1
|
Ray H, Chang C. The transcription factor Hypermethylated in Cancer 1 (Hic1) regulates neural crest migration via interaction with Wnt signaling. Dev Biol 2020; 463:169-181. [PMID: 32502469 DOI: 10.1016/j.ydbio.2020.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 01/20/2023]
Abstract
The transcription factor Hypermethylated in Cancer 1 (HIC1) is associated with both tumorigenesis and the complex human developmental disorder Miller-Dieker Syndrome. While many studies have characterized HIC1 as a tumor suppressor, HIC1 function in development is less understood. Loss-of-function mouse alleles show embryonic lethality accompanied with developmental defects, including craniofacial abnormalities that are reminiscent of human Miller-Dieker Syndrome patients. However, the tissue origin of the defects has not been reported. In this study, we use the power of the Xenopus laevis model system to explore Hic1 function in early development. We show that hic1 mRNA is expressed throughout early Xenopus development and has a spatial distribution within the neural plate border and in migrating neural crest cells in branchial arches. Targeted manipulation of hic1 levels in the dorsal ectoderm that gives rise to neural and neural crest tissues reveals that both overexpression and knockdown of hic1 result in craniofacial defects with malformations of the craniofacial cartilages. Neural crest specification is not affected by altered hic1 levels, but migration of the cranial neural crest is impaired both in vivo and in tissue explants. Mechanistically, we find that Hic1 regulates cadherin expression profiles and canonical Wnt signaling. Taken together, these results identify Hic1 as a novel regulator of the canonical Wnt pathway during neural crest migration.
Collapse
Affiliation(s)
- Heather Ray
- Dept. of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, MCLM 338, 1918 University Dr. Birmingham, AL, 35294, USA.
| | - Chenbei Chang
- Dept. of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, MCLM 338, 1918 University Dr. Birmingham, AL, 35294, USA
| |
Collapse
|
2
|
Uchida A, Sakib S, Labit E, Abbasi S, Scott RW, Underhill TM, Biernaskie J, Dobrinski I. Development and function of smooth muscle cells is modulated by Hic1 in mouse testis. Development 2020; 147:dev.185884. [PMID: 32554530 DOI: 10.1242/dev.185884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
In mammalian testis, contractile peritubular myoid cells (PMCs) regulate the transport of sperm and luminal fluid, while secreting growth factors and extracellular matrix proteins to support the spermatogonial stem cell niche. However, little is known about the role of testicular smooth muscle cells during postnatal testicular development. Here we report age-dependent expression of hypermethylated in cancer 1 (Hic1; also known as ZBTB29) in testicular smooth muscle cells, including PMCs and vascular smooth muscle cells, in the mouse. Postnatal deletion of Hic1 in smooth muscle cells led to their increased proliferation and resulted in dilatation of seminiferous tubules, with increased numbers of PMCs. These seminiferous tubules contained fewer Sertoli cells and more spermatogonia, and fibronectin was not detected in their basement membrane. The expression levels of genes encoding smooth muscle contractile proteins, Acta2 and Cnn1, were downregulated in the smooth muscle cells lacking Hic1, and the seminiferous tubules appeared to have reduced contractility. These data imply a role for Hic1 in determining the size of seminiferous tubules by regulating postnatal smooth muscle cell proliferation, subsequently affecting spermatogenesis in adulthood.
Collapse
Affiliation(s)
- Aya Uchida
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Sadman Sakib
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Elodie Labit
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Sepideh Abbasi
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - R Wilder Scott
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - T Michael Underhill
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
3
|
Taetzsch T, Brayman VL, Valdez G. FGF binding proteins (FGFBPs): Modulators of FGF signaling in the developing, adult, and stressed nervous system. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2983-2991. [PMID: 29902550 DOI: 10.1016/j.bbadis.2018.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/17/2018] [Accepted: 06/09/2018] [Indexed: 01/18/2023]
Abstract
Members of the fibroblast growth factor (FGF) family are involved in a variety of cellular processes. In the nervous system, they affect the differentiation and migration of neurons, the formation and maturation of synapses, and the repair of neuronal circuits following insults. Because of the varied yet critical functions of FGF ligands, their availability and activity must be tightly regulated for the nervous system, as well as other tissues, to properly develop and function in adulthood. In this regard, FGF binding proteins (FGFBPs) have emerged as strong candidates for modulating the actions of secreted FGFs in neural and non-neural tissues. Here, we will review the roles of FGFBPs in the peripheral and central nervous systems.
Collapse
Affiliation(s)
- Thomas Taetzsch
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA.
| | - Vanessa L Brayman
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA.
| | - Gregorio Valdez
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
4
|
Muscle Fibers Secrete FGFBP1 to Slow Degeneration of Neuromuscular Synapses during Aging and Progression of ALS. J Neurosci 2017; 37:70-82. [PMID: 28053031 DOI: 10.1523/jneurosci.2992-16.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 01/13/2023] Open
Abstract
The identity of muscle secreted factors critical for the development and maintenance of neuromuscular junctions (NMJs) remains largely unknown. Here, we show that muscle fibers secrete and concentrate the fibroblast growth factor binding protein 1 (FGFBP1) at NMJs. Although FGFBP1 expression increases during development, its expression decreases before NMJ degeneration during aging and in SOD1G93A mice, a mouse model for amyotrophic lateral sclerosis (ALS). Based on these findings, we examined the impact of deleting FGFBP1 on NMJs. In the absence of FGFBP1, NMJs exhibit structural abnormalities in developing and middle age mice. Deletion of FGFBP1 from SOD1G93A mice also accelerates NMJ degeneration and death. Based on these findings, we sought to identify the mechanism responsible for decreased FGFBP1 in stressed skeletal muscles. We show that FGFBP1 expression is inhibited by increased accumulation of the transforming growth factor-β1 (TGF-β1) in skeletal muscles and at their NMJs. These findings suggest that targeting the FGFBP1 and TGF-β1 signaling axis holds promise for slowing age- and disease-related degeneration of NMJs. SIGNIFICANCE STATEMENT The neuromuscular junction (NMJ) is critical for all voluntary movement. Its malformation during development and degeneration in adulthood impairs motor function. Therefore, it is important to identify factors that function to maintain the structural integrity of NMJs. We show that muscle fibers secrete and concentrate the fibroblast growth factor binding protein 1 (FGFBP1) at NMJs. However, FGFBP1 expression decreases in skeletal muscles during aging and before NMJ degeneration in SOD1G93A mice, a mouse model for amyotrophic lateral sclerosis. We show that transforming growth factor-β1 is responsible for the decreased levels of FGFBP1. Importantly, we demonstrate critical roles for FGFBP1 at NMJs in developing, aging and SOD1G93A mice.
Collapse
|
5
|
Wu W, Zhang L, Lin J, Huang H, Shi B, Lin X, Huang Z, Wang C, Qiu J, Wei X. Hypermethylation of the HIC1 promoter and aberrant expression of HIC1/SIRT1 contribute to the development of thyroid papillary carcinoma. Oncotarget 2016; 7:84416-84427. [PMID: 27793057 PMCID: PMC5356670 DOI: 10.18632/oncotarget.12936] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023] Open
Abstract
Hypermethylation leading to the loss of hypermethylated in cancer-1 (HIC1) gene expression occurs in many different types of human cancer. HIC1 is a transcriptional repressor that directly binds to the promoter region of NAD-dependent deacetylase sirtuin-1 (SIRT1). SIRT1 functions in cell growth, is anti-apoptotic, protect neurons, functions in senescence, and regulates energy restriction. Epigenetic modification and dysregulation affecting the HIC1/SIRT1 axis is potentially important for the development of malignancies. However, the importance of HIC1 expression in the development of papillary thyroid carcinoma, especially in Chinese patients, is uncertain. Therefore, we assessed the level of methylation in the HIC1 promoter and the mRNA and protein expression levels of HIC1 and SIRT1 in human thyroid papillary carcinoma and tumor adjacent control tissues. The demethylation reagent 5-aza-2'-deoxyctidine (5-aza-dc) and an HIC1 overexpression plasmid were used to manipulate the HIC1/SIRT1 pathway, and the effects on cell senescence, apoptosis, and cell cycle progression were assessed. Compared to normal thyroid tissue, thyroid tumors had lower expression of HIC1 and higher SIRT1 expression. The level of HIC1 methylation was also higher in thyroid carcinoma tissues than adjacent tissues. HIC1 expression was closely correlated with patient age and tumor progression. Restoration of HIC1 expression through an overexpression plasmid or 5-aza-dC treatment reduced SIRT1 expression and cell proliferation, and led to senescence, cell cycle arrest, and apoptosis. Aberrant expression of HIC1/SIRT1 and hypermethylation of the HIC1 promoter may be critical for the development and progression of papillary thyroid cancer.
Collapse
Affiliation(s)
- Wenyi Wu
- Department of general surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Liting Zhang
- Endocrine Department, The 180th Military Hospital of Chinese Peoples, Liberation Army, Quanzhou, Fujian, China
| | - Jianqing Lin
- Department of general surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Hanwei Huang
- Endocrine Department, Affiliated Zhongshan Hospital of Guangdong Medical College, Zhongshan, Guangdong, China
| | - Bai Shi
- Department of general surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xingong Lin
- Department of general surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhongxin Huang
- Department of general surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Chaoyang Wang
- Department of general surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Jianlong Qiu
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xiaolong Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
6
|
Janeckova L, Kolar M, Svec J, Lanikova L, Pospichalova V, Baloghova N, Vojtechova M, Sloncova E, Strnad H, Korinek V. HIC1 Expression Distinguishes Intestinal Carcinomas Sensitive to Chemotherapy. Transl Oncol 2016; 9:99-107. [PMID: 27084425 PMCID: PMC4833890 DOI: 10.1016/j.tranon.2016.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 12/13/2022] Open
Abstract
Neoplastic growth is frequently associated with genomic DNA methylation that causes transcriptional silencing of tumor suppressor genes. We used a collection of colorectal polyps and carcinomas in combination with bioinformatics analysis of large datasets to study the expression and methylation of Hypermethylated in cancer 1 (HIC1), a tumor suppressor gene inactivated in many neoplasms. In premalignant stages, HIC1 expression was decreased, and the decrease was linked to methylation of a specific region in the HIC1 locus. However, in carcinomas, the HIC1 expression was variable and, in some specimens, comparable to healthy tissue. Importantly, high HIC1 production distinguished a specific type of chemotherapy-responsive tumors.
Collapse
Affiliation(s)
- Lucie Janeckova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Michal Kolar
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jiri Svec
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic; Department of Radiotherapy and Oncology, Third Faculty of Medicine, Charles University, Prague, Srobarova 50, 100 34 Prague 4, Czech Republic
| | - Lucie Lanikova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Vendula Pospichalova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Nikol Baloghova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Martina Vojtechova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Eva Sloncova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Hynek Strnad
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Vladimir Korinek
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic; Division BIOCEV, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
7
|
Markowski J, Sieroń AL, Kasperczyk K, Ciupińska-Kajor M, Auguściak-Duma A, Likus W. Expression of the tumor suppressor gene hypermethylated in cancer 1 in laryngeal carcinoma. Oncol Lett 2015; 9:2299-2302. [PMID: 26137060 DOI: 10.3892/ol.2015.2983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 01/22/2015] [Indexed: 12/20/2022] Open
Abstract
Hypermethylated in cancer 1 (HIC1) is a putative suppressor gene, cooperating with TP53 in the regulation of apoptosis. The promoter site of this gene contains CpG islands susceptible to methylation. Altered methylation leads to the silencing of HIC1. Persistent loss of HIC1 function reflects the attenuation of proapoptotic characteristics of TP53 and may constitute the background for carcinogenesis. Altered methylation profiles along with diminished expression of HIC1 were documented in a number of solid neoplasms. The aim of this study was to evaluate the expression of the HIC1 gene in laryngeal carcinoma. RNA was extracted from samples of laryngeal cancer and corresponding healthy tissues of 21 patients with advanced laryngeal cancer (T3-T4). The amount of RNA (cDNA) was evaluated using reverse transcription-quantitative polymerase chain reaction with GADPH as the reference gene. Data demonstrated that HIC1 expression was significantly reduced in laryngeal cancer tissues. The relative expression of HIC1 was found to be ~40% lower in tumor samples compared to that in healthy controls. The median tumor/normal tissue ratio for HIC1 was 0.615. These results suggest that low HIC1 expression may be associated with neoplastic transformation in the larynx.
Collapse
Affiliation(s)
- Jarosław Markowski
- Department of Laryngology, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-027, Poland
| | - Aleksander L Sieroń
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland ; CoE Research and Teaching of Molecular Biology of Matrix and Nanotechnology, Network of CoE BioMedTech Silesia, Katowice 40-752, Poland
| | - Katarzyna Kasperczyk
- Department of Laryngology, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-027, Poland
| | - Monika Ciupińska-Kajor
- Department of Pathomorphology, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Aleksandra Auguściak-Duma
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| | - Wirginia Likus
- Department of Human Anatomy, School of Medicine in Katowice, Medical University of Silesia, Katowice 40-752, Poland
| |
Collapse
|
8
|
Shi N, Chen SY. Cell division cycle 7 mediates transforming growth factor-β-induced smooth muscle maturation through activation of myocardin gene transcription. J Biol Chem 2013; 288:34336-42. [PMID: 24133205 DOI: 10.1074/jbc.m113.498238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smooth muscle (SM) development consists of several processes, including cell fate determination, differentiation, and maturation. The molecular mechanisms controlling SM early differentiation have been studied extensively. However, little is known about the mechanism underlying SM maturation. Cell division cycle 7 (Cdc7) has been shown to regulate cell fate determination in the initial phase of transforming growth factor-β (TGF-β)-induced SM differentiation. Our present study indicates that Cdc7 also regulates SM maturation. Knockdown of Cdc7 suppresses TGF-β-induced expression of SM myosin heavy chain, a late marker of SM differentiation. Cdc7 overexpression, on the other hand, enhances SM myosin heavy chain expression. Interestingly, Cdc7 activates the mRNA expression and promoter activity of myocardin (Myocd), a master regulator of SM differentiation, whose transcription is blocked in the initial phase of the differentiation because TGF-β does not induce Myocd mRNA until after the early SM markers are induced. These data suggest that Cdc7 mediates TGF-β-induced SM maturation via activation of Myocd transcription. Mechanistically, Cdc7 physically and functionally interacts with Nkx2.5 to regulate Myocd promoter activity. Cdc7 appears to enhance Nkx2.5 binding to Myocd promoter, leading to Myocd activation. Taken together, our studies demonstrate that Cdc7 regulates the initial and late phase of SM differentiation through distinct mechanisms.
Collapse
Affiliation(s)
- Ning Shi
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602
| | | |
Collapse
|
9
|
Rood BR, Leprince D. Deciphering HIC1 control pathways to reveal new avenues in cancer therapeutics. Expert Opin Ther Targets 2013; 17:811-27. [PMID: 23566242 DOI: 10.1517/14728222.2013.788152] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The tumor suppressor gene HIC1 (Hypermethylated in Cancer 1), which encodes a transcriptional repressor with multiple partners and multiple targets, is epigenetically silenced but not mutated in tumors. HIC1 has broad biological roles during normal development and is implicated in many canonical processes of cancer such as control of cell growth, cell survival upon genotoxic stress, cell migration, and motility. AREAS COVERED The HIC1 literature herein discussed includes its discovery as a candidate tumor suppressor gene hypermethylated or deleted in many human tumors, animal models establishing it as tumor suppressor gene, its role as a sequence-specific transcriptional repressor recruiting several chromatin regulatory complexes, its cognate target genes, and its functional roles in normal tissues. Finally, this review discusses how its loss of function contributes to the early steps in tumorigenesis. EXPERT OPINION Given HIC1's ability to direct repressive complexes to sequence-specific binding sites associated with its target genes, its loss results in specific changes in the transcriptional program of the cell. An understanding of this program through identification of HIC1's target genes and their involvement in feedback loops and cell process regulation will yield the ability to leverage this knowledge for therapeutic translation.
Collapse
Affiliation(s)
- Brian R Rood
- Center for Cancer and Blood Disorders, Children's National Medical Center, Division of Oncology, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | | |
Collapse
|
10
|
Zheng J, Xiong D, Sun X, Wang J, Hao M, Ding T, Xiao G, Wang X, Mao Y, Fu Y, Shen K, Wang J. Signification of Hypermethylated in Cancer 1 (HIC1) as Tumor Suppressor Gene in Tumor Progression. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2012; 5:285-93. [PMID: 22528874 PMCID: PMC3460058 DOI: 10.1007/s12307-012-0103-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/28/2012] [Indexed: 12/30/2022]
Abstract
Hypermethylated in cancer 1(HIC1) was identified as a strong suppressor gene in chromosome region 17p13.3 telomeric to TP53. This gene encodes a transcriptional repressor and is ubiquitously expressed in normal tissues but downexpressed in different tumor tissues where it is hypermethylated. The hypermethylation of this chromosomal region leads to epigenetic inactivation of HIC1, which would prompt cancer cells to alter survival and signaling pathways or specific transcription factors during the period of tumorigenesis. In vitro, HIC1 function is mainly a sequence-specific transcriptional repressor interacting with a still growing range of histone deacetylase(HDAC)-dependent and HDAC-independent corepressor complexes. Furthermore, a role for HIC1 in tumor development is firmly supported by Hic1 deficient mouse model and two double heterozygote models cooperate with p53 and Ptch1. Notably, our findings suggest that potential factors derived from tumor microenviroment may play a role in modulating HIC1 expression in tumor cells by epigenetic modification, which is responsible for tumor progression. In this review, we will describe genomic and proteinic structure of HIC1, and summary the potential role of HIC1 in human various solid tumors and leukemia, and explore the influence of tumor microenviroment on inducing HIC1 expression in tumor cells.
Collapse
Affiliation(s)
- Jianghua Zheng
- Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Dan Xiong
- Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xueqing Sun
- Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Jinglong Wang
- Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Mingang Hao
- Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Tao Ding
- Department of Urological Surgery, Shanghai the Tenth People’s Hospital of Tong Ji University, Shanghai, 200072 China
| | - Gang Xiao
- Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiumin Wang
- Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yan Mao
- Shanghai Ruijin Hospital, Comprehensive Breast Health Center, Shanghai, 200025 China
| | - Yuejie Fu
- Department of Thoracic Surgery, RenJi Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Kunwei Shen
- Shanghai Ruijin Hospital, Comprehensive Breast Health Center, Shanghai, 200025 China
| | - Jianhua Wang
- Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
11
|
Foveau B, Boulay G, Pinte S, Van Rechem C, Rood BR, Leprince D. The receptor tyrosine kinase EphA2 is a direct target gene of hypermethylated in cancer 1 (HIC1). J Biol Chem 2012; 287:5366-78. [PMID: 22184117 PMCID: PMC3285316 DOI: 10.1074/jbc.m111.329466] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor gene hypermethylated in cancer 1 (HIC1), which encodes a transcriptional repressor, is epigenetically silenced in many human tumors. Here, we show that ectopic expression of HIC1 in the highly malignant MDA-MB-231 breast cancer cell line severely impairs cell proliferation, migration, and invasion in vitro. In parallel, infection of breast cancer cell lines with a retrovirus expressing HIC1 also induces decreased mRNA and protein expression of the tyrosine kinase receptor EphA2. Moreover, chromatin immunoprecipitation (ChIP) and sequential ChIP experiments demonstrate that endogenous HIC1 proteins are bound, together with the MTA1 corepressor, to the EphA2 promoter in WI38 cells. Taken together, our results identify EphA2 as a new direct target gene of HIC1. Finally, we observe that inactivation of endogenous HIC1 through RNA interference in normal breast epithelial cells results in the up-regulation of EphA2 and is correlated with increased cellular migration. To conclude, our results involve the tumor suppressor HIC1 in the transcriptional regulation of the tyrosine kinase receptor EphA2, whose ligand ephrin-A1 is also a HIC1 target gene. Thus, loss of the regulation of this Eph pathway through HIC1 epigenetic silencing could be an important mechanism in the pathogenesis of epithelial cancers.
Collapse
Affiliation(s)
- Bénédicte Foveau
- From the CNRS UMR 8161, Institut de Biologie de Lille, CNRS-Institut Pasteur de Lille-Université de Lille 1-Université de Lille 2, 59021 Lille Cedex, France and
| | - Gaylor Boulay
- From the CNRS UMR 8161, Institut de Biologie de Lille, CNRS-Institut Pasteur de Lille-Université de Lille 1-Université de Lille 2, 59021 Lille Cedex, France and
| | - Sébastien Pinte
- From the CNRS UMR 8161, Institut de Biologie de Lille, CNRS-Institut Pasteur de Lille-Université de Lille 1-Université de Lille 2, 59021 Lille Cedex, France and
| | - Capucine Van Rechem
- From the CNRS UMR 8161, Institut de Biologie de Lille, CNRS-Institut Pasteur de Lille-Université de Lille 1-Université de Lille 2, 59021 Lille Cedex, France and
| | - Brian R. Rood
- the Children's National Medical Center, The George Washington University School of Medicine, Washington, D. C. 20010-2970
| | - Dominique Leprince
- From the CNRS UMR 8161, Institut de Biologie de Lille, CNRS-Institut Pasteur de Lille-Université de Lille 1-Université de Lille 2, 59021 Lille Cedex, France and
| |
Collapse
|
12
|
Wegner K, Bachmann A, Schad JU, Lucarelli P, Sahle S, Nickel P, Meyer C, Klingmüller U, Dooley S, Kummer U. Dynamics and feedback loops in the transforming growth factor β signaling pathway. Biophys Chem 2012; 162:22-34. [PMID: 22284904 DOI: 10.1016/j.bpc.2011.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/25/2022]
Abstract
Transforming growth factor β (TGF-β) ligands activate a signaling cascade with multiple cell context dependent outcomes. Disruption or disturbance leads to variant clinical disorders. To develop strategies for disease intervention, delineation of the pathway in further detail is required. Current theoretical models of this pathway describe production and degradation of signal mediating proteins and signal transduction from the cell surface into the nucleus, whereas feedback loops have not exhaustively been included. In this study we present a mathematical model to determine the relevance of feedback regulators (Arkadia, Smad7, Smurf1, Smurf2, SnoN and Ski) on TGF-β target gene expression and the potential to initiate stable oscillations within a realistic parameter space. We employed massive sampling of the parameters space to pinpoint crucial players for potential oscillations as well as transcriptional product levels. We identified Smad7 and Smurf2 with the highest impact on the dynamics. Based on these findings, we conducted preliminary time course experiments.
Collapse
Affiliation(s)
- Katja Wegner
- Biological and Neural Computation Group, Science and Technology Research Institute, University of Hertfordshire, College Lane, Hatfield, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Schulze D, Plohmann P, Höbel S, Aigner A. Anti-tumor effects of fibroblast growth factor-binding protein (FGF-BP) knockdown in colon carcinoma. Mol Cancer 2011; 10:144. [PMID: 22111880 PMCID: PMC3281803 DOI: 10.1186/1476-4598-10-144] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 11/23/2011] [Indexed: 01/18/2023] Open
Abstract
Background Fibroblast growth factors FGF-1 and FGF-2 are often upregulated in tumors, but tightly bound to heparan sulphate proteoglycans of the extracellular matrix (ECM). One mechanism of their bioactivation relies on the FGF-binding protein (FGF-BP) which, upon reversible binding to FGF-1 or -2, leads to their release from the ECM. FGF-BP increases tumorigenicity and is highly expressed in tumors like colon carcinoma. In this paper, we analyse cellular and molecular consequences of RNAi-mediated FGF-BP knockdown in colon carcinoma, and explore the therapeutic effects of the nanoparticle-mediated delivery of small interfering RNAs (siRNAs) for FGF-BP targeting. Results Employing stable RNAi cells, we establish a dose-dependence of cell proliferation on FGF-BP expression levels. Decreased proliferation is mirrored by alterations in cell cycle distribution and upregulation of p21, which is relevant for mediating FGF-BP effects. While inhibition of proliferation is mainly associated with reduced Akt and increased GSK3β activation, antibody array-based analyses also reveal other alterations in MAPK signalling. Additionally, we demonstrate induction of apoptosis, mediated through caspase-3/7 activation, and alterations in redox status upon FGF-BP knockdown. These effects are based on the upregulation of Bad, Bax and HIF-1α, and the downregulation of catalase. In a therapeutic FGF-BP knockdown approach based on RNAi, we employ polymer-based nanoparticles for the in vivo delivery of siRNAs into established wildtype colon carcinoma xenografts. We show that the systemic treatment of mice leads to the inhibition of tumor growth based on FGF-BP knockdown. Conclusions FGF-BP is integrated in a complex network of cytoprotective effects, and represents a promising therapeutic target for RNAi-based knockdown approaches.
Collapse
Affiliation(s)
- Daniel Schulze
- Institute of Pharmacology, Faculty of Medicine, Philipps-University Marburg, Germany
| | | | | | | |
Collapse
|
14
|
Huang WY, Xie W, Guo X, Li F, Jose PA, Chen SY. Smad2 and PEA3 cooperatively regulate transcription of response gene to complement 32 in TGF-β-induced smooth muscle cell differentiation of neural crest cells. Am J Physiol Cell Physiol 2011; 301:C499-506. [PMID: 21613609 PMCID: PMC3154553 DOI: 10.1152/ajpcell.00480.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 05/20/2011] [Indexed: 11/22/2022]
Abstract
Response gene to complement 32 (RGC-32) is activated by transforming growth factor- β (TGF-β) and plays an important role in smooth muscle cell (SMC) differentiation from neural crest Monc-1 cells. The molecular mechanism governing TGF-β activation of RGC-32, however, remains to be determined. The present studies indicate that TGF-β regulates RGC-32 gene transcription. Sequence analysis revealed a Smad binding element (SBE) located in the region from -1344 to -1337 bp upstream of the transcription start site of RGC-32 gene. A polyomavirus enhancer activator (PEA3) binding site is adjacent to the SBE. Mutation at either SBE or PEA3 site significantly inhibited RGC-32 promoter activity. Mutations at both sites completely abolished TGF-β-induced promoter activity. Biochemically, TGF-β stimulated recruitment of Smad2, Smad4, and PEA3 to the RGC-32 promoter, as revealed by gel shift and chromatin immunoprecipitation analyses. Functionally, Smad2, but not Smad3, activated RGC-32 promoter. PEA3 appeared to enhance Smad2 activity. In agreement with their function, Smad2, but not Smad3, physically interacted with PEA3. In TGF-β-induced SMC differentiation of Monc-1 cells, knockdown of Smad2 by short hairpin RNA resulted in downregulation of RGC-32 and SMC marker genes. The downregulation of SMC markers, however, was rescued by exogenously introduced RGC-32. These results demonstrate that Smad2 regulation of RGC-32 transcription is essential for SMC differentiation from neural crest cells.
Collapse
Affiliation(s)
- Wen-Yan Huang
- Department of Physiology and Pharmacology, The University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
15
|
Xie WB, Li Z, Miano JM, Long X, Chen SY. Smad3-mediated myocardin silencing: a novel mechanism governing the initiation of smooth muscle differentiation. J Biol Chem 2011; 286:15050-7. [PMID: 21402709 PMCID: PMC3083168 DOI: 10.1074/jbc.m110.202747] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 03/11/2011] [Indexed: 12/30/2022] Open
Abstract
Both TGF-β and myocardin (MYOCD) are important for smooth muscle cell (SMC) differentiation, but their precise role in regulating the initiation of SMC development is less clear. In TGF-β-induced SMC differentiation of pluripotent C3H10T1/2 progenitors, we found that TGF-β did not significantly induce Myocd mRNA expression until 18 h of stimulation. On the other hand, early SMC markers such as SM α-actin, SM22α, and SM calponin were detectable beginning 2 or 4 h after TGF-β treatment. These results suggest that Myocd expression is blocked during the initiation of TGF-β-induced SMC differentiation. Consistent with its endogenous expression, Myocd promoter activity was not elevated until 18 h following TGF-β stimulation. Surprisingly, Smad signaling was inhibitory to Myocd expression because blockade of Smad signaling enhanced Myocd promoter activity. Overexpression of Smad3, but not Smad2, inhibited Myocd promoter activity. Conversely, shRNA knockdown of Smad3 allowed TGF-β to activate the Myocd promoter in the initial phase of induction. Myocd was activated by PI3 kinase signaling and its downstream target Nkx2.5. Interestingly, Smad3 did not affect PI3 kinase activity. However, Smad3 physically interacted with Nkx2.5. This interaction blocked Nkx2.5 binding to the Myocd promoter in the early stage of TGF-β induction, leading to inhibition of Myocd mRNA expression. Moreover, Smad3 inhibited Nkx2.5-activated Myocd promoter activity in a dose-dependent manner. Taken together, our results reveal a novel mechanism for Smad3-mediated inhibition of Myocd in the initiation phase of SMC differentiation.
Collapse
Affiliation(s)
- Wei-Bing Xie
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602 and
| | - Zuguo Li
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602 and
| | - Joseph M. Miano
- the Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York 14642
| | - Xiaochun Long
- the Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York 14642
| | - Shi-You Chen
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602 and
| |
Collapse
|
16
|
|
17
|
Van Rechem C, Rood BR, Touka M, Pinte S, Jenal M, Guérardel C, Ramsey K, Monté D, Bégue A, Tschan MP, Stephan DA, Leprince D. Scavenger chemokine (CXC motif) receptor 7 (CXCR7) is a direct target gene of HIC1 (hypermethylated in cancer 1). J Biol Chem 2009; 284:20927-35. [PMID: 19525223 DOI: 10.1074/jbc.m109.022350] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tumor suppressor gene HIC1 (Hypermethylated in Cancer 1) that is epigenetically silenced in many human tumors and is essential for mammalian development encodes a sequence-specific transcriptional repressor. The few genes that have been reported to be directly regulated by HIC1 include ATOH1, FGFBP1, SIRT1, and E2F1. HIC1 is thus involved in the complex regulatory loops modulating p53-dependent and E2F1-dependent cell survival and stress responses. We performed genome-wide expression profiling analyses to identify new HIC1 target genes, using HIC1-deficient U2OS human osteosarcoma cells infected with adenoviruses expressing either HIC1 or GFP as a negative control. These studies identified several putative direct target genes, including CXCR7, a G-protein-coupled receptor recently identified as a scavenger receptor for the chemokine SDF-1/CXCL12. CXCR7 is highly expressed in human breast, lung, and prostate cancers. Using quantitative reverse transcription-PCR analyses, we demonstrated that CXCR7 was repressed in U2OS cells overexpressing HIC1. Inversely, inactivation of endogenous HIC1 by RNA interference in normal human WI38 fibroblasts results in up-regulation of CXCR7 and SIRT1. In silico analyses followed by deletion studies and luciferase reporter assays identified a functional and phylogenetically conserved HIC1-responsive element in the human CXCR7 promoter. Moreover, chromatin immunoprecipitation (ChIP) and ChIP upon ChIP experiments demonstrated that endogenous HIC1 proteins are bound together with the C-terminal binding protein corepressor to the CXCR7 and SIRT1 promoters in WI38 cells. Taken together, our results implicate the tumor suppressor HIC1 in the transcriptional regulation of the chemokine receptor CXCR7, a key player in the promotion of tumorigenesis in a wide variety of cell types.
Collapse
Affiliation(s)
- Capucine Van Rechem
- CNRS UMR 8161 Institut de Biologie de Lille, Université de Lille NORD de France, Institut Pasteur de Lille, 59017 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jenal M, Trinh E, Britschgi C, Britschgi A, Roh V, Vorburger SA, Tobler A, Leprince D, Fey MF, Helin K, Tschan MP. The tumor suppressor gene hypermethylated in cancer 1 is transcriptionally regulated by E2F1. Mol Cancer Res 2009; 7:916-22. [PMID: 19491197 DOI: 10.1158/1541-7786.mcr-08-0359] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Hypermethylated in Cancer 1 (HIC1) gene encodes a zinc finger transcriptional repressor that cooperates with p53 to suppress cancer development. We and others recently showed that HIC1 is a transcriptional target of p53. To identify additional transcriptional regulators of HIC1, we screened a set of transcription factors for regulation of a human HIC1 promoter reporter. We found that E2F1 strongly activates the full-length HIC1 promoter reporter. Promoter deletions and mutations identified two E2F responsive elements in the HIC1 core promoter region. Moreover, in vivo binding of E2F1 to the HIC1 promoter was shown by chromatin immunoprecipitation assays in human TIG3 fibroblasts expressing tamoxifen-activated E2F1. In agreement, activation of E2F1 in TIG3-E2F1 cells markedly increased HIC1 expression. Interestingly, expression of E2F1 in the p53(-/-) hepatocellular carcinoma cell line Hep3B led to an increase of endogenous HIC1 mRNA, although bisulfite genomic sequencing of the HIC1 promoter revealed that the region bearing the two E2F1 binding sites is hypermethylated. In addition, endogenous E2F1 induced by etoposide treatment bound to the HIC1 promoter. Moreover, inhibition of E2F1 strongly reduced the expression of etoposide-induced HIC1. In conclusion, we identified HIC1 as novel E2F1 transcriptional target in DNA damage responses.
Collapse
Affiliation(s)
- Mathias Jenal
- Department of Clinical Research, University of Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. J Biol Chem 2008. [PMID: 19088079 DOI: 10.1074/jbc.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The platelet-derived growth factor (PDGF) signaling pathway is a critical regulator of animal development and homeostasis. Activation of the PDGF pathway leads to neointimal proliferative responses to artery injury; it promotes a switch of vascular smooth muscle cells (vSMC) to a less contractile phenotype by inhibiting the SMC-specific gene expression and increasing the rate of proliferation and migration. The molecular mechanism for these pleiotropic effects of PDGFs has not been fully described. Here, we identify the microRNA-221 (miR-221), a small noncoding RNA, as a modulator of the phenotypic change of vSMCs in response to PDGF signaling. We demonstrate that miR-221 is transcriptionally induced upon PDGF treatment in primary vSMCs, leading to down-regulation of the targets c-Kit and p27Kip1. Down-regulation of p27Kip1 by miR-221 is critical for PDGF-mediated induction of cell proliferation. Additionally, decreased c-Kit causes inhibition of SMC-specific contractile gene transcription by reducing the expression of Myocardin (Myocd), a potent SMC-specific nuclear coactivator. Our study demonstrates that PDGF signaling, by modulating the expression of miR-221, regulates two critical determinants of the vSMC phenotype; they are SMC gene expression and cell proliferation.
Collapse
Affiliation(s)
- Brandi N Davis
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
20
|
Fleuriel C, Touka M, Boulay G, Guérardel C, Rood BR, Leprince D. HIC1 (Hypermethylated in Cancer 1) epigenetic silencing in tumors. Int J Biochem Cell Biol 2008; 41:26-33. [PMID: 18723112 DOI: 10.1016/j.biocel.2008.05.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 05/19/2008] [Accepted: 05/19/2008] [Indexed: 12/27/2022]
Abstract
HIC1 (Hypermethylated in Cancer 1), as it name implied, was originally isolated as a new candidate tumor suppressor gene located at 17p13.3 because it resides in a CpG island that is hypermethylated in many types of human cancers. HIC1 encodes a transcription factor associating an N-terminal BTB/POZ domain to five C-terminal Krüppel-like C(2)H(2) zinc finger motifs. In this review, we will begin by providing an overview of the current knowledge on HIC1 function, mainly gained from in vitro studies, as a sequence-specific transcriptional repressor interacting with a still growing range of HDAC-dependent and HDAC-independent corepressor complexes. We will then summarize the studies that have demonstrated frequent hypermethylation changes or losses of heterozygosity of the HIC1 locus in human cancers. Next, we will review animal models which have firmly established HIC1 as a bona fide tumor suppressor gene epigenetically silenced and functionally cooperating notably with p53 within a complex HIC1-p53-SIRT1 regulatory loop. Finally, we will discuss how this epigenetic inactivation of HIC1 might "addict" cancer cells to altered survival and signaling pathways or to lineage-specific transcription factors during the early stages of tumorigenesis.
Collapse
Affiliation(s)
- Capucine Fleuriel
- Université de Lille 1 et de Lille 2, Institut PASTEUR de LILLE, 59017 Lille Cedex, France
| | | | | | | | | | | |
Collapse
|
21
|
Essential factors associated with hepatic angiogenesis. Life Sci 2007; 81:1555-64. [DOI: 10.1016/j.lfs.2007.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 09/17/2007] [Accepted: 09/25/2007] [Indexed: 01/20/2023]
|