1
|
Horn-Ghetko D, Hopf LVM, Tripathi-Giesgen I, Du J, Kostrhon S, Vu DT, Beier V, Steigenberger B, Prabu JR, Stier L, Bruss EM, Mann M, Xiong Y, Schulman BA. Noncanonical assembly, neddylation and chimeric cullin-RING/RBR ubiquitylation by the 1.8 MDa CUL9 E3 ligase complex. Nat Struct Mol Biol 2024; 31:1083-1094. [PMID: 38605244 PMCID: PMC11257990 DOI: 10.1038/s41594-024-01257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024]
Abstract
Ubiquitin ligation is typically executed by hallmark E3 catalytic domains. Two such domains, 'cullin-RING' and 'RBR', are individually found in several hundred human E3 ligases, and collaborate with E2 enzymes to catalyze ubiquitylation. However, the vertebrate-specific CUL9 complex with RBX1 (also called ROC1), of interest due to its tumor suppressive interaction with TP53, uniquely encompasses both cullin-RING and RBR domains. Here, cryo-EM, biochemistry and cellular assays elucidate a 1.8-MDa hexameric human CUL9-RBX1 assembly. Within one dimeric subcomplex, an E2-bound RBR domain is activated by neddylation of its own cullin domain and positioning from the adjacent CUL9-RBX1 in trans. Our data show CUL9 as unique among RBX1-bound cullins in dependence on the metazoan-specific UBE2F neddylation enzyme, while the RBR domain protects it from deneddylation. Substrates are recruited to various upstream domains, while ubiquitylation relies on both CUL9's neddylated cullin and RBR domains achieving self-assembled and chimeric cullin-RING/RBR E3 ligase activity.
Collapse
Affiliation(s)
- Daniel Horn-Ghetko
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Linus V M Hopf
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Chemistry, TUM School of Natural Sciences, Garching, Germany
| | - Ishita Tripathi-Giesgen
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Chemistry, TUM School of Natural Sciences, Garching, Germany
| | - Jiale Du
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sebastian Kostrhon
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - D Tung Vu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Viola Beier
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Barbara Steigenberger
- Mass Spectrometry Core Facility, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Luca Stier
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Chemistry, TUM School of Natural Sciences, Garching, Germany
| | - Elias M Bruss
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Chemistry, TUM School of Natural Sciences, Garching, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Yue Xiong
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Cullgen Inc., San Diego, CA, USA
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Department of Chemistry, TUM School of Natural Sciences, Garching, Germany.
| |
Collapse
|
2
|
Hopf LVM, Baek K, Klügel M, von Gronau S, Xiong Y, Schulman BA. Structure of CRL7 FBXW8 reveals coupling with CUL1-RBX1/ROC1 for multi-cullin-RING E3-catalyzed ubiquitin ligation. Nat Struct Mol Biol 2022; 29:854-862. [PMID: 35982156 PMCID: PMC9507964 DOI: 10.1038/s41594-022-00815-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/28/2022] [Indexed: 11/27/2022]
Abstract
Most cullin-RING ubiquitin ligases (CRLs) form homologous assemblies between a neddylated cullin-RING catalytic module and a variable substrate-binding receptor (for example, an F-box protein). However, the vertebrate-specific CRL7FBXW8 is of interest because it eludes existing models, yet its constituent cullin CUL7 and F-box protein FBXW8 are essential for development, and CUL7 mutations cause 3M syndrome. In this study, cryo-EM and biochemical analyses reveal the CRL7FBXW8 assembly. CUL7’s exclusivity for FBXW8 among all F-box proteins is explained by its unique F-box-independent binding mode. In CRL7FBXW8, the RBX1 (also known as ROC1) RING domain is constrained in an orientation incompatible with binding E2~NEDD8 or E2~ubiquitin intermediates. Accordingly, purified recombinant CRL7FBXW8 lacks auto-neddylation and ubiquitination activities. Instead, our data indicate that CRL7 serves as a substrate receptor linked via SKP1–FBXW8 to a neddylated CUL1–RBX1 catalytic module mediating ubiquitination. The structure reveals a distinctive CRL–CRL partnership, and provides a framework for understanding CUL7 assemblies safeguarding human health. The cryo-EM structure of CRL7FBXW8 shows that CUL7–RBX1 binds FBXW8–SKP1 in an F-box-independent manner. Bridged by FBXW8–SKP1, CRL7FBXW8 forms a multi-cullin E3 ligase complex with neddylated CUL1–RBX1, which ubiquitinates a substrate recruited to CUL7.
Collapse
Affiliation(s)
- Linus V M Hopf
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kheewoong Baek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maren Klügel
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Susanne von Gronau
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Yue Xiong
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Cullgen Inc., San Diego, CA, USA
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
3
|
Ong SY, Schuelein R, Wibawa RR, Thomas DW, Handoko Y, Freytag S, Bahlo M, Simpson KJ, Hartland EL. Genome-wide genetic screen identifies host ubiquitination as important for Legionella pneumophila Dot/Icm effector translocation. Cell Microbiol 2021; 23:e13368. [PMID: 34041837 DOI: 10.1111/cmi.13368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022]
Abstract
The Dot/Icm system of Legionella pneumophila is essential for virulence and delivers a large repertoire of effectors into infected host cells to create the Legionella containing vacuole. Since the secretion of effectors via the Dot/Icm system does not occur in the absence of host cells, we hypothesised that host factors actively participate in Dot/Icm effector translocation. Here we employed a high-throughput, genome-wide siRNA screen to systematically test the effect of silencing 18,120 human genes on translocation of the Dot/Icm effector, RalF, into HeLa cells. For the primary screen, we found that silencing of 119 genes led to increased translocation of RalF, while silencing of 321 genes resulted in decreased translocation. Following secondary screening, 70 genes were successfully validated as 'high confidence' targets. Gene set enrichment analysis of siRNAs leading to decreased RalF translocation, showed that ubiquitination was the most highly overrepresented category in the pathway analysis. We further showed that two host factors, the E2 ubiquitin-conjugating enzyme, UBE2E1, and the E3 ubiquitin ligase, CUL7, were important for supporting Dot/Icm translocation and L. pneumophila intracellular replication. In summary, we identified host ubiquitin pathways as important for the efficiency of Dot/Icm effector translocation by L. pneumophila, suggesting that host-derived ubiquitin-conjugating enzymes and ubiquitin ligases participate in the translocation of Legionella effector proteins and influence intracellular persistence and survival.
Collapse
Affiliation(s)
- Sze Ying Ong
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Ralf Schuelein
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Rachelia R Wibawa
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Daniel W Thomas
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Yanny Handoko
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Saskia Freytag
- Division of Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Melanie Bahlo
- Division of Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth L Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
4
|
Song Q, Feng S, Peng W, Li A, Ma T, Yu B, Liu HM. Cullin-RING Ligases as Promising Targets for Gastric Carcinoma Treatment. Pharmacol Res 2021; 170:105493. [PMID: 33600940 DOI: 10.1016/j.phrs.2021.105493] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Gastric carcinoma has serious morbidity and mortality, which seriously threats human health. The studies on gastrointestinal cell biology have shown that the ubiquitination modification that occurs after protein translation plays an essential role in the pathogenesis of gastric carcinoma. Protein ubiquitination is catalyzed by E3 ubiquitin ligase and can regulate various substrate proteins in different cellular pathways. Cullin-RING E3 ligase (CRLs) is a representative of the E3 ubiquitin ligase family, which requires cullin (CUL) neddylation modification for activation to regulate homeostasis of ~20% of cellular proteins. The substrate molecules regulated by CRLs are often involved in many cell progressions such as cell cycle progression, cell apoptosis, DNA damage and repair. Given that CRLs play an important role in modulation of biological activities, so targeting a certain CULs member neddylation may be an attractive strategy for selectively controlling the cellular proteins levels to achieve the goal of cancer treatment. In this review, we will discuss the roles of CULs and Ring protein in gastric carcinoma and summarize the current neddylation modulators for gastric carcinoma treatment.
Collapse
Affiliation(s)
- Qianqian Song
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Siqi Feng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Wenjun Peng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Anqi Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ting Ma
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Bin Yu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
5
|
Pan M, Blattner C. Regulation of p53 by E3s. Cancers (Basel) 2021; 13:745. [PMID: 33670160 PMCID: PMC7916862 DOI: 10.3390/cancers13040745] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
More than 40 years of research on p53 have given us tremendous knowledge about this protein. Today we know that p53 plays a role in different biological processes such as proliferation, invasion, pluripotency, metabolism, cell cycle control, ROS (reactive oxygen species) production, apoptosis, inflammation and autophagy. In the nucleus, p53 functions as a bona-fide transcription factor which activates and represses transcription of a number of target genes. In the cytoplasm, p53 can interact with proteins of the apoptotic machinery and by this also induces cell death. Despite being so important for the fate of the cell, expression levels of p53 are kept low in unstressed cells and the protein is largely inactive. The reason for the low expression level is that p53 is efficiently degraded by the ubiquitin-proteasome system and the vast inactivity of the tumor suppressor protein under normal growth conditions is due to the absence of activating and the presence of inactivating posttranslational modifications. E3s are important enzymes for these processes as they decorate p53 with ubiquitin and small ubiquitin-like proteins and by this control p53 degradation, stability and its subcellular localization. In this review, we provide an overview about E3s that target p53 and discuss the connection between p53, E3s and tumorigenesis.
Collapse
Affiliation(s)
| | - Christine Blattner
- Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, PO-box 3640, 76021 Karlsruhe, Germany;
| |
Collapse
|
6
|
The functional analysis of Cullin 7 E3 ubiquitin ligases in cancer. Oncogenesis 2020; 9:98. [PMID: 33130829 PMCID: PMC7603503 DOI: 10.1038/s41389-020-00276-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 01/09/2023] Open
Abstract
Cullin (CUL) proteins have critical roles in development and cancer, however few studies on CUL7 have been reported due to its characteristic molecular structure. CUL7 forms a complex with the ROC1 ring finger protein, and only two F-box proteins Fbxw8 and Fbxw11 have been shown to bind to CUL7. Interestingly, CUL7 can interact with its substrates by forming a novel complex that is independent of these two F-box proteins. The biological implications of CUL-ring ligase 7 (CRL7) suggest that the CRL7 may not only perform a proteolytic function but may also play a non-proteolytic role. Among the existing studied CRL7-based E3 ligases, CUL7 exerts both tumor promotion and suppression in a context-dependent manner. Currently, the mechanism of CUL7 in cancer remains unclear, and no studies have addressed potential therapies targeting CUL7. Consistent with the roles of the various CRL7 adaptors exhibit, targeting CRL7 might be an effective strategy for cancer prevention and treatment. We systematically describe the recent major advances in understanding the role of the CUL7 E3 ligase in cancer and further summarize its potential use in clinical therapy.
Collapse
|
7
|
Pan ZQ. Cullin-RING E3 Ubiquitin Ligase 7 in Growth Control and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:285-296. [PMID: 31898234 PMCID: PMC8343956 DOI: 10.1007/978-981-15-1025-0_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CRL7Fbxw8 is an E3 ubiquitin ligase complex, containing cullin7 (CUL7) as a scaffold, the F-box protein Fbxw8 as a substrate receptor, the Skp1 adaptor, and the ROC1/Rbx1 RING finger protein for working with E2 enzyme to facilitate ubiquitin transfer. This chapter provides an update on studies linking CRL7Fbxw8 to hereditary human growth retardation disease, as at least 64 cul7 germ line mutations were found in patients with autosomal recessive 3-M syndrome. CRL7Fbxw8 interacts with two additional 3-M associated proteins OBSL1 and CCDC8, leading to subcellular localization of the E3 complex to regions including plasma membrane, centrosome, and Golgi. At least ten mammalian cellular proteins were identified or implicated as CRL7Fbxw8 substrates. Discussion focuses on the possible impact of CRL7Fbxw8-mediated proteolytic or non-proteolytic pathways in growth control and cancer.
Collapse
Affiliation(s)
- Zhen-Qiang Pan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
García‐Cano J, Sánchez‐Tena S, Sala‐Gaston J, Figueras A, Viñals F, Bartrons R, Ventura F, Rosa JL. Regulation of the MDM2-p53 pathway by the ubiquitin ligase HERC2. Mol Oncol 2020; 14:69-86. [PMID: 31665549 PMCID: PMC6944118 DOI: 10.1002/1878-0261.12592] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/30/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
The p53 tumor suppressor protein is a transcription factor that plays a prominent role in protecting cells from malignant transformation. Protein levels of p53 and its transcriptional activity are tightly regulated by the ubiquitin E3 ligase MDM2, the gene expression of which is transcriptionally regulated by p53 in a negative feedback loop. The p53 protein is transcriptionally active as a tetramer, and this oligomerization state is modulated by a complex formed by NEURL4 and the ubiquitin E3 ligase HERC2. Here, we report that MDM2 forms a complex with oligomeric p53, HERC2, and NEURL4. HERC2 knockdown results in a decline in MDM2 protein levels without affecting its protein stability, as it reduces its mRNA expression by inhibition of its promoter activation. DNA damage induced by bleomycin dissociates MDM2 from the p53/HERC2/NEURL4 complex and increases the phosphorylation and acetylation of oligomeric p53 bound to HERC2 and NEURL4. Moreover, the MDM2 promoter, which contains p53-response elements, competes with HERC2 for binding of oligomeric, phosphorylated and acetylated p53. We integrate these findings in a model showing the pivotal role of HERC2 in p53-MDM2 loop regulation. Altogether, these new insights in p53 pathway regulation are of great interest in cancer and may provide new therapeutic targets.
Collapse
Affiliation(s)
- Jesús García‐Cano
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| | - Susana Sánchez‐Tena
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| | - Joan Sala‐Gaston
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| | - Agnès Figueras
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| | - Francesc Viñals
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| | - Ramon Bartrons
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| | - Francesc Ventura
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| | - Jose Luis Rosa
- Departament de Ciències FisiològiquesInstitut d’Investigació de Bellvitge (IDIBELL)Universitat de Barcelona: Pavelló de GovernSpain
| |
Collapse
|
9
|
Up-regulation of cullin7 promotes proliferation and migration of pulmonary artery smooth muscle cells in hypoxia-induced pulmonary hypertension. Eur J Pharmacol 2019; 864:172698. [DOI: 10.1016/j.ejphar.2019.172698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 02/04/2023]
|
10
|
Sánchez-Tena S, Cubillos-Rojas M, Schneider T, Rosa JL. Functional and pathological relevance of HERC family proteins: a decade later. Cell Mol Life Sci 2016; 73:1955-68. [PMID: 26801221 PMCID: PMC11108380 DOI: 10.1007/s00018-016-2139-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/22/2022]
Abstract
The HERC gene family encodes proteins with two characteristic domains in their sequence: the HECT domain and the RCC1-like domain (RLD). In humans, the HERC family comprises six members that can be divided into two groups based on their molecular mass and domain structure. Whereas large HERCs (HERC1 and HERC2) contain one HECT and more than one RLD, small HERCs (HERC3-6) possess single HECT and RLD domains. Accumulating evidence shows the HERC family proteins to be key components of a wide range of cellular functions, including neurodevelopment, DNA damage repair, cell growth and immune response. Considering the significant recent advances made regarding HERC functionality, an updated review summarizing the progress is greatly needed at 10 years since the last HERC review. We provide an integrated view of HERC function and go into detail about its implications for several human diseases such as cancer and neurological disorders.
Collapse
Affiliation(s)
- Susana Sánchez-Tena
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Monica Cubillos-Rojas
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Taiane Schneider
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| |
Collapse
|
11
|
Mancias JD, Pontano Vaites L, Nissim S, Biancur DE, Kim AJ, Wang X, Liu Y, Goessling W, Kimmelman AC, Harper JW. Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. eLife 2015; 4. [PMID: 26436293 PMCID: PMC4592949 DOI: 10.7554/elife.10308] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/05/2015] [Indexed: 12/27/2022] Open
Abstract
NCOA4 is a selective cargo receptor for the autophagic turnover of ferritin, a process critical for regulation of intracellular iron bioavailability. However, how ferritinophagy flux is controlled and the roles of NCOA4 in iron-dependent processes are poorly understood. Through analysis of the NCOA4-FTH1 interaction, we demonstrate that direct association via a key surface arginine in FTH1 and a C-terminal element in NCOA4 is required for delivery of ferritin to the lysosome via autophagosomes. Moreover, NCOA4 abundance is under dual control via autophagy and the ubiquitin proteasome system. Ubiquitin-dependent NCOA4 turnover is promoted by excess iron and involves an iron-dependent interaction between NCOA4 and the HERC2 ubiquitin ligase. In zebrafish and cultured cells, NCOA4 plays an essential role in erythroid differentiation. This work reveals the molecular nature of the NCOA4-ferritin complex and explains how intracellular iron levels modulate NCOA4-mediated ferritinophagy in cells and in an iron-dependent physiological setting. DOI:http://dx.doi.org/10.7554/eLife.10308.001 The cells of nearly all organisms need iron as this metal plays an important role in a wide range of biological processes. However, iron can also trigger the formation of harmful molecules that can damage cells. It is therefore crucial that the amount of iron in cells is tightly controlled and that any extra iron is safely stored away. Most of the iron in the body is stored within a protein called ferritin, which is then broken down to release iron as it is needed, in a process known as ferritinophagy. Cells use several systems to break down proteins, one of which, called autophagy, has been linked to ferritinophagy. During autophagy, a bubble-like structure called an autophagosome engulfs proteins that need to be removed and delivers them to a compartment in the cell where they can be broken down. In 2014, researchers showed that a protein called NCOA4 on the surface of autophagosomes targets ferritin for destruction. When iron levels are high in the cell, the amount of NCOA4 on the autophagosomes is low. This leads to fewer ferritin molecules being broken down. In contrast, low iron levels lead to an increase of NCOA4 on autophagosomes, which promotes ferritinophagy and increases the amount of iron in the cell. Now, Mancias, Vaites et al—including several of the researchers involved in the 2014 work—investigate the role of NCOA4 in ferritinophagy in more detail. Biochemical experiments revealed that a region of NCOA4 directly interacts with a particular subunit of ferritin and this interaction is necessary to deliver ferritin to autophagosomes. Mancias, Vaites et al. then used laboratory grown-cells to investigate why the amount of NCOA4 changes in response to the amount of iron in the cell. The experiments show the amount of NCOA4 varies depending on whether it interacts with another protein called HERC2, which targets proteins for destruction by a structure called the proteasome. HERC2 only binds to NCOA4 when iron levels are high, which leads to NCOA4 being broken down by the proteasome. When iron levels are low, HERC2 does not interact with NCOA4. The presence of more NCOA4 then leads to more ferritinophagy, and so increases the amount of iron in the cell. Mancias, Vaites et al. also found that red blood cells, which depend highly on iron, do not develop properly in zebrafish that have lower amounts of the NCOA4 protein. Further work is needed to see whether NCOA4 is also important for the development of other cells and tissues. DOI:http://dx.doi.org/10.7554/eLife.10308.002
Collapse
Affiliation(s)
- Joseph D Mancias
- Department of Cell Biology, Harvard Medical School, Boston, United States.,Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, United States.,Department of Radiation Oncology, Harvard Medical School, Boston, United States
| | | | - Sahar Nissim
- Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States.,Genetics Division, Brigham and Women's Hospital, Boston, United States.,Dana-Farber Cancer Institute, Boston, United States
| | - Douglas E Biancur
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Andrew J Kim
- Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Xiaoxu Wang
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Yu Liu
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Wolfram Goessling
- Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, United States.,Genetics Division, Brigham and Women's Hospital, Boston, United States.,Dana-Farber Cancer Institute, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Alec C Kimmelman
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
12
|
Hanson D, Stevens A, Murray PG, Black GCM, Clayton PE. Identifying biological pathways that underlie primordial short stature using network analysis. J Mol Endocrinol 2014; 52:333-44. [PMID: 24711643 PMCID: PMC4045235 DOI: 10.1530/jme-14-0029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mutations in CUL7, OBSL1 and CCDC8, leading to disordered ubiquitination, cause one of the commonest primordial growth disorders, 3-M syndrome. This condition is associated with i) abnormal p53 function, ii) GH and/or IGF1 resistance, which may relate to failure to recycle signalling molecules, and iii) cellular IGF2 deficiency. However the exact molecular mechanisms that may link these abnormalities generating growth restriction remain undefined. In this study, we have used immunoprecipitation/mass spectrometry and transcriptomic studies to generate a 3-M 'interactome', to define key cellular pathways and biological functions associated with growth failure seen in 3-M. We identified 189 proteins which interacted with CUL7, OBSL1 and CCDC8, from which a network including 176 of these proteins was generated. To strengthen the association to 3-M syndrome, these proteins were compared with an inferred network generated from the genes that were differentially expressed in 3-M fibroblasts compared with controls. This resulted in a final 3-M network of 131 proteins, with the most significant biological pathway within the network being mRNA splicing/processing. We have shown using an exogenous insulin receptor (INSR) minigene system that alternative splicing of exon 11 is significantly changed in HEK293 cells with altered expression of CUL7, OBSL1 and CCDC8 and in 3-M fibroblasts. The net result is a reduction in the expression of the mitogenic INSR isoform in 3-M syndrome. From these preliminary data, we hypothesise that disordered ubiquitination could result in aberrant mRNA splicing in 3-M; however, further investigation is required to determine whether this contributes to growth failure.
Collapse
Affiliation(s)
- Dan Hanson
- Institute of Human DevelopmentFaculty of Medical and Human Sciences, The University of Manchester, Oxford Road, Manchester M13 9WL, UKManchester Academic Health Sciences Centre (MAHSC)Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Adam Stevens
- Institute of Human DevelopmentFaculty of Medical and Human Sciences, The University of Manchester, Oxford Road, Manchester M13 9WL, UKManchester Academic Health Sciences Centre (MAHSC)Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Philip G Murray
- Institute of Human DevelopmentFaculty of Medical and Human Sciences, The University of Manchester, Oxford Road, Manchester M13 9WL, UKManchester Academic Health Sciences Centre (MAHSC)Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UKInstitute of Human DevelopmentFaculty of Medical and Human Sciences, The University of Manchester, Oxford Road, Manchester M13 9WL, UKManchester Academic Health Sciences Centre (MAHSC)Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Graeme C M Black
- Institute of Human DevelopmentFaculty of Medical and Human Sciences, The University of Manchester, Oxford Road, Manchester M13 9WL, UKManchester Academic Health Sciences Centre (MAHSC)Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UKInstitute of Human DevelopmentFaculty of Medical and Human Sciences, The University of Manchester, Oxford Road, Manchester M13 9WL, UKManchester Academic Health Sciences Centre (MAHSC)Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Peter E Clayton
- Institute of Human DevelopmentFaculty of Medical and Human Sciences, The University of Manchester, Oxford Road, Manchester M13 9WL, UKManchester Academic Health Sciences Centre (MAHSC)Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UKInstitute of Human DevelopmentFaculty of Medical and Human Sciences, The University of Manchester, Oxford Road, Manchester M13 9WL, UKManchester Academic Health Sciences Centre (MAHSC)Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| |
Collapse
|
13
|
Cubillos-Rojas M, Amair-Pinedo F, Peiró-Jordán R, Bartrons R, Ventura F, Rosa JL. The E3 ubiquitin protein ligase HERC2 modulates the activity of tumor protein p53 by regulating its oligomerization. J Biol Chem 2014; 289:14782-95. [PMID: 24722987 DOI: 10.1074/jbc.m113.527978] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor p53 is a transcription factor that coordinates the cellular response to several kinds of stress. p53 inactivation is an important step in tumor progression. Oligomerization of p53 is critical for its posttranslational modification and its ability to regulate the transcription of target genes necessary to inhibit tumor growth. Here we report that the HECT E3 ubiquitin ligase HERC2 interacts with p53. This interaction involves the CPH domain of HERC2 (a conserved domain within Cul7, PARC, and HERC2 proteins) and the last 43 amino acid residues of p53. Through this interaction, HERC2 regulates p53 activity. RNA interference experiments showed how HERC2 depletion reduces the transcriptional activity of p53 without affecting its stability. This regulation of p53 activity by HERC2 is independent of proteasome or MDM2 activity. Under these conditions, up-regulation of cell growth and increased focus formation were observed, showing the functional relevance of the HERC2-p53 interaction. This interaction was maintained after DNA damage caused by the chemotherapeutic drug bleomycin. In these stressed cells, p53 phosphorylation was not impaired by HERC2 knockdown. Interestingly, p53 mutations that affect its tetramerization domain disrupted the HERC2-p53 interaction, suggesting a role for HERC2 in p53 oligomerization. This regulatory role was shown using cross-linking assays. Thus, the inhibition of p53 activity after HERC2 depletion can be attributed to a reduction in p53 oligomerization. Ectopic expression of HERC2 (residues 2292-2923) confirmed these observations. Together, these results identify HERC2 as a novel regulator of p53 signaling.
Collapse
Affiliation(s)
- Monica Cubillos-Rojas
- From the Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Fabiola Amair-Pinedo
- From the Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Roser Peiró-Jordán
- From the Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Ramon Bartrons
- From the Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Francesc Ventura
- From the Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Jose Luis Rosa
- From the Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| |
Collapse
|
14
|
Clayton PE, Hanson D, Magee L, Murray PG, Saunders E, Abu-Amero SN, Moore GE, Black GCM. Exploring the spectrum of 3-M syndrome, a primordial short stature disorder of disrupted ubiquitination. Clin Endocrinol (Oxf) 2012; 77:335-42. [PMID: 22624670 DOI: 10.1111/j.1365-2265.2012.04428.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
3-M syndrome is an autosomal recessive primordial growth disorder characterized by small birth size and post-natal growth restriction associated with a spectrum of minor anomalies (including a triangular-shaped face, flat cheeks, full lips, short chest and prominent fleshy heels). Unlike many other primordial short stature syndromes, intelligence is normal and there is no other major system involvement, indicating that 3-M is predominantly a growth-related condition. From an endocrine perspective, serum GH levels are usually normal and IGF-I normal or low, while growth response to rhGH therapy is variable but typically poor. All these features suggest a degree of resistance in the GH-IGF axis. To date, mutations in three genes CUL7, OBSL1 and CCDC8 have been shown to cause 3-M. CUL7 acts an ubiquitin ligase and is known to interact with p53, cyclin D-1 and the growth factor signalling molecule IRS-1, the link with the latter may contribute to the GH-IGF resistance. OBSL1 is a putative cytoskeletal adaptor that interacts with and stabilizes CUL7. CCDC8 is the newest member of the pathway and interacts with OBSL1 and, like CUL7, associates with p53, acting as a co-factor in p53-medicated apoptosis. 3-M patients without a mutation have also been identified, indicating the involvement of additional genes in the pathway. Potentially damaging sequence variants in CUL7 and OBSL1 have been identified in idiopathic short stature (ISS), including those born small with failure of catch-up growth, signifying that the 3-M pathway could play a wider role in disordered growth.
Collapse
Affiliation(s)
- Peter E Clayton
- Developmental Biomedicine, Manchester Academic Health Sciences Centre (MAHSC), School of Biomedicine, University of Manchester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Pei XH, Bai F, Li Z, Smith MD, Whitewolf G, Jin R, Xiong Y. Cytoplasmic CUL9/PARC ubiquitin ligase is a tumor suppressor and promotes p53-dependent apoptosis. Cancer Res 2011; 71:2969-77. [PMID: 21487039 DOI: 10.1158/0008-5472.can-10-4300] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A wide range of cell stresses, including DNA damage, signal to p53 through posttranslational modification of p53. The cytoplasmic functions of p53 are emerging as an important constituent of role of p53 in tumor suppression. Here, we report that deletion of the Cul9 (formerly Parc) gene, which encodes an E3 ubiquitin ligase that binds to p53 and localizes in the cytoplasm, resulted in spontaneous tumor development, accelerated Eμ-Myc-induced lymphomagenesis, and rendered mice susceptible to carcinogenesis. Cul9-p53 double-mutant mice exhibited indistinguishable tumor phenotypes as p53 single-mutant mice, indicating that the function of Cul9 in tumor suppression is largely mediated by p53. Deletion of Cul9 had no significant effect on cell-cycle progression, but attenuated DNA damage-induced apoptosis. Ectopic expression of wild-type CUL9, but not a point mutant CUL9 deficient in p53 binding, promotes apoptosis. These results show CUL9 as a potential p53-activating E3 ligase in the cytoplasm.
Collapse
Affiliation(s)
- Xin-Hai Pei
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Wen H, Kim N, Fuentes EJ, Mallinger A, Gonzalez-Alegre P, Glenn KA. FBG1 is a promiscuous ubiquitin ligase that sequesters APC2 and causes S-phase arrest. Cell Cycle 2011; 9:4506-17. [PMID: 21135578 DOI: 10.4161/cc.9.22.13743] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During cell proliferation, protein degradation is strictly regulated by the cell cycle and involves two complementary ubiquitin ligase complexes, the SCF (Skp, Cullin, F-box) and APC/C (Anaphase Promoting Complex/Cyclosome) ubiquitin ligases. SCF ligases are constitutively active and generally target only proteins after they have been selected for degradation, usually by phosphorylation. In contrast, APC/C complexes are themselves activated by phosphorylation and their substrates contain a targeting signal known as degron, a consensus amino acid sequence such as a D-Box. SCF complexes degrade proteins during the G1 phase. However, as DNA synthesis begins, the SCF complexes are degraded and APC/C complexes are activated. APC-2, a protein crucial to cell division, initiates anaphase by triggering the degradation of multiple proteins. This study explores an unexpected interaction between APC-2 and SCFFBG1. We found that FBG1 is a promiscuous ubiquitin ligase with many partners. Immunoprecipitation experiments demonstrate that FBG1 and APC2 interact directly. Mutagenesis-based experiments show that this interaction requires a D-Box found within the FBG1 F-box domain. Unexpectedly, we demonstrate that co-expression with FBG1 increases total APC2 levels. However, free APC2 is decreased, inhibiting cell proliferation. Finally, FACS analysis of cell populations expressing different forms of FBG1 demonstrate that this ubiquitin ligase induces S-phase arrest, illustrating the functional consequences of the interaction described. In summary, we have discovered a novel APC2 inhibitory activity of FBG1 independent from its function as ubiquitin ligase, providing the basis for future studies of FBG1 in aging and cancer.
Collapse
Affiliation(s)
- Hsiang Wen
- Department of Internal Medicine, Roy and Lucille A. Carver College of Medicine, Iowa City, USA
| | | | | | | | | | | |
Collapse
|
17
|
Hanson D, Murray PG, Sud A, Temtamy SA, Aglan M, Superti-Furga A, Holder SE, Urquhart J, Hilton E, Manson FD, Scambler P, Black GC, Clayton PE. The primordial growth disorder 3-M syndrome connects ubiquitination to the cytoskeletal adaptor OBSL1. Am J Hum Genet 2009; 84:801-6. [PMID: 19481195 PMCID: PMC2694976 DOI: 10.1016/j.ajhg.2009.04.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/08/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022] Open
Abstract
3-M syndrome is an autosomal-recessive primordial growth disorder characterized by significant intrauterine and postnatal growth restriction. Mutations in the CUL7 gene are known to cause 3-M syndrome. In 3-M syndrome patients that do not carry CUL7 mutations, we performed high-density genome-wide SNP mapping to identify a second locus at 2q35-q36.1. Further haplotype analysis revealed a 1.29 Mb interval in which the underlying gene is located and we subsequently discovered seven distinct null mutations from 10 families within the gene OBSL1. OBSL1 is a putative cytoskeletal adaptor protein that localizes to the nuclear envelope. We were also able to demonstrate that loss of OBSL1 leads to downregulation of CUL7, implying a role for OBSL1 in the maintenance of CUL7 protein levels and suggesting that both proteins are involved within the same molecular pathway.
Collapse
|
18
|
Activation of p53-dependent responses in tumor cells treated with a PARC-interacting peptide. Biochem Biophys Res Commun 2008; 368:350-6. [PMID: 18230339 DOI: 10.1016/j.bbrc.2008.01.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 01/16/2008] [Indexed: 11/20/2022]
Abstract
We tested the activity of a p53 carboxy-terminal peptide containing the PARC-interacting region in cancer cells with wild type cytoplasmic p53. Peptide delivery was achieved by fusing it to the TAT transduction domain (TAT-p53-C-ter peptide). In a two-hybrid assay, the tetramerization domain (TD) of p53 was necessary and sufficient to bind PARC. The TAT-p53-C-ter peptide disrupted the PARC-p53 complex. Peptide treatment caused p53 nuclear relocation, p53-dependent changes in gene expression and enhancement of etoposide-induced apoptosis. These studies suggest that PARC-interacting peptides are promising candidates for the enhancement of p53-dependent apoptosis in tumors with wt cytoplasmic p53.
Collapse
|
19
|
Kim SS, Shago M, Kaustov L, Boutros PC, Clendening JW, Sheng Y, Trentin GA, Barsyte-Lovejoy D, Mao DY, Kay R, Jurisica I, Arrowsmith CH, Penn LZ. CUL7 Is a Novel Antiapoptotic Oncogene. Cancer Res 2007; 67:9616-22. [DOI: 10.1158/0008-5472.can-07-0644] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Jung P, Verdoodt B, Bailey A, Yates JR, Menssen A, Hermeking H. Induction of cullin 7 by DNA damage attenuates p53 function. Proc Natl Acad Sci U S A 2007; 104:11388-93. [PMID: 17586686 PMCID: PMC2040908 DOI: 10.1073/pnas.0609467104] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The p53 tumor suppressor gene encodes a transcription factor, which is translationally and posttranslationally activated after DNA damage. In a proteomic screen for p53 interactors, we found that the cullin protein Cul7 efficiently associates with p53. After DNA damage, the level of Cul7 protein increased in a caffeine-sensitive, but p53-independent, manner. Down-regulation of Cul7 by conditional microRNA expression augmented p53-mediated inhibition of cell cycle progression. Ectopic expression of Cul7 inhibited activation of p53 by DNA damaging agents and sensitized cells to adriamycin. Although Cul7 recruited the F-box protein FBX29 to p53, the combined expression of Cul7/FBX29 did not promote ubiquitination and degradation of p53 in vivo. Therefore, the inhibition of p53 activity by Cul7 is presumably mediated by alternative mechanisms. The interplay between p53 and Cul7 resembles the negative feedback loop described for p53 and Mdm2. Pharmacological modulation of Cul7 function may allow the sensitization of cancer cells expressing wild-type p53 to genotoxic agents used in cancer therapy.
Collapse
Affiliation(s)
- Peter Jung
- *Molecular Oncology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany; and
| | - Berlinda Verdoodt
- *Molecular Oncology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany; and
| | - Aaron Bailey
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - John R. Yates
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Antje Menssen
- *Molecular Oncology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany; and
| | - Heiko Hermeking
- *Molecular Oncology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany; and
- To whom correspondence should be addressed at:
Max-Planck-Institute of Biochemistry, Molecular Oncology, Am Klopferspitz 18A, D-82152 Martinsried/Munich, Germany. E-mail:
| |
Collapse
|
21
|
Skaar JR, Florens L, Tsutsumi T, Arai T, Tron A, Swanson SK, Washburn MP, DeCaprio JA. PARC and CUL7 form atypical cullin RING ligase complexes. Cancer Res 2007; 67:2006-14. [PMID: 17332328 DOI: 10.1158/0008-5472.can-06-3241] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CUL7 and the p53-associated, PARkin-like cytoplasmic protein (PARC) were previously reported to form homodimers and heterodimers, the first demonstration of cullin dimerization. Although a CUL7-based SKP1/CUL1/F-box (SCF)-like complex has been observed, little is known about the existence of a PARC-based SCF-like complex and how PARC interacts with CUL7-based complexes. To further characterize PARC-containing complexes, we examined the ability of PARC to form an SCF-like complex. PARC binds RBX1 and is covalently modified by NEDD8, defining PARC as a true cullin. However, PARC fails to bind SKP1 or F-box proteins, including the CUL7-associated FBXW8. To examine the assembly of PARC- and CUL7-containing complexes, tandem affinity purification followed by multidimensional protein identification technology were used. Multidimensional protein identification technology analysis revealed that the CUL7 interaction with FBXW8 was mutually exclusive of CUL7 binding to PARC or p53. Notably, although heterodimers of CUL7 and PARC bind p53, p53 is not required for the dimerization of CUL7 and PARC. The observed physical separation of FBXW8 and PARC is supported functionally by the generation of Parc-/-, Fbxw8-/- mice, which do not show exacerbation of the Fbxw8-/- phenotype. Finally, all of the PARC and CUL7 subcomplexes examined exhibit E3 ubiquitin ligase activity in vitro. Together, these findings indicate that the intricate assembly of PARC- and CUL7-containing complexes is highly regulated, and multiple subcomplexes may exhibit ubiquitin ligase activity.
Collapse
Affiliation(s)
- Jeffrey R Skaar
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kaustov L, Lukin J, Lemak A, Duan S, Ho M, Doherty R, Penn LZ, Arrowsmith CH. The Conserved CPH Domains of Cul7 and PARC Are Protein-Protein Interaction Modules That Bind the Tetramerization Domain of p53. J Biol Chem 2007; 282:11300-7. [PMID: 17298945 DOI: 10.1074/jbc.m611297200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cul7 is a member of the Cullin Ring Ligase (CRL) family and is required for normal mouse development and cellular proliferation. Recently, a region of Cul7 that is highly conserved in the p53-associated, Parkin-like cytoplasmic protein PARC, was shown to bind p53 directly. Here we identify the CPH domains (conserved domain within Cul7, PARC, and HERC2 proteins) of both Cul7 and PARC as p53 interaction domains using size exclusion chromatography and NMR spectroscopy. We present the first structure of the evolutionarily conserved CPH domain and provide novel insight into the Cul7-p53 interaction. The NMR structure of the Cul7-CPH domain reveals a fold similar to peptide interaction modules such as the SH3, Tudor, and KOW domains. The p53 interaction surface of both Cul7 and PARC CPH domains was mapped to a conserved surface distinct from the analogous peptide-binding regions of SH3, KOW, and Tudor domains, suggesting a novel mode of interaction. The CPH domain interaction surface of p53 resides in the tetramerization domain and is formed by residues contributed by at least two subunits.
Collapse
Affiliation(s)
- Lilia Kaustov
- Ontario Cancer Institute and the Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|