins they interact with, and the spatial and temporal arrangement of these interactions, are current research topics. Mass spectrometry is a technique that can be used to identify the sites of these interactions and to determine the precise stoichiometries of binding partners in a functional complex. A complete understanding of the macromolecular interactions involved in DNA replication and repair may lead to discovery of new targets for antibiotics against bacteria and biomarkers for diagnosis of diseases, such as cancer, in humans.
Collapse
Affiliation(s)
- Jennifer L Beck
- Department of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | | | | | | | | | |
Collapse
|
27
|
Target-mediated consecutive endonuclease reactions for specific and sensitive homogeneous fluorescence assay of O6-methylguanine-DNA methyltransferase. Anal Chim Acta 2013; 804:252-7. [PMID: 24267090 DOI: 10.1016/j.aca.2013.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 11/23/2022]
Abstract
O(6)-Methylguanine-DNA methyltransferase (MGMT) is one of the most important DNA-repair enzymes. Herein, a simple, sensitive and selective homogeneous fluorescence assay strategy is developed for the detection of MGMT on the basis of target-mediated two consecutive endonuclease reactions. The activity assay of MGMT is firstly accomplished using a hairpin-structured DNA substrate to offer a specific recognition site on the substrate DNA for restriction endonuclease PvuII, and thus to initiate the first endonuclease reaction. The product which activates the second endonuclease reaction allows an efficient amplification approach to create an abundance of fluorescence signal reporters. The first endonuclease reaction offers the method high specificity and the second one furnishes the assay improved sensitivity. The results reveal that the MGMT assay strategy shows dynamic responses in the concentration range from 1 to 120 ng mL(-1) with a detection limit of 0.5 ng mL(-1). By simply altering the alkylated bases, this strategy can also be extended for the detection of other alkyltransferases. Therefore, the developed strategy might provide an intrinsically convenient, sensitive and specific platform for alkyltransferase activate assay and related biochemical studies due to its label-free, homogeneous, and fluorescence-based detection format.
Collapse
|
28
|
Kotsarenko KV, Lylo VV, Macewicz LL, Babenko LA, Kornelyuk AI, Ruban TA, Lukash LL. Change in the MGMT gene expression under the influence of exogenous cytokines in human cells in vitro. CYTOL GENET+ 2013. [DOI: 10.3103/s0095452713040087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
McCormack A, Kaplan W, Gill AJ, Little N, Cook R, Robinson B, Clifton-Bligh R. MGMT expression and pituitary tumours: relationship to tumour biology. Pituitary 2013; 16:208-19. [PMID: 22797801 DOI: 10.1007/s11102-012-0406-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Over the past half decade, temozolomide, an oral akylating chemotherapeutic agent, has been shown to have significant activity in the management of aggressive pituitary tumours. The expression of 06-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme, is an important predictor of response to therapy. Low MGMT expression has been reported with a higher frequency amongst more aggressive pituitary tumours, suggesting MGMT may play a role in pituitary tumour progression. In this study, we performed a microarray analysis to determine whether there was a distinct gene expression profile between tumours with low MGMT and high MGMT expression. Overall, 1,403 differentially expressed genes were identified with raw p values less than 0.05. Gene set enrichment analysis (GSEA) revealed significant differences in the gene expression profile between high and low MGMT expressing pituitary tumours. High MGMT expressing pituitary tumours were found to have upregulation of components of the FGFR family and downstream signaling cascades such as PI3 K/Akt and MAPK pathways. Activation of genes involved in the DNA damage response and DNA repair pathways, as well as genes involved in transcription, were identified in pituitary tumours with low MGMT expression. These results form the basis of our proposed model to describe the role of MGMT in pituitary tumorigenesis.
Collapse
Affiliation(s)
- Ann McCormack
- Cancer Genetics Unit, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia.
| | | | | | | | | | | | | |
Collapse
|
30
|
Bobustuc GC, Smith JS, Maddipatla S, Jeudy S, Limaye A, Isley B, Caparas MLM, Constantino SM, Shah N, Baker CH, Srivenugopal KS, Baidas S, Konduri SD. MGMT inhibition restores ERα functional sensitivity to antiestrogen therapy. Mol Med 2012; 18:913-29. [PMID: 22549111 DOI: 10.2119/molmed.2012.00010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/26/2012] [Indexed: 11/06/2022] Open
Abstract
Antiestrogen therapy resistance remains a huge stumbling block in the treatment of breast cancer. We have found significant elevation of O(6) methylguanine DNA methyl transferase (MGMT) expression in a small sample of consecutive patients who have failed tamoxifen treatment. Here, we show that tamoxifen resistance is accompanied by upregulation of MGMT. Further we show that administration of the MGMT inhibitor, O(6)-benzylguanine (BG), at nontoxic doses, leads to restoration of a favorable estrogen receptor alpha (ERα) phosphorylation phenotype (high p-ERα Ser167/low p-ERα Ser118), which has been reported to correlate with sensitivity to endocrine therapy and improved survival. We also show BG to be a dual inhibitor of MGMT and ERα. In tamoxifen-resistant breast cancer cells, BG alone or in combination with antiestrogen (tamoxifen [TAM]/ICI 182,780 [fulvestrant, Faslodex]) therapy enhances p53 upregulated modulator of apoptosis (PUMA) expression, cytochrome C release and poly (ADP-ribose) polymerase (PARP) cleavage, all indicative of apoptosis. In addition, BG increases the expression of p21(cip1/waf1). We also show that BG, alone or in combination therapy, curtails the growth of tamoxifen-resistant breast cancer in vitro and in vivo. In tamoxifen-resistant MCF7 breast cancer xenografts, BG alone or in combination treatment causes significant delay in tumor growth. Immunohistochemistry confirms that BG increases p21(cip1/waf1) and p-ERα Ser167 expression and inhibits MGMT, ERα, p-ERα Ser118 and ki-67 expression. Collectively, our results suggest that MGMT inhibition leads to growth inhibition of tamoxifen-resistant breast cancer in vitro and in vivo and resensitizes tamoxifen-resistant breast cancer cells to antiestrogen therapy. These findings suggest that MGMT inhibition may provide a novel therapeutic strategy for overcoming antiestrogen resistance.
Collapse
Affiliation(s)
- George C Bobustuc
- MD Anderson Cancer Center Orlando, Orlando, Florida 32827, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Melikishvili M, Fried MG. Lesion-specific DNA-binding and repair activities of human O⁶-alkylguanine DNA alkyltransferase. Nucleic Acids Res 2012; 40:9060-72. [PMID: 22810209 PMCID: PMC3467069 DOI: 10.1093/nar/gks674] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Binding experiments with alkyl-transfer-active and -inactive mutants of human O6-alkylguanine DNA alkyltransferase (AGT) show that it forms an O6-methylguanine (6mG)-specific complex on duplex DNA that is distinct from non-specific assemblies previously studied. Specific complexes with duplex DNA have a 2:1 stoichiometry that is formed without accumulation of a 1:1 intermediate. This establishes a role for cooperative interactions in lesion binding. Similar specific complexes could not be detected with single-stranded DNA. The small difference between specific and non-specific binding affinities strongly limits the roles that specific binding can play in the lesion search process. Alkyl-transfer kinetics with a single-stranded substrate indicate that two or more AGT monomers participate in the rate-limiting step, showing for the first time a functional link between cooperative binding and the repair reaction. Alkyl-transfer kinetics with a duplex substrate suggest that two pathways contribute to the formation of the specific 6mG-complex; one at least first order in AGT, we interpret as direct lesion binding. The second, independent of [AGT], is likely to include AGT transfer from distal sites to the lesion in a relatively slow unimolecular step. We propose that transfer between distal and lesion sites is a critical step in the repair process.
Collapse
Affiliation(s)
- Manana Melikishvili
- Center for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
32
|
Guo YW, Zhang Y, Huang X, Gao KS, Wang KJ, Ke CH, Huang HQ. Proteomic analysis of dimethoate-responsive proteins in the oyster (Saccostrea cucullata) gonad. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:2248-2258. [PMID: 22237506 DOI: 10.1007/s11356-011-0729-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/27/2011] [Indexed: 05/31/2023]
Abstract
INTRODUCTION The organophosphorus pesticide dimethoate (DM) has been widely used in agriculture, and its extensive use could still have left many environmental problems. METHODS In the present study, the oyster (Saccostrea cucullata) was subjected to acute DM toxicity (2 mg/L), and gas chromatographic analysis revealed and quantified residues of DM in the oyster gonad. RESULTS Two-dimensional gel electrophoresis showed 12 differentially expressed proteins in the DM-exposed oyster gonad in comparison to the control. Among these 12 protein spots, nine were down-regulated, and three were up-regulated. Both matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry and database searching were utilized to identify these differential proteins, and revealed five proteins previously described as being related to DM toxicity. In addition, the levels of mRNA expression corresponding to these differential proteins were further proved in part by real-time PCR. The functions of these proteins were summarized as: carrying out energy metabolism, DNA repair, DNA transcriptional regulation, and oxidative protection. The remaining seven protein spots were of particular interest in terms of their responses to DM, which have seldom been reported. CONCLUSION These data might point to a number of novel and significant biomarkers for evaluating the contamination levels of DM and provide useful insight into the mechanisms of DM toxicity in vivo.
Collapse
Affiliation(s)
- Yan-Wei Guo
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Pegg AE. Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools. Chem Res Toxicol 2011; 24:618-39. [PMID: 21466232 DOI: 10.1021/tx200031q] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (AGT) is a widely distributed, unique DNA repair protein that acts as a single agent to directly remove alkyl groups located on the O(6)-position of guanine from DNA restoring the DNA in one step. The protein acts only once, and its alkylated form is degraded rapidly. It is a major factor in counteracting the mutagenic, carcinogenic, and cytotoxic effects of agents that form such adducts including N-nitroso-compounds and a number of cancer chemotherapeutics. This review describes the structure, function, and mechanism of action of AGTs and of a family of related alkyltransferase-like proteins, which do not act alone to repair O(6)-alkylguanines in DNA but link repair to other pathways. The paradoxical ability of AGTs to stimulate the DNA-damaging ability of dihaloalkanes and other bis-electrophiles via the formation of AGT-DNA cross-links is also described. Other important properties of AGTs include the ability to provide resistance to cancer therapeutic alkylating agents, and the availability of AGT inhibitors such as O(6)-benzylguanine that might overcome this resistance is discussed. Finally, the properties of fusion proteins in which AGT sequences are linked to other proteins are outlined. Such proteins occur naturally, and synthetic variants engineered to react specifically with derivatives of O(6)-benzylguanine are the basis of a valuable research technique for tagging proteins with specific reagents.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine , Pennsylvania 17033, United States.
| |
Collapse
|
34
|
Fission yeast Hsk1 (Cdc7) kinase is required after replication initiation for induced mutagenesis and proper response to DNA alkylation damage. Genetics 2010; 185:39-53. [PMID: 20176980 DOI: 10.1534/genetics.109.112284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genome stability in fission yeast requires the conserved S-phase kinase Hsk1 (Cdc7) and its partner Dfp1 (Dbf4). In addition to their established function in the initiation of DNA replication, we show that these proteins are important in maintaining genome integrity later in S phase and G2. hsk1 cells suffer increased rates of mitotic recombination and require recombination proteins for survival. Both hsk1 and dfp1 mutants are acutely sensitive to alkylation damage yet defective in induced mutagenesis. Hsk1 and Dfp1 are associated with the chromatin even after S phase, and normal response to MMS damage correlates with the maintenance of intact Dfp1 on chromatin. A screen for MMS-sensitive mutants identified a novel truncation allele, rad35 (dfp1-(1-519)), as well as alleles of other damage-associated genes. Although Hsk1-Dfp1 functions with the Swi1-Swi3 fork protection complex, it also acts independently of the FPC to promote DNA repair. We conclude that Hsk1-Dfp1 kinase functions post-initiation to maintain replication fork stability, an activity potentially mediated by the C terminus of Dfp1.
Collapse
|
35
|
Loh YH, Mitrou PN, Bowman R, Wood A, Jeffery H, Luben RN, Lentjes MAH, Khaw KT, Rodwell SA. MGMT Ile143Val polymorphism, dietary factors and the risk of breast, colorectal and prostate cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk study. DNA Repair (Amst) 2010; 9:421-8. [PMID: 20096652 DOI: 10.1016/j.dnarep.2010.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 12/24/2009] [Accepted: 01/01/2010] [Indexed: 11/28/2022]
Abstract
O(6)-Methylguanine-DNA methyltransferase (MGMT) repairs DNA damage caused by alkylating agents including N-nitroso compounds from diet. MGMT Ile143Val polymorphism may lead to less DNA damage repair and increased cancer risk depending on the environmental exposures. We investigated interactions between dietary factors and the MGMT Ile143Val polymorphism in relation to breast, colorectal and prostate cancer risk. There were 276/1498, 273/2984 and 312/1486 cases/controls for the breast, colorectal and prostate cancer studies respectively; all nested within the EPIC-Norfolk study, a prospective cohort of approximately 25,000 men and women aged 40-79. Baseline 7-day food diary data were collected for dietary assessment. MGMT Ile143Val polymorphism was not overall associated with breast, colorectal and prostate cancer risk. There was a significant interaction between this polymorphism and intake of red and processed meat on colorectal cancer risk (P(interaction)=0.04) suggesting an increased risk among carriers of the variant genotype compared to the MGMT Ile143Ile common genotype. A lower colorectal cancer risk was seen with higher intake of vitamin E and carotene among the variant genotype group but not in the common genotype group (P(interaction)=0.009 and P(interaction)=0.005 for vitamin E and carotene, respectively). A higher prostate cancer risk was seen with higher alcohol intake among the variant genotype (OR=2.08, 95% CI=1.21-3.57, P(interaction)=0.0009) compared to the common genotype with lower alcohol intake. In this UK population, the MGMT Ile143Val polymorphism was not overall associated with breast, colorectal and prostate cancer risk. There was evidence for this polymorphism playing a role in modulating the risk of prostate cancer in presence of alcohol. For colorectal cancer, the MGMT Ile143Val polymorphism may confer increased or decreased risk depending on the dietary exposure.
Collapse
Affiliation(s)
- Yet Hua Loh
- MRC Centre for Nutritional Epidemiology in Cancer Prevention and Survival, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Koryllou A, Patrinou-Georgoula M, Troungos C, Pletsa V. Cell death induced by N-methyl-N-nitrosourea, a model S(N)1 methylating agent, in two lung cancer cell lines of human origin. Apoptosis 2009; 14:1121-33. [PMID: 19634013 DOI: 10.1007/s10495-009-0379-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
New therapeutic approaches are needed for lung cancer, the leading cause of cancer death. Methylating agents constitute a widely used class of anticancer drugs, the effect of which on human non small cell lung cancer (NSCLC) has not been adequately studied. N-methyl-N-nitrosourea (MNU), a model S(N)1 methylating agent, induced cell death through a distinct mechanism in two human NSCLC cell lines studied, A549(p53(wt)) and H157(p53(null)). In A549(p53(wt)), MNU induced G2/M arrest, accompanied by cdc25A degradation, hnRNP B1 induction, hnRNP C1/C2 downregulation. Non-apoptotic cell death was confirmed by the lack of increase in the sub-G1 DNA content, Poly (ADP-ribose) polymerase cleavage and caspase-3, -7 activation. In H157(p53(null)), MNU induced apoptotic cell death, confirmed by cytofluorometry of DNA content and immunodetection of apoptotic markers, accompanied by overexpression of hnRNP B1 and C1/C2. Thus, the mechanism of the cell death induced by S(N)1 methylating agents is cell type-dependent and must be assessed prior treatment.
Collapse
Affiliation(s)
- Angeliki Koryllou
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | |
Collapse
|
37
|
Konduri SD, Ticku J, Bobustuc GC, Sutphin RM, Colon J, Isley B, Bhakat KK, Srivenugopal KS, Kalkunte SS, Baker CH. Blockade of MGMT expression by O6 benzyl guanine leads to inhibition of pancreatic cancer growth and induction of apoptosis. Clin Cancer Res 2009; 15:6087-95. [PMID: 19789303 DOI: 10.1158/1078-0432.ccr-09-0887] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We sought to determine whether administration of a MGMT blocker, O(6)-benzyl guanine (O(6)BG), at an optimal biological dose alone or in combination with gemcitabine inhibits human pancreatic cancer cell growth. EXPERIMENTAL DESIGN Human pancreatic cancer L3.6pl and PANC1 cells were treated with O(6)BG, either alone or in combination with gemcitabine, and the therapeutic efficacy and biological activity of these drug combinations were investigated. RESULTS O(6)BG sensitized pancreatic cancer cells to gemcitabine. Protein and mRNA expression of MGMT, cyclin B1, cyclin B2, cyclin A, and ki-67 were significantly decreased in the presence of O(6)BG. In sharp contrast, protein expression and mRNA message of p21(cip1) were significantly increased. Interestingly, O(6)BG increases p53-mediated p21(cip1) transcriptional activity and suppresses cyclin B1. In addition, our results indicate that p53 is recruited to p21 promoter. Furthermore, an increase in p21(cip1) and a decrease in cyclin transcription are p53 dependent. The volume of pancreatic tumors was reduced by 27% in mice treated with gemcitabine alone, by 47% in those treated with O(6)BG alone, and by 65% in those mice given combination. Immunohistochemical analysis showed that O(6)BG inhibited expression of MGMT and cyclins, and increased expression of p21(cip1). Furthermore, there was a significant decrease in tumor cell proliferation and an increase in tumor cell apoptosis. CONCLUSIONS Collectively, our results show that decreased MGMT expression is correlated with p53 activation, and significantly reduced primary pancreatic tumor growth. These findings suggest that O(6)BG either alone or in combination with gemcitabine may provide a novel and effective approach for the treatment of human pancreatic cancer.
Collapse
Affiliation(s)
- Santhi D Konduri
- Cancer Research Institute, M D Anderson Cancer Center Orlando, Orlando, Florida 32806, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang Y, Chiu JF, He QY. Genomics and Proteomics in Drug Design and Discovery. Pharmacology 2009. [DOI: 10.1016/b978-0-12-369521-5.00020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Bugni JM, Han J, Tsai MS, Hunter DJ, Samson LD. Genetic association and functional studies of major polymorphic variants of MGMT. DNA Repair (Amst) 2007; 6:1116-26. [PMID: 17569599 DOI: 10.1016/j.dnarep.2007.03.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The DNA repair protein, O(6)-methylguanine DNA-methyltransferase (MGMT) prevents mutations and cell death that result from aberrant alkylation of DNA. The polymorphic variants Leu84Phe, Ile143Val, and Lys178Arg are frequent in the human population. We review here studies of these and other MGMT polymorphisms and their association with risk for lung, breast, colorectal and endometrial cancer with a consideration of gene-environment interactions. In addition, we review studies of the effects of polymorphic variation on alkyltransferase activity and expression. It is formally possible that polymorphic variation could modify functions of MGMT other than its alkyltransferase activity. While it was previously reported that an alkylated form of MGMT modifies Estrogen Receptor alpha activity, from our studies we conclude that this regulation is not a major function of MGMT. Overall, the effects of polymorphic variation on protein function are subtle, and further investigation is required to provide a comprehensive mechanism that explains the observed associations of these variants with risk for cancer.
Collapse
Affiliation(s)
- James M Bugni
- Biological Engineering Division, Biology Department, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
40
|
Kuo CC, Liu JF, Shiah HS, Ma LC, Chang JY. Tamoxifen accelerates proteasomal degradation ofO6-methylguanine DNA methyltransferase in human cancer cells. Int J Cancer 2007; 121:2293-300. [PMID: 17597106 DOI: 10.1002/ijc.22927] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tamoxifen, a synthetic triphenyl-ethylene compound, is a member of a class of anticancer drugs known as selective estrogen receptor modulators. It may block tumor growth by mimicking estrogen and binding to the estrogen receptors, preventing cancerous growth. Clinical studies have demonstrated that a combination chemo/hormonal therapy regimen with tamoxifen and O(6)-alkylating drugs increased the tumor response rate in cancer patients. The mechanism of action of this combined regimen remains undefined. In this study, we demonstrated that treatment of human colorectal HT-29 carcinoma cells with tamoxifen decreased the repair activity and expression level of O(6)-methylguanine DNA methyltransferase (MGMT) protein in a concentration- and time-dependent manner. This inhibition was also shown in other malignant human cells, regardless of their estrogen receptor status. Furthermore, MGMT inactivation by tamoxifen was associated with a significantly increased susceptibility of cells to 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). No alteration in MGMT mRNA levels was observed in tamoxifen-treated cells. The half-life of MGMT protein was markedly decreased in the presence of tamoxifen. Tamoxifen-induced MGMT degradation could be blocked by MG-132, a proteasome inhibitor. An increased level of ubiquitinated MGMT protein was found after tamoxifen treatment. We conclude that tamoxifen decreased the MGMT protein level by accelerating protein degradation through the ubiquitin-dependent proteasomal pathway. These findings provide a strong rationale for combined chemo/hormonal therapy with tamoxifen and BCNU in the treatment of human cancers.
Collapse
Affiliation(s)
- Ching-Chuan Kuo
- National Institute of Cancer Research, National Health Research Institutes, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
41
|
Nadkar A, Pungaliya C, Drake K, Zajac E, Singhal SS, Awasthi S. Therapeutic resistance in lung cancer. Expert Opin Drug Metab Toxicol 2006; 2:753-77. [PMID: 17014393 DOI: 10.1517/17425255.2.5.753] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite considerable progress over the last 25 years in the systemic therapy of lung cancer, intrinsic and acquired resistance to chemotherapeutic agents and radiation remains a vexing problem. The number of mechanisms of therapeutic resistance in lung cancer has expanded considerably over the past three decades, and the crucial role of stress resistance pathways is increasingly recognised as a cause of intrinsic and acquired chemo- and radiotherapy resistance. This paper reviews recent evidence for stress defence proteins, particularly RALBP1/RLIP76, in mediating intrinsic and acquired chemotherapy and radiation resistance in human lung cancer.
Collapse
Affiliation(s)
- Aalok Nadkar
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, CPB # 351, 76019-0065, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Dirksen EHC, Pinkse MWH, Rijkers DTS, Cloos J, Liskamp RMJ, Slijper M, Heck AJR. Investigating the Dynamic Nature of the Interactions between Nuclear Proteins and Histones upon DNA Damage Using an Immobilized Peptide Chemical Proteomics Approach. J Proteome Res 2006; 5:2380-8. [PMID: 16944950 DOI: 10.1021/pr060278b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
As a result of the complexity and dynamic range of the cellular proteome, including mutual interactions and interactions with other molecules, focused proteomic approaches are important to study subsets of physiologically important proteins. In one such approach, a small molecule or part of a protein is immobilized on a solid phase and used as bait to fish out interacting proteins from complex mixtures such as cellular lysates. Here, such a chemical proteomics experiment is presented to explore the range of proteins that interact with the N-terminal tail of core histones. Therefore, a core histone consensus N-terminal tail (NTT) peptide was synthesized and immobilized on agarose. Interactions between histone NTTs and proteins are extremely important as they regulate chromatin structure, which is important in many DNA-related processes, like transcription and DNA repair. Induction of DNA damage, like DNA double strand breaks, is known to trigger chromatin remodeling events through interactions between histone NTTs and so-called histone chaperones. Therefore, we set out to investigate specific changes in interactions of nuclear proteins before and shortly after DNA double strand break induction. Over 700 proteins were found to bind specifically to the NTT peptide, which makes our study the most comprehensive proteomic survey of the broad spectrum of nuclear proteins interacting with the NTT of core histones in nucleosomes. Apart from a few exceptions, the abundance of the majority of NTT binding proteins was found to be unchanged following DNA damage. However, an in-depth analysis of protein phosphorylation (we detected more than 90 unique sites in about 60 proteins) revealed that the phosphorylation status of several proteins involved in chromatin remodeling changes upon DNA damage. We observed that in these differentially phosphorylated chaperones are part of closely interacting protein complexes involved in regulatory mechanisms at the crossroads of nucleosome assembly, DNA replication, transcription, and the early onset of DNA damage repair.
Collapse
Affiliation(s)
- Eef H C Dirksen
- Department of Biomolecular Mass Spectrometry, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|