1
|
Pallares RM, Abergel RJ. New insights into the toxicity of lanthanides with functional genomics. Toxicology 2024; 509:153967. [PMID: 39384009 DOI: 10.1016/j.tox.2024.153967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024]
Abstract
As the use of lanthanides increases in many industries, concerns regarding their impact on human health rise. However, until recently, the toxicological profile of these elements had been incompletely characterized, with most studies relying on biodistribution assessments and lethal dose determinations in different animal models. In the last few years, the f-element field has started to pivot towards other examination types that identify cellular and molecular mechanisms of toxicity in a high-throughput manner. Under this new paradigm, functional genomics techniques, which rely on genetically modified cells or model organisms with missing genes or proteins, are becoming fundamental to gain novel insights into the genetic and proteomic bases of lanthanide toxicity, as well as to identify potential therapeutic targets to minimize the harmful effects of the metals. This review aims to provide an updated perspective on current efforts using functional genomics to characterize the toxicity and biological impact of lanthanides and improve their safety in different industrial applications.
Collapse
Affiliation(s)
- Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Nuclear Engineering and Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
Pallares RM, An DD, Hebert S, Loguinov A, Proctor M, Villalobos JA, Bjornstad KA, Rosen CJ, Vulpe C, Abergel RJ. Screening the complex biological behavior of late lanthanides through genome-wide interactions. Metallomics 2023; 15:mfad039. [PMID: 37336558 DOI: 10.1093/mtomcs/mfad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
Despite their similar physicochemical properties, recent studies have demonstrated that lanthanides can display different biological behaviors. Hence, the lanthanide series can be divided into three parts, namely early, mid, and late lanthanides, based on their interactions with biological systems. In particular, the late lanthanides demonstrate distinct, but poorly understood biological activity. In the current study, we employed genome-wide functional screening to help understand biological effects of exposure to Yb(III) and Lu(III), which were selected as representatives of the late lanthanides. As a model organism, we used Saccharomyces cerevisiae, since it shares many biological functions with humans. Analysis of the functional screening results indicated toxicity of late lanthanides is consistent with disruption of vesicle-mediated transport, and further supported a role for calcium transport processes and mitophagy in mitigating toxicity. Unexpectedly, our analysis suggested that late lanthanides target proteins with SH3 domains, which may underlie the observed toxicity. This study provides fundamental insights into the unique biological chemistry of late lanthanides, which may help devise new avenues toward the development of decorporation strategies and bio-inspired separation processes.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstr. 55, Aachen 52074, Germany
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Solene Hebert
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alex Loguinov
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Michael Proctor
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jonathan A Villalobos
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kathleen A Bjornstad
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chris J Rosen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Sinha S, Yang W. Cellular signaling for activation of Rho GTPase Cdc42. Cell Signal 2008; 20:1927-34. [PMID: 18558478 DOI: 10.1016/j.cellsig.2008.05.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 05/11/2008] [Indexed: 12/20/2022]
Abstract
The Rho family GTPase Cdc42 regulates cytoskeletal organization and membrane trafficking in physiological processes such as cell proliferation, motility and polarity. Aberrant activation of Cdc42 results in pathogenesis, such as tumorigenesis and tumor progression, cardiovascular diseases, diabetes, and neuronal degenerative diseases. The activation of Cdc42 in response to upstream signals is mediated by guanine nucleotide exchange factors (GEFs), which converse GDP-bound inactive form to the GTP-bound active form of Cdc42. The activated Cdc42 transduces signals to downstream effectors and generates cellular effects. This review will discuss the molecular mechanism of activation of Cdc42 and postulate that signaling specificity of Cdc42 is conferred by the GEF/GTPase/Effector (GGE) complexes in response to external stimuli.
Collapse
Affiliation(s)
- Soniya Sinha
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | | |
Collapse
|
4
|
Ross B, Kristensen O, Favre D, Walicki J, Kastrup JS, Widmann C, Gajhede M. High resolution crystal structures of the p120 RasGAP SH3 domain. Biochem Biophys Res Commun 2007; 353:463-8. [PMID: 17188236 DOI: 10.1016/j.bbrc.2006.12.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 12/07/2006] [Indexed: 10/23/2022]
Abstract
X-ray structures of two crystal forms of the Src homology 3 domain (SH3) of the Ras GTPase activating protein (RasGAP) were determined at 1.5 and 1.8A resolution. The overall structure comprises a single domain with two tightly packed beta-sheets linked by a short helical segment. An important motif for peptide binding in other SH3 domains is not conserved in RasGAP. The RasGAP SH3 domain forms dimers in the crystal structures, which may provide new functional insight. The dimer interface involves residues also present in a peptide previously identified as an apoptotic sensitizer of tumor cells.
Collapse
Affiliation(s)
- Birthe Ross
- Biostructural Research, Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
5
|
Gu C, Tangye SG, Sun X, Luo Y, Lin Z, Wu J. The X-linked lymphoproliferative disease gene product SAP associates with PAK-interacting exchange factor and participates in T cell activation. Proc Natl Acad Sci U S A 2006; 103:14447-52. [PMID: 16983070 PMCID: PMC1599982 DOI: 10.1073/pnas.0606624103] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Indexed: 01/28/2023] Open
Abstract
SLAM (signaling lymphocyte activation molecule)-associated protein (SAP) is a Src homology 2 (SH2) domain-containing adaptor expressed in T cells and natural killer cells. Its essential role in immune responses is underscored by the recent finding that mutations in SAP result in a rare but fatal X-linked lymphoproliferative disease (XLP). Although SAP is known to associate with SLAM-family receptors, the exact molecular mechanism by which SAP regulates lymphocyte signaling remains elusive. We here report that in T cells, SAP associates with the PAK-interacting exchange factor (PIX), a guanine nucleotide exchange factor (GEF) specific for Rac/Cdc42 GTPases. Moreover, SAP, PIX, and an activated form of Cdc42 form a complex in mammalian cells. We demonstrate that the SAP-PIX interaction is specific and is mediated by the C-terminal region of the SAP SH2 domain and the PIX SH3 domain. We further show that SAP is required for the recruitment of PIX to the SLAM-family receptors. Interestingly, overexpression of SAP, but not its homolog EAT-2, leads to a synergistic activation of nuclear factor of activating T cells (NFAT) in combination with a calcium signal in T cells. This SAP-mediated activation appears to be receptor-dependent and can be blocked by a dominant negative form of PIX. Taken together, our data strongly suggest that, in addition to the known SAP-interacting kinase Fyn, PIX may be another key player in SAP-mediated T cell activation.
Collapse
Affiliation(s)
- Cuiping Gu
- *Department of Life Science and Biotechnology, Shanghai Jiaotong University, 1954 Huashan Road, Shanghai 200030, China
- Shanghai Genomics, Inc., Zhangjiang Hi-Tech Park, Shanghai 201203, China; and
| | - Stuart G. Tangye
- Immunology and Inflammation Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia
| | - Xiaoqing Sun
- Chinese National Genome Center
- Shanghai Genomics, Inc., Zhangjiang Hi-Tech Park, Shanghai 201203, China; and
| | - Ying Luo
- *Department of Life Science and Biotechnology, Shanghai Jiaotong University, 1954 Huashan Road, Shanghai 200030, China
- Chinese National Genome Center
- Shanghai Genomics, Inc., Zhangjiang Hi-Tech Park, Shanghai 201203, China; and
- GNI Ltd., 4-2-12 Toranomon, Tokyo 105-0001, Japan
| | - Zhixin Lin
- *Department of Life Science and Biotechnology, Shanghai Jiaotong University, 1954 Huashan Road, Shanghai 200030, China
| | - Jun Wu
- *Department of Life Science and Biotechnology, Shanghai Jiaotong University, 1954 Huashan Road, Shanghai 200030, China
- Chinese National Genome Center
- Shanghai Genomics, Inc., Zhangjiang Hi-Tech Park, Shanghai 201203, China; and
- GNI Ltd., 4-2-12 Toranomon, Tokyo 105-0001, Japan
| |
Collapse
|
6
|
Li X, Chen Y, Liu Y, Gao J, Gao F, Bartlam M, Wu JY, Rao Z. Structural basis of Robo proline-rich motif recognition by the srGAP1 Src homology 3 domain in the Slit-Robo signaling pathway. J Biol Chem 2006; 281:28430-7. [PMID: 16857672 PMCID: PMC2031215 DOI: 10.1074/jbc.m604135200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Slit-Robo (sr) GTPase-activating protein (GAPs) are important components in the intracellular pathway mediating Slit-Robo signaling in axon guidance and cell migration. We report the first crystal structure of the srGAP1 SH3 domain at 1.8-A resolution. The unusual side chain conformation of the conserved Phe-13 in the P1 pocket renders the ligand binding pocket shallow and narrow, which contributes toward the low binding affinity. Moreover, the opposing electrostatic charge and the hydrophobic properties of the P3 specificity pocket are consistent with the observed binding characteristics of the srGAP1 SH3 domain to its ligand. Surface plasmon resonance experiments indicate that the srGAP1 SH3 domain interacts with its natural ligand inaCtoN orientation. The srGAP1 SH3 domain can bind to both the CC2 and CC3 motifs in vitro. The N-terminal two acidic residues in the CC3 motif recognition site are necessary for srGAP1 SH3 domain binding. A longer CC3 peptide (CC3-FL) binds with greater affinity than its shorter counterpart, suggesting that the residues surrounding the proline-rich core are important for protein-peptide interactions. Our study reveals previously unknown properties of the srGAP-Robo interaction. Our data provide a structural basis for the srGAP-Robo interaction, consistent with the role of the Robo intracellular domain in interacting with other downstream signaling molecules and mediating versatile and dynamic responses to axon guidance and cell migration cues.
Collapse
Affiliation(s)
- Xiaofeng Li
- “Tsinghua-IBP Joint Research Group for Structural Biology”, Tsinghua University, Beijing 100084, China
- National Laboratory of Biomacromolecules, Institute of Biophysics (IBP), Chinese Academy of Sciences, Beijing 100101, China
| | - Yushu Chen
- “Tsinghua-IBP Joint Research Group for Structural Biology”, Tsinghua University, Beijing 100084, China
- National Laboratory of Biomacromolecules, Institute of Biophysics (IBP), Chinese Academy of Sciences, Beijing 100101, China
| | - Yiwei Liu
- “Tsinghua-IBP Joint Research Group for Structural Biology”, Tsinghua University, Beijing 100084, China
| | - Jia Gao
- “Tsinghua-IBP Joint Research Group for Structural Biology”, Tsinghua University, Beijing 100084, China
| | - Feng Gao
- “Tsinghua-IBP Joint Research Group for Structural Biology”, Tsinghua University, Beijing 100084, China
| | - Mark Bartlam
- “Tsinghua-IBP Joint Research Group for Structural Biology”, Tsinghua University, Beijing 100084, China
- National Laboratory of Biomacromolecules, Institute of Biophysics (IBP), Chinese Academy of Sciences, Beijing 100101, China
| | - Jane Y. Wu
- National Laboratory of Biomacromolecules, Institute of Biophysics (IBP), Chinese Academy of Sciences, Beijing 100101, China
- Department of Neurology; Center of Genetic Medicine, Lurie Cancer Center; Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zihe Rao
- “Tsinghua-IBP Joint Research Group for Structural Biology”, Tsinghua University, Beijing 100084, China
- National Laboratory of Biomacromolecules, Institute of Biophysics (IBP), Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|