1
|
Wang MD, Zhang S, Liu XY, Wang PP, Zhu YF, Zhu JR, Lv CS, Li SY, Liu SF, Wen L. Salvianolic acid B ameliorates retinal deficits in an early-stage Alzheimer's disease mouse model through downregulating BACE1 and Aβ generation. Acta Pharmacol Sin 2023; 44:2151-2168. [PMID: 37420104 PMCID: PMC10618533 DOI: 10.1038/s41401-023-01125-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with subtle onset, early diagnosis remains challenging. Accumulating evidence suggests that the emergence of retinal damage in AD precedes cognitive impairment, and may serve as a critical indicator for early diagnosis and disease progression. Salvianolic acid B (Sal B), a bioactive compound isolated from the traditional Chinese medicinal herb Salvia miltiorrhiza, has been shown promise in treating neurodegenerative diseases, such as AD and Parkinson's disease. In this study we investigated the therapeutic effects of Sal B on retinopathy in early-stage AD. One-month-old transgenic mice carrying five familial AD mutations (5×FAD) were treated with Sal B (20 mg·kg-1·d-1, i.g.) for 3 months. At the end of treatment, retinal function and structure were assessed, cognitive function was evaluated in Morris water maze test. We showed that 4-month-old 5×FAD mice displayed distinct structural and functional deficits in the retinas, which were significantly ameliorated by Sal B treatment. In contrast, untreated, 4-month-old 5×FAD mice did not exhibit cognitive impairment compared to wild-type mice. In SH-SY5Y-APP751 cells, we demonstrated that Sal B (10 μM) significantly decreased BACE1 expression and sorting into the Golgi apparatus, thereby reducing Aβ generation by inhibiting the β-cleavage of APP. Moreover, we found that Sal B effectively attenuated microglial activation and the associated inflammatory cytokine release induced by Aβ plaque deposition in the retinas of 5×FAD mice. Taken together, our results demonstrate that functional impairments in the retina occur before cognitive decline, suggesting that the retina is a valuable reference for early diagnosis of AD. Sal B ameliorates retinal deficits by regulating APP processing and Aβ generation in early AD, which is a potential therapeutic intervention for early AD treatment.
Collapse
Affiliation(s)
- Meng-Dan Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Shuo Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Xing-Yang Liu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Pan-Pan Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yi-Fan Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jun-Rong Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Chong-Shan Lv
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Shi-Ying Li
- Eye Institute of Xiamen University, Department of Ophthalmology, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Sui-Feng Liu
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.
| | - Lei Wen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China.
- Xiamen Key Laboratory for TCM Dampness Disease, Neurology & Immunology Research, Department of Traditional Chinese Medicine, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
2
|
Xiang L, Wang Y, Liu S, Liu B, Jin X, Cao X. Targeting Protein Aggregates with Natural Products: An Optional Strategy for Neurodegenerative Diseases. Int J Mol Sci 2023; 24:11275. [PMID: 37511037 PMCID: PMC10379780 DOI: 10.3390/ijms241411275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Protein aggregation is one of the hallmarks of aging and aging-related diseases, especially for the neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and others. In these diseases, many pathogenic proteins, such as amyloid-β, tau, α-Syn, Htt, and FUS, form aggregates that disrupt the normal physiological function of cells and lead to associated neuronal lesions. Protein aggregates in NDs are widely recognized as one of the important targets for the treatment of these diseases. Natural products, with their diverse biological activities and rich medical history, represent a great treasure trove for the development of therapeutic strategies to combat disease. A number of in vitro and in vivo studies have shown that natural products, by virtue of their complex molecular scaffolds that specifically bind to pathogenic proteins and their aggregates, can inhibit the formation of aggregates, disrupt the structure of aggregates and destabilize them, thereby alleviating conditions associated with NDs. Here, we systematically reviewed studies using natural products to improve disease-related symptoms by reducing or inhibiting the formation of five pathogenic protein aggregates associated with NDs. This information should provide valuable insights into new directions and ideas for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lingzhi Xiang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanan Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
3
|
Hayashi T, Matsushita T, Hisahara S, Iwahara N, Kuno A, Kunimoto R, Hosoda R, Tanno M, Shimohama S, Horio Y. Ubiquitin-dependent rapid degradation conceals a cell-protective function of cytoplasmic SIRT3 against oxidative stress. J Biochem 2021; 171:201-213. [PMID: 34718606 DOI: 10.1093/jb/mvab119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/24/2021] [Indexed: 11/12/2022] Open
Abstract
SIRT3 is an NAD+-dependent protein deacetylase localized in mitochondria. Several studies reported localization of SIRT3 in the cytoplasm or nucleus, but data of these studies were not consistent. We detected expression of mitochondrial (SIRT3mt) and cytoplasmic (SIRT3ct) Sirt3 mRNAs in the mouse brain, and we also found SIRT3 immunostaining of mitochondria and cytoplasm in the brain and cultured neural cells. However, expression levels of SIRT3ct in COS cells transfected with SIRT3ct cDNA were much lower than those of SIRT3mt. We found that SIRT3ct but not SIRT3mt was promptly degraded by ubiquitin-dependent degradation, in which SIRT3ct degradation was mediated mainly by ubiquitination of NH2-terminal methionine and partly by that of lysine residues of SIRT3ct. SIRT3ct expression level was significantly enhanced by treatment of cells with staurosporine or H2O2. H2O2 treatment promoted nuclear translocation of SIRT3ct and induced histone H3 deacetylation and superoxide dismutase 2 expression. Overexpression of SIRT3ct decreased cell death caused by H2O2 at levels similar to those achieved by overexpression of SIRT3mt. Knockdown of Sirt3 mRNA increased cell death caused by amyloid-β (Aβ), and overexpression of SIRT3ct suppressed the toxic function of Aβ in PC12 cells. These results indicate that SIRT3ct promotes cell survival under physiological and pathological conditions.
Collapse
Affiliation(s)
- Takashi Hayashi
- Departments of Pharmacology, Neurology and Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, S 1, W 17, Chu-ouku, Sapporo 060-8556, Japan.,Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takashi Matsushita
- Departments of Pharmacology, Neurology and Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, S 1, W 17, Chu-ouku, Sapporo 060-8556, Japan.,Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Shin Hisahara
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Naotoshi Iwahara
- Departments of Pharmacology, Neurology and Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, S 1, W 17, Chu-ouku, Sapporo 060-8556, Japan.,Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Atsushi Kuno
- Departments of Pharmacology, Neurology and Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, S 1, W 17, Chu-ouku, Sapporo 060-8556, Japan
| | - Risa Kunimoto
- Departments of Pharmacology, Neurology and Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, S 1, W 17, Chu-ouku, Sapporo 060-8556, Japan
| | - Ryusuke Hosoda
- Departments of Pharmacology, Neurology and Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, S 1, W 17, Chu-ouku, Sapporo 060-8556, Japan
| | - Masaya Tanno
- Departments of Pharmacology, Neurology and Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, S 1, W 17, Chu-ouku, Sapporo 060-8556, Japan
| | - Shun Shimohama
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Yoshiyuki Horio
- Departments of Pharmacology, Neurology and Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, S 1, W 17, Chu-ouku, Sapporo 060-8556, Japan
| |
Collapse
|
4
|
Grzegorczyk-Karolak I, Krzemińska M, Kiss AK, Olszewska MA, Owczarek A. Phytochemical Profile and Antioxidant Activity of Aerial and Underground Parts of Salvia bulleyana Diels. Plants. Metabolites 2020; 10:metabo10120497. [PMID: 33287467 PMCID: PMC7761800 DOI: 10.3390/metabo10120497] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 01/02/2023] Open
Abstract
Plants have been used for medical purposes since ancient times. However, a detailed analysis of their biological properties and their associated active compounds is needed to justify their therapeutic use in modern medicine. The aim of the study was to identify and quantify the phenolics present in hydromethanolic extracts of the roots and shoots of the Chinese Salvia species, Salvia bulleyana. The qualitative and quantitative analyses were carried out by ultrahigh-performance liquid chromatography with electrospray ionization mass spectrometry detection (UHPLC-PDA-ESI-MS), and high-performance liquid chromatography with photodiode array (HPLC-PDA) detection. The extracts of S. bulleyana were also screened for their antioxidant activity using ferric ion (Fe3+) reducing antioxidant power (FRAP), 1,1-diphenyl-2-picrylhydrazyl (DPPH), diammonium 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) cation (ABTS), superoxide radical anion (O2•–), and inhibition of lipid peroxidation assays. The S. bulleyana extracts were found to contain 38 substances, of which 36 were phenols, with a total level of 14.4 mg/g DW (dry weight) in shoots, and 23.1 mg/g DW in roots. Twenty-eight phenols were polyphenolic acids or their derivatives, the most abundant in shoots being rosmarinic acid, and in roots, salvianolic acid K followed by rosmarinic acid. The other major phenolic acids were caffeic acid, caffeoyl-threonic acids, isomers of lithospermic acid, salvianolic acid F, salvianolic acid B, and yunnaneic acid E. In addition to polyphenolic acids, nine flavonoids were detected in the shoot extract. While both extracts showed significant antioxidant activity, the shoot extract, containing both polyphenolic acids and flavonoids, demonstrated a slightly greater antioxidant potential in some of the anti-radical tests than the roots. However, the root extract proved to be slightly more effective in the lipid peroxidation inhibition test. Thus, S. bulleyana was demonstrated as a promising source of antioxidants, and worthy of further more detailed studies.
Collapse
Affiliation(s)
- Izabela Grzegorczyk-Karolak
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
- Correspondence:
| | - Marta Krzemińska
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Anna K. Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Monika A. Olszewska
- Department of Pharmacognosy, Medical University of Lodz, 90-151 Lodz, Poland; (M.A.O.); (A.O.)
| | - Aleksandra Owczarek
- Department of Pharmacognosy, Medical University of Lodz, 90-151 Lodz, Poland; (M.A.O.); (A.O.)
| |
Collapse
|
5
|
Boozari M, Hosseinzadeh H. Preventing contrast-induced nephropathy (CIN) with herbal medicines: A review. Phytother Res 2020; 35:1130-1146. [PMID: 33015894 DOI: 10.1002/ptr.6880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Currently, the use of iodinated contrast media in diagnostic imaging has been increased in clinical medicine. Contrast-induced nephropathy (CIN) is an important adverse effect of contrast media injection. According to the significant role of oxidative stress in the pathophysiology of CIN, different herbal antioxidants have been used for the prevention of nephropathy in different studies. In this review, we discussed the preventive effects of herbal medicine and natural products against CIN. METHODS We searched the electronic databases or search engines including PubMed, Scopus, ISI, Google Scholar with search terms such as "Contrast-induced nephropathy" and "Herbal medicine," "Contrast acute kidney injury" AND "natural products" and similar headings such as plant and extract. RESULTS Known medicinal plants and active ingredients such as green tea, ginger, garlic, silymarin, curcumin, resveratrol, and thymoquinone have been examined for prophylactic effects or treatment of contrast media nephropathy. CONCLUSION Herbal medicines have promising effects in the laboratory-based studies for the prevention and/or treatment of CIN. However, more practical and completed clinical trials are needed to investigate the clinical benefits of natural products against CIN.
Collapse
Affiliation(s)
- Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Ardah MT, Ghanem SS, Abdulla SA, Lv G, Emara MM, Paleologou KE, Vaikath NN, Lu JH, Li M, Vekrellis K, Eliezer D, El-Agnaf OMA. Inhibition of alpha-synuclein seeded fibril formation and toxicity by herbal medicinal extracts. BMC Complement Med Ther 2020; 20:73. [PMID: 32143619 PMCID: PMC7076823 DOI: 10.1186/s12906-020-2849-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background Recent studies indicated that seeded fibril formation and toxicity of α-synuclein (α-syn) play a main role in the pathogenesis of certain diseases including Parkinson’s disease (PD), multiple system atrophy, and dementia with Lewy bodies. Therefore, examination of compounds that abolish the process of seeding is considered a key step towards therapy of several synucleinopathies. Methods Using biophysical, biochemical and cell-culture-based assays, assessment of eleven compounds, extracted from Chinese medicinal herbs, was performed in this study for their effect on α-syn fibril formation and toxicity caused by the seeding process. Results Salvianolic acid B and dihydromyricetin were the two compounds that strongly inhibited the fibril growth and neurotoxicity of α-syn. In an in-vitro cell model, these compounds decreased the insoluble phosphorylated α-syn and aggregation. Also, in primary neuronal cells, these compounds showed a reduction in α-syn aggregates. Both compounds inhibited the seeded fibril growth with dihydromyricetin having the ability to disaggregate preformed α-syn fibrils. In order to investigate the inhibitory mechanisms of these two compounds towards fibril formation, we demonstrated that salvianolic acid B binds predominantly to monomers, while dihydromyricetin binds to oligomeric species and to a lower extent to monomers. Remarkably, these two compounds stabilized the soluble non-toxic oligomers lacking β-sheet content after subjecting them to proteinase K digestion. Conclusions Eleven compounds were tested but only two showed inhibition of α-syn aggregation, seeded fibril formation and toxicity in vitro. These findings highlight an essential beginning for development of new molecules in the field of synucleinopathies treatment.
Collapse
Affiliation(s)
- Mustafa T Ardah
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Simona S Ghanem
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Sara A Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Guohua Lv
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA
| | - Mohamed M Emara
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Katerina E Paleologou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nishant N Vaikath
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Jia-Hong Lu
- State Key Lab of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Konstantinos Vekrellis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA
| | - Omar M A El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, P.O. Box 5825, Doha, Qatar.
| |
Collapse
|
7
|
Zhao N, Sun C, Zheng M, Liu S, Shi R. Amentoflavone suppresses amyloid β1-42 neurotoxicity in Alzheimer's disease through the inhibition of pyroptosis. Life Sci 2019; 239:117043. [PMID: 31722188 DOI: 10.1016/j.lfs.2019.117043] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND The accumulation of Amyloid β (Aβ) plays key roles in Alzheimer's disease (AD) by inducing intracellular reactive oxygen species (ROS) and neuronal cell death. In this study, we aimed to identify the neuroprotective mechanisms of amentoflavone (AF) in Aβ-induce neuronal cell injury. MATERIALS AND METHODS The animal model was established by injecting Aβ1-42 into the bilateral hippocampus. The effect of AF on Aβ1-42-induced neurological dysfunction was examined using the Y-maze and radical maze tests. The hippocampal neuron viability was examined using Nissl staining and TUNEL assay. On the other hand, in vitro studies were conducted using SH-SY5Y cells. The expression level of marker proteins was measured using western blot. The activity of caspase-1 and the levels of pro-inflammatory cytokines were determined using ELISA assay. AMPKα knock down was carried out by transfecting SH-SY5Y cells with siRNA against AMPK transcript. RESULTS Neurological tests showed that AF significantly attenuated Aβ1-42-induced neurological dysfunction. AF suppressed Aβ1-42-induced pyroptosis in the hippocampal region of the rat model, which was associated with the modulation of AMPK/GSK3β signaling. Similar results were obtained in vitro in SH-SY5Y cells exposed to Aβ1-42, showing that the neuroprotective activity of AF is mediated by suppressing pyroptosis through AMPK/GSK3β signaling. CONCLUSION AF inhibits Aβ1-42-induced neurotoxicity in animal and cellular models through AMPK/GSK3β-mediated pyroptosis suppression. Our results highlight AF as a clinical compound for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Ningning Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Chengxin Sun
- Department of Digestive System, Yucheng People's Hospital, Dezhou, China
| | - Mei Zheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Shen Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Ran Shi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.
| |
Collapse
|
8
|
Liu N, Fan M. Protective functions of salvianolic acid B in PC-12 cells against hydrogen peroxide-triggered damage by mediation of microRNA-26a. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:4030-4037. [PMID: 31603005 DOI: 10.1080/21691401.2019.1673766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Niansheng Liu
- Department of Traumatology, North Medical District of Linyi People’s Hospital, Linyi, PR China
| | - Mingfu Fan
- Department of Spinal Surgery, North Medical District of Linyi People’s Hospital, Linyi, PR China
| |
Collapse
|
9
|
Li R, Wang L, Wang X, Zhang D, Zhang Y, Li Z, Fang M. Simultaneous Quantification of Seven Constituents from Zaoren Anshen Prescription and Four Endogenic Components in Rat Plasma by UHPLC-TSQ-MS/MS and the Application of the Correlation Study. Chem Pharm Bull (Tokyo) 2019; 67:855-863. [DOI: 10.1248/cpb.c19-00299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Rong Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University
| | - Lin Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University
| | - Xiao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University
| | - Dian Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University
| | | | - Zhuo Li
- Xi’an Institute for Food and Drug Control
| | - Minfeng Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University
| |
Collapse
|
10
|
Wu JZ, Ardah M, Haikal C, Svanbergsson A, Diepenbroek M, Vaikath NN, Li W, Wang ZY, Outeiro TF, El-Agnaf OM, Li JY. Dihydromyricetin and Salvianolic acid B inhibit alpha-synuclein aggregation and enhance chaperone-mediated autophagy. Transl Neurodegener 2019; 8:18. [PMID: 31223479 PMCID: PMC6570948 DOI: 10.1186/s40035-019-0159-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/24/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Progressive accumulation of α-synuclein is a key step in the pathological development of Parkinson's disease. Impaired protein degradation and increased levels of α-synuclein may trigger a pathological aggregation in vitro and in vivo. The chaperone-mediated autophagy (CMA) pathway is involved in the intracellular degradation processes of α-synuclein. Dysfunction of the CMA pathway impairs α-synuclein degradation and causes cytotoxicity. RESULTS In the present study, we investigated the effects on the CMA pathway and α-synuclein aggregation using bioactive ingredients (Dihydromyricetin (DHM) and Salvianolic acid B (Sal B)) extracted from natural medicinal plants. In both cell-free and cellular models of α-synuclein aggregation, after administration of DHM and Sal B, we observed significant inhibition of α-synuclein accumulation and aggregation. Cells were co-transfected with a C-terminal modified α-synuclein (SynT) and synphilin-1, and then treated with DHM (10 μM) and Sal B (50 μM) 16 hours after transfection; levels of α-synuclein aggregation decreased significantly (68% for DHM and 75% for Sal B). Concomitantly, we detected increased levels of LAMP-1 (a marker of lysosomal homeostasis) and LAMP-2A (a key marker of CMA). Immunofluorescence analyses showed increased colocalization between LAMP-1 and LAMP-2A with α-synuclein inclusions after treatment with DHM and Sal B. We also found increased levels of LAMP-1 and LAMP-2A both in vitro and in vivo, along with decreased levels of α-synuclein. Moreover, DHM and Sal B treatments exhibited anti-inflammatory activities, preventing astroglia- and microglia-mediated neuroinflammation in BAC-α-syn-GFP transgenic mice. CONCLUSIONS Our data indicate that DHM and Sal B are effective in modulating α-synuclein accumulation and aggregate formation and augmenting activation of CMA, holding potential for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Jia-Zhen Wu
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province and Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mustafa Ardah
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al-Ain, United Arab Emirates
| | - Caroline Haikal
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, 221 84 Lund, Sweden
| | - Alexander Svanbergsson
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, 221 84 Lund, Sweden
| | - Meike Diepenbroek
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, 221 84 Lund, Sweden
| | - Nishant N. Vaikath
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, 221 84 Lund, Sweden
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Wen Li
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, 221 84 Lund, Sweden
| | - Zhan-You Wang
- Institute of Heath Sciences, China Medical University, 110112 Shenyang, People’s Republic of China
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Omar M. El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Jia-Yi Li
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning China
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, BMC A10, 221 84 Lund, Sweden
- Institute of Heath Sciences, China Medical University, 110112 Shenyang, People’s Republic of China
| |
Collapse
|
11
|
Physico-Chemical Parameters, Phenolic Profile, In Vitro Antioxidant Activity and Volatile Compounds of Ladastacho ( Lavandula stoechas) from the Region of Saidona. Antioxidants (Basel) 2019; 8:antiox8040080. [PMID: 30925770 PMCID: PMC6523715 DOI: 10.3390/antiox8040080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 01/04/2023] Open
Abstract
The aim of the present study was to characterize Lavandula stoechas (Ladastacho) from the region of Saidona by means of physico-chemical parameters, phenolic profile, in vitro antioxidant activity and volatile compounds. Physico-chemical parameters (pH, acidity, salinity, total dissolved solids, electrical conductivity and liquid resistivity) were determined using conventional methods. The phenolic profile was determined using high-performance liquid chromatography electrospray ionization mass spectrometry (HPLC/ESI-MS), whereas a quantitative determination was also accomplished using the total phenolics assay. In vitro antioxidant activity was determined using the 2,2-diphenyl-1-picryl-hydrazyl assay. Finally, volatile compounds were determined using headspace solid phase microextraction coupled to gas chromatography mass spectrometry (HS-SPME/GC-MS). The results showed that Lavandula stoechas aqueous extract had a slightly acidic pH, low salinity content and considerable electrochemical properties (electrical conductivity and liquid resistivity along with electric potential). In addition, aqueous fractions showed a significantly (p < 0.05) higher phenolic content and in vitro antioxidant activity, whereas phenolic compounds, such as caffeic acid, quercetin-O-glucoside, lutelin-O-glucuronide and rosmarinic acid, were identified. Finally, numerous volatile compounds were found to dominate the volatile pattern of this flowering plant, producing a strong, penetrating, cool and menthol-like odour.
Collapse
|
12
|
Zhou X, Razmovski-Naumovski V, Kam A, Chang D, Li CG, Chan K, Bensoussan A. Synergistic study of a Danshen (Salvia Miltiorrhizae Radix et Rhizoma) and Sanqi (Notoginseng Radix et Rhizoma) combination on cell survival in EA.hy926 cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:50. [PMID: 30791910 PMCID: PMC6385400 DOI: 10.1186/s12906-019-2458-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
Background This study investigated the protective effects of the Danshen (DS) and Sanqi (SQ) herb pair on cell survival in the human cardiovascular endothelial (EA.hy926) cell line exposed to injury. Methods Nine combination ratios of Danshen-Sanqi extracts (DS-SQ) were screened for their protective effects in the EA.hy926 cell line against two different cellular impairments induced by DL-homocysteine (Hcy) – adenosine (Ado) – tumour necrosis factors (TNF) and oxidative stress (H2O2), respectively. The type of interaction (synergistic, antagonistic, additive) between DS and SQ was analysed using a combination index (CI) model. The effects of key bioactive compounds from DS and SQ were tested using the same models. The compound from each herb that demonstrated the most potent activity in cell viability was combined to evaluate their synergistic/antagonistic interaction using CI. Results DS-SQ ratios of 6:4 (50–300 μg/mL) produced synergistic effects (CI < 1) in restoring cell viability, reducing lactate dehydrogenase (LDH) leakage and caspase-3 expressions against Hcy-Ado-TNF. Additionally, DS-SQ 6:4 (50–150 μg/mL) was found to synergistically protect endothelial cells from impaired cellular injury induced by oxidative damage (H2O2) by restoring reduced cell viability and inhibiting excessive expression of reactive oxygen species (ROS). In particular, the combination of salvianolic acid A (SA) and ginsenoside Rb1 (Rb1) at 4:6 (1–150 μM) showed synergistic effects in preventing cytotoxic effects caused by Hcy-Ado-TNF (CI < 1). This simplified combination also demonstrated synergistic effects on H2O2-induced oxidative damage on EA.hy926 cells. Conclusions This study provides scientific evidence to support the traditional use of the DS-SQ combination on protecting endothelial cells through their synergistic interactions. Electronic supplementary material The online version of this article (10.1186/s12906-019-2458-z) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Zhang M, Liu Y, Liu M, Liu B, Li N, Dong X, Hong Z, Chai Y. UHPLC-QTOF/MS-based metabolomics investigation for the protective mechanism of Danshen in Alzheimer's disease cell model induced by Aβ 1-42. Metabolomics 2019; 15:13. [PMID: 30830431 DOI: 10.1007/s11306-019-1473-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a chronic neurodegenerative disorder with neither definitive pathogenesis nor effective therapy so far. Danshen, the dried root and rhizome of Salvia miltiorrhiza Bunge, is used extensively in Alzheimer's disease treatment to ameliorate the symptoms, but the underlying mechanism remains to be clarified. OBJECTIVES To investigate potential biomarkers for AD and elucidate the protective mechanism of Danshen on AD cell model. METHODS An ultra high performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-QTOF/MS)-based approach combined with partial least squares discriminant analysis (PLS-DA) has been developed to discriminate the metabolic modifications between human brain microvascular endothelial cell (hBMEC) and AD cell model induced by amyloid-β protein (Aβ1-42). To further elucidate the pathophysiology of AD, related metabolic pathways have been studied. RESULTS Thirty-three distinct potential biomarkers were screened out and considered as potential biomarkers corresponding to AD, which were mostly improved and partially restored back to normalcy in Danshen pre-protection group. It was found that AD was closely related to disturbed arginine and proline metabolism, glutathione metabolism, alanine aspartate and glutamate metabolism, histidine metabolism, pantothenate and CoA biosynthesis, phenylalanine tyrosine and tryptophan biosynthesis, citrate cycle and glycerophospholipid metabolism, and the protective mechanism of Danshen in AD cell model may be related to partially regulating the perturbed pathways. CONCLUSIONS These outcomes provide valuable evidences for therapeutic mechanism investigation of Danshen in AD treatment, and such an approach could be transferred to unravel the mechanism of other traditional Chinese medicine (TCM) and diseases.
Collapse
Affiliation(s)
- Mingyong Zhang
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Yue Liu
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Min Liu
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Biying Liu
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Na Li
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Xin Dong
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Zhanying Hong
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China.
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| |
Collapse
|
14
|
Yuan H, Jiang C, Zhao J, Zhao Y, Zhang Y, Xu Y, Gao X, Guo L, Liu Y, Liu K, Xu B, Sun G. Euxanthone Attenuates Aβ1–42-Induced Oxidative Stress and Apoptosis by Triggering Autophagy. J Mol Neurosci 2018; 66:512-523. [DOI: 10.1007/s12031-018-1175-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/14/2018] [Indexed: 12/26/2022]
|
15
|
Chen C, Li B, Cheng G, Yang X, Zhao N, Shi R. Amentoflavone Ameliorates Aβ 1-42-Induced Memory Deficits and Oxidative Stress in Cellular and Rat Model. Neurochem Res 2018; 43:857-868. [PMID: 29411261 DOI: 10.1007/s11064-018-2489-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disease of the central nervous system, is the most common cause of senile dementia. This study aimed to investigate whether amentoflavone (AF), a biflavonoid compound, could exert neuroprotective activities against AD. The AD model was established by the intracranial injection of amyloid-beta (Aβ) in rat models. The effect of AF on cognitive function was examined using the Morris water maze test. Cell survival and apoptosis in the hippocampal region in an animal model were detected using Nissl staining and a terminal deoxynucleotidyl transferased UTP nick-end labeling assay, respectively. The levels of oxidant enzymes were determined by enzyme-linked immunosorbent assay. Signaling molecule expressions were examined by western blotting. Our results showed that AF significantly attenuated Aβ-induced deficits in neurological functions as well as neuronal cell death and apoptosis in the hippocampal region. Moreover, our findings revealed that AF increased nuclear factor erythroid 2-related factor 2 (Nrf2) expression and translocation and activated AMP-activated protein kinase (AMPK) signaling. In a cellular model of AD established by exposing PC12 cells to Aβ, our results provided further evidence that the neuroprotective activities of AF were mediated by modulating Nrf2 through AMPK/glycogen synthase kinase 3 beta signaling. AF exerts a protective effect against Aβ1-42-induced neurotoxcicity by inducing Nrf2 antioxidant pathways via AMPK signaling activation, which provided experimental evidence that AF might provide a clinical benefit to patients with AD.
Collapse
Affiliation(s)
- Chao Chen
- Department of Traditional Chinese Medicine, Shandong Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China
| | - Bin Li
- Department of Neurology, The Affiliated Hiser Hospital of Qingdao University, Qingdao, China
| | - Guangqing Cheng
- Department of Traditional Chinese Medicine, Shandong Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China
| | - Xiaoni Yang
- Department of Traditional Chinese Medicine, Shandong Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China
| | - Ningning Zhao
- Department of Traditional Chinese Medicine, Shandong Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China
| | - Ran Shi
- Department of Traditional Chinese Medicine, Shandong Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China.
| |
Collapse
|
16
|
Habtemariam S. Molecular Pharmacology of Rosmarinic and Salvianolic Acids: Potential Seeds for Alzheimer's and Vascular Dementia Drugs. Int J Mol Sci 2018; 19:E458. [PMID: 29401682 PMCID: PMC5855680 DOI: 10.3390/ijms19020458] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/20/2022] Open
Abstract
Both caffeic acid and 3,4-dihydroxyphenyllactic acid (danshensu) are synthesized through two distinct routs of the shikimic acid biosynthesis pathway. In many plants, especially the rosemary and sage family of Lamiaceae, these two compounds are joined through an ester linkage to form rosmarinic acid (RA). A further structural diversity of RA derivatives in some plants such as Salvia miltiorrhiza Bunge is a form of RA dimer, salvianolic acid-B (SA-B), that further give rise to diverse salvianolic acid derivatives. This review provides a comprehensive perspective on the chemistry and pharmacology of these compounds related to their potential therapeutic applications to dementia. The two common causes of dementia, Alzheimer's disease (AD) and stroke, are employed to scrutinize the effects of these compounds in vitro and in animal models of dementia. Key pharmacological mechanisms beyond the common antioxidant and anti-inflammatory effects of polyphenols are highlighted with emphasis given to amyloid beta (Aβ) pathologies among others and neuronal regeneration from stem cells.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
17
|
Lou Y, Wang C, Zheng W, Tang Q, Chen Y, Zhang X, Guo X, Wang J. Salvianolic acid B inhibits IL-1β-induced inflammatory cytokine production in human osteoarthritis chondrocytes and has a protective effect in a mouse osteoarthritis model. Int Immunopharmacol 2017; 46:31-37. [DOI: 10.1016/j.intimp.2017.02.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 02/04/2023]
|
18
|
Liu X, Xavier C, Jann J, Wu H. Salvianolic Acid B (Sal B) Protects Retinal Pigment Epithelial Cells from Oxidative Stress-Induced Cell Death by Activating Glutaredoxin 1 (Grx1). Int J Mol Sci 2016; 17:ijms17111835. [PMID: 27827892 PMCID: PMC5133836 DOI: 10.3390/ijms17111835] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/08/2016] [Accepted: 10/31/2016] [Indexed: 12/18/2022] Open
Abstract
Protein glutathionylation, defined as the formation of protein mixed disulfides (PSSG) between cysteine residues and glutathione (GSH), can lead to cell death. Glutaredoxin 1 (Grx1) is a thiol repair enzyme which catalyzes the reduction of PSSG. Therefore, Grx1 exerts strong anti-apoptotic effects by improving the redox state, especially in times of oxidative stress. However, there is currently no compound that is identified as a Grx1 activator. In this study, we identified and characterized Salvianolic acid B (Sal B), a natural compound, as a Grx1 inducer, which potently protected retinal pigment epithelial (RPE) cells from oxidative injury. Our results showed that treatment with Sal B protected primary human RPE cells from H2O2-induced cell damage. Interestingly, we found Sal B pretreatment upregulated Grx1 expression in RPE cells in a time- and dose-dependent manner. Furthermore, NF-E2-related factor 2 (Nrf2), the key transcription factor that regulates the expression of Grx1, was activated in Sal B treated RPE cells. Further investigation showed that knockdown of Grx1 by small interfering RNA (siRNA) significantly reduced the protective effects of Sal B. We conclude that Sal B protects RPE cells against H2O2-induced cell injury through Grx1 induction by activating Nrf2 pathway, thus preventing lethal accumulation of PSSG and reversing oxidative damage.
Collapse
Affiliation(s)
- Xiaobin Liu
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Christy Xavier
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Jamieson Jann
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | - Hongli Wu
- Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
19
|
Wang H, Wang H, Cheng H, Che Z. Ameliorating effect of luteolin on memory impairment in an Alzheimer's disease model. Mol Med Rep 2016; 13:4215-20. [PMID: 27035793 PMCID: PMC4838167 DOI: 10.3892/mmr.2016.5052] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/28/2016] [Indexed: 01/26/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorder. It is characterized by the formation of amyloid plaques and neurofibrillary tangles in the brain, the degeneration of cholinergic neurons and neuronal cell death. The present study aimed to investigate the effect of luteolin, a flavonoid compound, on memory impairment in a streptozotocin (STZ)-induced Alzheimer's rat model. Morris water maze and probe tests were performed to examine the effect of luteolin treatment on cognition and memory. The effect of luteolin on CA1 pyramidal layer thickness was also examined. The results demonstrated that luteolin significantly ameliorated the spatial learning and memory impairment induced by STZ treatment. STZ significantly reduced the thickness of CA1 pyramidal layer and treatment of luteolin completely abolished the inhibitory effect of STZ. Our results suggest that luteolin has a potentially protective effect on learning defects and hippocampal structures in AD.
Collapse
Affiliation(s)
- Huimin Wang
- Department of Neurology, Xinxiang Central Hospital, Xinxiang, Henan 453000, P.R. China
| | - Huiling Wang
- Department of Pediatrics, Xinxiang Hospital of Municipal Offices, Xinxiang, Henan 453000, P.R. China
| | - Huixin Cheng
- Department of Pathology, Xinxiang Central Hospital, Xinxiang, Henan 453000, P.R. China
| | - Zhenyong Che
- Department of Neurology, Xinxiang Central Hospital, Xinxiang, Henan 453000, P.R. China
| |
Collapse
|
20
|
Zhang DF, Zhang J, Li R. Salvianolic acid B attenuates lung inflammation induced by cigarette smoke in mice. Eur J Pharmacol 2015; 761:174-9. [PMID: 25975489 DOI: 10.1016/j.ejphar.2015.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 12/13/2022]
Abstract
Salvianolic acid B (Sal B), a bioactive compound isolated from the Chinese herb Radix Salviae Miltiorrhizae, has been reported to exhibit anti-inflammatory and anti-oxidantive effects. The aim of this study was to investigate the protective effects of Sal B on cigarette smoke (CS)-induced acute lung inflammation. Sal B was given intraperitoneally (i.p.) to mice 1h before CS exposure daily for four consecutive days. Bronchoalveolar lavage fluid (BALF) was collected to assess the levels of inflammatory cytokines and cell counts. Lung tissues were used to analysis pathological changes, total glutathione (GSH), nuclear factor erythroid-2 related factor 2 (Nrf-2), and nuclear factor-kappa B (NF-κB) expression. The results showed that Sal B inhibited CS-induced lung pathological changes, the infiltration of inflammatory cells, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and monocyte chemoattractant protein 1 (MCP-1) productions. Sal B also up-regulated CS-induced total glutathione (GSH) production. Furthermore, Sal B was found to up-regulate Nrf-2, hemeoxygenase1 (HO1) expression and suppress CS-induced NF-κB activation. In conclusion, the current study demonstrated that Sal B exhibited a protective effect on CS-induced lung injury and the possible mechanism was involved in activating Nrf-2 and inhibiting NF-κB activation.
Collapse
Affiliation(s)
- Dong-Fang Zhang
- Departmant of Pharmacy, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China.
| | - Jin Zhang
- Departmant of Neuroolgy, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, China
| | - Ran Li
- Liaocheng University, Liaocheng 252000, Shangdong Province, China
| |
Collapse
|
21
|
Zhang XZ, Qian SS, Zhang YJ, Wang RQ. Salvia miltiorrhiza: A source for anti-Alzheimer's disease drugs. PHARMACEUTICAL BIOLOGY 2015; 54:18-24. [PMID: 25857808 DOI: 10.3109/13880209.2015.1027408] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Alzheimer's disease (AD) is a devastating neurodegenerative disorder that affects millions of elderly people worldwide. However, no efficient therapeutic method for AD has yet been developed. Recently, Salvia miltiorrhiza Bunge (Lamiaceae), a well-known traditional Chinese medicine which is widely used for treating cardio-cerebrovascular, exerts multiple neuroprotective effects and is attracting increased attention for the treatment of AD. OBJECTIVE The objective of this study is to discuss the neuroprotective effects and neurogenesis-inducing activities of S. miltiorrhiza components. METHODS A detailed search using major electronic search engines (such as Pubmed, ScienceDirect, and Google Scholar) was undertaken with the search terms: Salvia miltiorrhiza, the components of S. miltiorrhiza such as salvianolic acid B, salvianolic acid A, danshensu, tanshinone I, tanshinone IIA, cryptotanshinone, dihydrotanshinone, and neuroprotection. RESULTS Salvia miltiorrhiza components exert multiple neuroprotective potentials relevant to AD, such as anti-amyloid-β, antioxidant, anti-apoptosis, acetylcholinesterase inhibition, and anti-inflammation. Moreover, S. miltiorrhiza promotes neurogenesis of neural progenitor cells/stem cells in vitro and in vivo. CONCLUSIONS The properties of S. miltiorrhiza indicate their therapeutic potential in AD via multiple mechanisms. In addition, S. miltiorrhiza provides lead compounds for developing new drugs against AD.
Collapse
Affiliation(s)
- Xiu-Zhen Zhang
- a School of Life Sciences, Shandong University of Technology , Zibo , PR China
| | - Shao-Song Qian
- a School of Life Sciences, Shandong University of Technology , Zibo , PR China
| | - Yue-Jie Zhang
- a School of Life Sciences, Shandong University of Technology , Zibo , PR China
| | - Rui-Qi Wang
- a School of Life Sciences, Shandong University of Technology , Zibo , PR China
| |
Collapse
|
22
|
Shu T, Pang M, Rong L, Liu C, Wang J, Zhou W, Wang X, Liu B. Protective Effects and Mechanisms of Salvianolic Acid B Against H₂O₂-Induced Injury in Induced Pluripotent Stem Cell-Derived Neural Stem Cells. Neurochem Res 2015; 40:1133-43. [PMID: 25855584 DOI: 10.1007/s11064-015-1573-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/23/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Induced pluripotent stem cells (iPSCs) have the potential to differentiate into neural lineages. Salvianolic acid B (Sal B) is a commonly used, traditional Chinese medicine for enhancing neuroprotective effects, and has antioxidant, anti-inflammatory, and antiapoptotic properties. Here, we explore the potential mechanism of Sal B in protecting iPSC-derived neural stem cells (NSCs) against H2O2-induced injury. iPSCs were induced into NSCs, iPSC-derived NSCs were treated with 50 μM Sal B for 24.5 h and 500 μM H2O2 for 24 h. The resulting effects were examined by flow cytometry analysis, quantitative reverse-transcription polymerase chain reaction, and western blotting. Upon H2O2 exposure, Sal B significantly promoted cell viability and stabilization of the mitochondrial membrane potential. Sal B also visibly decreased the cell apoptotic ratio. In addition, Sal B markedly reduced expression of matrix metalloproteinase (MMP)-2 and -9, and phosphospecific signal transducer and activator of transcription 3 (p-STAT3), and increased the level of tissue inhibitor of metalloproteinase (TIMP)-2 in iPSC-derived NSCs induced by H2O2. These results suggest that Sal B protects iPSC-derived NSCs against H2O2-induced oxidative stress. The mechanisms of this stress tolerance may be attributed to modulation of the MMP/TIMP system and inhibition of the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Tao Shu
- Department of Spine Surgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Xia SF, Xie ZX, Qiao Y, Li LR, Cheng XR, Duan XM, Tang X, Shi YH, Le GW. Salvianolic acid B counteracts cognitive decline triggered by oxidative stress in mice fed with high-fat diets. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
24
|
Shafaei-Bajestani N, Emami SA, Asili J, Tayarani-Najaran Z. Anti-apoptotic effect of taxodione on serum/glucose deprivation-induced PC12 cells death. Cell Mol Neurobiol 2014; 34:1103-9. [PMID: 25187359 DOI: 10.1007/s10571-014-0085-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/07/2014] [Indexed: 01/27/2023]
Abstract
Taxodione, a diterpenoid from the roots of Salvia chorassanica Bunge, possesses cytotoxic, apoptotic, and antimicrobial activity. This study was designed to investigate the protective effects of taxodione on serum/glucose deprivation-induced ischemic injury in PC12 cells and related mechanisms. In an in vitro model of ischemia, PC12 cells were exposed to serum and glucose deprivation for 6 and 18 h. The protective effects of the methanol extract of S. chorassanica and taxodione were assessed using alamarBlue(®) assay. Intracellular ROS production was measured by fluorimetry using 2',7'-dichlorofluorescin diacetate (DCFH-DA). The levels of PARP, Bcl-2, and Bax proteins were detected after western blot analysis. It was shown that taxodione (0.2-1.5 μM) significantly increased cell viability in a dose-dependent manner after ischemic insult. Taxodione has antioxidant activity and protects PC12 cells against oxidative stress-induced apoptotic cell death. Meanwhile, pretreatment with taxodione significantly induced an increase in Bcl-2 and a decrease in Bax protein level. The results of this study confirmed the protective effect of taxodione in serum/glucose deprivation-induced ischemic injury and the putative role of apoptosis as a underling mechanisms. Thus, it would be fair to consider taxodione as a promising ingredient of S. chorassanica for the expansion on novel class of anti-ischemic agents.
Collapse
Affiliation(s)
- Negar Shafaei-Bajestani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 9188617871, Mashhad, Iran
| | | | | | | |
Collapse
|
25
|
Sinha A, Tamboli RS, Seth B, Kanhed AM, Tiwari SK, Agarwal S, Nair S, Giridhar R, Chaturvedi RK, Yadav MR. Neuroprotective Role of Novel Triazine Derivatives by Activating Wnt/β Catenin Signaling Pathway in Rodent Models of Alzheimer’s Disease. Mol Neurobiol 2014; 52:638-52. [DOI: 10.1007/s12035-014-8899-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
|
26
|
Yu H, Yao L, Zhou H, Qu S, Zeng X, Zhou D, Zhou Y, Li X, Liu Z. Neuroprotection against Aβ25–35-induced apoptosis by Salvia miltiorrhiza extract in SH-SY5Y cells. Neurochem Int 2014; 75:89-95. [DOI: 10.1016/j.neuint.2014.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/09/2014] [Accepted: 06/04/2014] [Indexed: 12/30/2022]
|
27
|
Hügel HM, Jackson N. Danshen diversity defeating dementia. Bioorg Med Chem Lett 2014; 24:708-16. [DOI: 10.1016/j.bmcl.2013.12.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/03/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
|
28
|
Lim YA, Murray LA, Lai MKP, Chen C. NeuroAiD® (MLC601) and amyloid precursor protein processing. Cerebrovasc Dis 2013; 35 Suppl 1:30-7. [PMID: 23548917 DOI: 10.1159/000346236] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Amyloid precursor protein (APP) undergoes cleavage under physiological conditions, predominantly by α- and γ-secretases, to form the nonpathogenic sAPPα and p3 fragments. By contrast, amyloid-beta (Aβ) is produced via proteolytic cleavage by β- and γ-secretases. In Alzheimer's disease (AD), APP is preferentially processed via the amyloidogenic pathway, producing large amounts of Aβ that form the major constituent of senile plaques and tau-containing neurofibrillary tangles. Similarly, stroke patients have a higher level of Aβ around the area of infarct, suggesting that Aβ may mediate at least some of the secondary neurotoxicity observed in stroke patients. METHODS To investigate the effects of MLC601 (NeuroAiD(®)) on regulation of APP processing, the human neuroblastoma cell line SH-SY5Y was used for all experiments. Stocks of MLC601 were prepared at a final concentration of 50 mg/ml. Cells were treated with different concentrations of MLC601 before assessing changes in the levels of released lactate dehydrogenase (LDH), full-length APP and secreted sAPPα. RESULTS Concentrations of MLC601 between 1 and 1,000 µg/ml significantly lowered the levels of LDH released into the media when compared to control cells. In contrast, MLC601 concentrations at 5,000 and 10,000 µg/ml resulted in a significant increase in the LDH release. Treatment with 100, 500 and 1,000 μg/ml of MLC601 significantly increases the levels of sAPPα secreted by SH-SY5Y into the media. Treatment with 1,000 μg/ml of MLC601 significantly decreased the levels of full-length APP. CONCLUSION MLC601 is a possible modulator of APP processing and has implications as a putative therapeutic strategy for the treatment of poststroke dementia and AD.
Collapse
Affiliation(s)
- Y A Lim
- Memory, Aging and Cognition Centre, National University Health System, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
29
|
Lee YW, Kim DH, Jeon SJ, Park SJ, Kim JM, Jung JM, Lee HE, Bae SG, Oh HK, Ho Son KH, Ryu JH. Neuroprotective effects of salvianolic acid B on an Aβ25–35 peptide-induced mouse model of Alzheimer's disease. Eur J Pharmacol 2013; 704:70-7. [DOI: 10.1016/j.ejphar.2013.02.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 01/20/2023]
|
30
|
Salvianolic Acid B Protects From Pulmonary Microcirculation Disturbance Induced by Lipopolysaccharide in Rat. Shock 2013; 39:317-25. [DOI: 10.1097/shk.0b013e318283773e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Cheng B, Gong H, Li X, Sun Y, Chen H, Zhang X, Wu Q, Zheng L, Huang K. Salvianolic acid B inhibits the amyloid formation of human islet amyloid polypeptide and protects pancreatic beta-cells against cytotoxicity. Proteins 2012. [PMID: 23180621 DOI: 10.1002/prot.24216] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The misfolding of human islet amyloid polypeptide (hIAPP) is regarded as one of the causative factors of type 2 diabetes mellitus (T2DM). Salvia miltiorrhiza (Danshen), one of the most commonly used of traditional Chinese medicines, is often used in Compound Recipes for treating diabetes, however with unclear mechanisms. Since salvianolic acid B (SalB) is the most abundant bioactive ingredient of salvia miltiorrhiza water-extract. In this study, we tested whether SalB has any effect on the amyloidogenicity of hIAPP. Our results clearly suggest that SalB can significantly inhibit the formation of hIAPP amyloid and disaggregate hIAPP fibrils. Furthermore, photo-crosslinking based oligomerization studies suggest SalB significantly suppresses the toxic oligomerization of hIAPP monomers. Cytotoxicity protection effects on pancreatic INS-1 cells by SalB were also observed using MTT-based assays, potentially due to the inhibition on the membrane disruption effects and attenuated mitochondria impairment induced by hIAPP. These results provide evidence that SalB may further be studied on the possible pharmacological treatment for T2DM.
Collapse
Affiliation(s)
- Biao Cheng
- Department of Bio-pharmaceutics, Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lee JS, Kim HG, Han JM, Lee JS, Son SW, Ahn YC, Son CG. Myelophil ameliorates brain oxidative stress in mice subjected to restraint stress. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:339-47. [PMID: 22813841 DOI: 10.1016/j.pnpbp.2012.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 06/29/2012] [Accepted: 07/06/2012] [Indexed: 12/22/2022]
Abstract
We evaluated the pharmacological effects of Myelophil, a 30% ethanol extract of a mix of Astragali Radix and Salviae Radix, on oxidative stress-induced brain damage in mice caused by restraint stress. C57BL/6 male mice (eight weeks old) underwent daily oral administration of distilled water, Myelophil (25, 50, or 100mg/kg), or ascorbic acid (100mg/kg) 1h before induction of restraint stress, which involved 3h of immobilization per day for 21days. Nitric oxide levels, lipid peroxidation, activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione redox system enzymes), and concentrations of adrenaline, corticosterone, and interferon-γ, were measured in brain tissues and/or sera. Restraint stress-induced increases in nitric oxide levels (serum and brain tissues) and lipid peroxidation (brain tissues) were significantly attenuated by Myelophil treatment. Restraint stress moderately lowered total antioxidant capacity, catalase activity, glutathione content, and the activities of glutathione reductase, glutathione peroxidase, and glutathione S-transferase; all these responses were reversed by Myelophil. Myelophil significantly attenuated the elevated serum concentrations of adrenaline and corticosterone and restored serum and brain interferon-γ levels. Moreover, Myelophil normalized expression of the genes encoding monoamine oxidase A, catechol-O-methyltransferase, and phenylethanolamine N-methyltransferase, which was up-regulated by restraint stress in brain tissues. These results suggest that Myelophil has pharmacological properties protects brain tissues against stress-associated oxidative stress damage, perhaps in part through regulation of stress hormones.
Collapse
Affiliation(s)
- Jin-Seok Lee
- Liver and Immunology Research Center, Oriental Medical Collage of Daejeon University, 22-5 Daehung-dong, Jung-gu, Daejeon, 301-724, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
Ji D, Wu Y, Zhang B, Zhang CF, Yang ZL. Triterpene saponins from the roots of Dipsacus asper and their protective effects against the Aβ25–35 induced cytotoxicity in PC12 cells. Fitoterapia 2012; 83:843-8. [DOI: 10.1016/j.fitote.2012.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/27/2012] [Accepted: 03/05/2012] [Indexed: 11/26/2022]
|
34
|
A new iridoid glycoside from the roots of Dipsacus asper. Molecules 2012; 17:1419-24. [PMID: 22306831 PMCID: PMC6268358 DOI: 10.3390/molecules17021419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 01/21/2012] [Accepted: 01/30/2012] [Indexed: 11/17/2022] Open
Abstract
A new iridoid glycoside, named loganic acid ethyl ester (1), together with five known compounds: chlorogenic acid (2), caffeic acid (3), loganin (4), cantleyoside (5) and syringaresinol-4',4''-O-bis-β-D-glucoside (6) were isolated from the roots of Dipsacus asper. The structure of compound 1 was elucidated on the basis of detailed spectroscopic analyses. Lignan is isolated from Dipsacaceae species for the first time. Compounds 1, 4 and 5 had moderate neuroprotective effects against the Aβ₂₅₋₃₅ induced cell death in PC12 cells.
Collapse
|
35
|
Recent Approaches Towards Selected Lamiaceae Plants for Their Prospective Use in Neuroprotection. BIOACTIVE NATURAL PRODUCTS 2012. [DOI: 10.1016/b978-0-444-59530-0.00014-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
36
|
Zhou Y, Li W, Xu L, Chen L. In Salvia miltiorrhiza, phenolic acids possess protective properties against amyloid β-induced cytotoxicity, and tanshinones act as acetylcholinesterase inhibitors. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 31:443-452. [PMID: 21787715 DOI: 10.1016/j.etap.2011.02.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 02/07/2011] [Accepted: 02/21/2011] [Indexed: 05/31/2023]
Abstract
Radix Salvia miltiorrhiza (RSM), a traditional Chinese medicinal herb, has been alleged to possess therapeutic effects against senile dementia, also known as Alzheimer's disease (AD). However, the effects of the major components in RSM on cytotoxicity induced by amyloid-β peptide (Aβ) and on acetylcholinesterase activity have not been studied in depth to date. In this report, the effects of RSM aqueous/ethanol extracts, total polyphenols, total tanshinones and 3 phenolic compounds against toxicity mediated by Aβ(25-35) were tested with PC-12 cells. The results showed that Aβ(25-35)-induced cytotoxicity was revised by RSM aqueous/ethanol extracts and total polyphenols and that danshensu and salvianolic acid B could protect PC-12 cells by blocking Aβ(25-35)-induced Ca(2+)-intake, lactate dehydrogenase release, cell viability decrease and apoptosis. In addition, the activities of RSM extracts and relevant constituents in their inhibition of acetylcholinesterase were investigated using rat brain homogenates as an enzyme resource. Galanthamine hydrobromide, an accepted acetylcholinesterase inhibitor, was employed as a positive control agent. Our preliminary studies demonstrated that RSM ethanol extract, total tanshinones, tanshinone I and dihydrotanshinone I had remarkable inhibition effects on acetylcholinesterase in vitro. These findings suggest that both tanshinones and polyphenols in RSM are the active constituents responsible for the beneficial effects of this herb in AD treatment.
Collapse
Affiliation(s)
- Yongqiang Zhou
- New Medicine R&D Center, Disha Pharmaceutical Group, Weihai 264205, PR China.
| | | | | | | |
Collapse
|
37
|
Wang MX, Liu YY, Hu BH, Wei XH, Chang X, Sun K, Fan JY, Liao FL, Wang CS, Zheng J, Han JY. Total salvianolic acid improves ischemia-reperfusion-induced microcirculatory disturbance in rat mesentery. World J Gastroenterol 2010; 16:5306-16. [PMID: 21072893 PMCID: PMC2980679 DOI: 10.3748/wjg.v16.i42.5306] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of total salvianolic acid (TSA) on ischemia-reperfusion (I/R)-induced rat mesenteric microcirculatory dysfunctions.
METHODS: Male Wistar rats were randomly distributed into 5 groups (n = 6 each): Sham group and I/R group (infused with saline), TSA group, TSA + I/R group and I/R + TSA group (infused with TSA, 5 mg/kg per hour). Mesenteric I/R were conducted by a ligation of the mesenteric artery and vein (10 min) and subsequent release of the occlusion. TSA was continuously infused either starting from 10 min before the ischemia or 10 min after reperfusion. Changes in mesenteric microcirculatory variables, including diameter of venule, velocity of red blood cells in venule, leukocyte adhesion, free radicals released from venule, albumin leakage and mast cell degranulation, were observed through an inverted intravital microscope. Meanwhile, the expression of adhesion molecules CD11b/CD18 on neutrophils was evaluated by flow cytometry. Ultrastructural evidence of mesenteric venules damage was assessed after microcirculation observation.
RESULTS: I/R led to multiple responses in mesenteric post-capillary venules, including a significant increase in the adhesion of leukocytes, production of oxygen radicals in the venular wall, albumin efflux and enhanced mast cell degranulation in vivo. All the I/R-induced manifestations were significantly reduced by pre- or post-treatment with TSA, with the exception that the I/R-induced increase in mast cell degranulation was inhibited only by pre-treatment with TSA. Moreover, pre- or post-treatment with TSA significantly attenuated the expression of CD11b/CD18 on neutrophils, reducing the increase in the number of caveolae in the endothelial cells of mesentery post-capillary venules induced by I/R.
CONCLUSION: The results demonstrated that TSA protects from and ameliorates the microcirculation disturbance induced by I/R, which was associated with TSA inhibiting the production of oxygen-free radicals in the venular wall and the expression of CD11b/CD18 on neutrophils.
Collapse
|
38
|
Potential therapeutic agents against Alzheimer’s disease from natural sources. Arch Pharm Res 2010; 33:1589-609. [DOI: 10.1007/s12272-010-1010-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 01/27/2023]
|
39
|
Changes in mitochondrial dynamics during amyloid β-induced PC12 cell apoptosis. Mol Cell Biochem 2010; 344:277-84. [DOI: 10.1007/s11010-010-0552-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 07/23/2010] [Indexed: 11/27/2022]
|
40
|
Liu X, Xu K, Yan M, Wang Y, Zheng X. Protective effects of galantamine against Abeta-induced PC12 cell apoptosis by preventing mitochondrial dysfunction and endoplasmic reticulum stress. Neurochem Int 2010; 57:588-99. [PMID: 20655346 DOI: 10.1016/j.neuint.2010.07.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/08/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
Amyloid beta (Abeta) is considered to be responsible for the pathogenesis of Alzheimer's disease (AD). Mitochondrial and ER apoptotic pathways are considered to be involved in this process. Galantamine is an acetylcholinesterase (AChE) inhibitor widely used for patients with AD. In this study, we investigated the neuroprotective effects of galantamine on Abeta(25-35)-induced apoptosis in PC12 cells and the underlying mechanisms. Exposure of PC12 cells to 20 microM Abeta(25-35) caused significant cell viability loss and apoptosis, Abeta aggregation, mitochondrial and ER morphological changes, as well as mitochondrial membrane potential dissipation, reactive oxygen species (ROS) production, intracellular calcium elevation, and cytochrome c release from mitochondria. Pretreatment with 10 microM galantamine for 24 h prior to Abeta(25-35) exposure significantly reduced Abeta(25-35)-induced apoptosis not only by preventing Abeta aggregation, mitochondrial and ER morphological changes, mitochondrial membrane potential dissipation, ROS production, intracellular calcium elevation, and cytochrome c release, but also via reversing Bcl-2/Bax ratio and suppressing the activity of GADD153, Grp78/94, caspase-9, caspase-12, and caspase-3. All these data indicate that galantamine protects PC12 cells against Abeta(25-35)-induced apoptosis by preventing mitochondrial dysfunction and endoplasmic reticulum (ER) stress.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Biomedical Engineering, Zhejiang University, Key Laboratory of Biomedical Engineering of Ministry of Education, Hangzhou, Zhejiang, China
| | | | | | | | | |
Collapse
|
41
|
Wang SX, Hu LM, Gao XM, Guo H, Fan GW. Anti-inflammatory activity of salvianolic acid B in microglia contributes to its neuroprotective effect. Neurochem Res 2010; 35:1029-37. [PMID: 20238162 DOI: 10.1007/s11064-010-0151-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 03/06/2010] [Indexed: 01/04/2023]
Abstract
This study examined whether Salvianolic acid B (Sal B), a major active component of Chinese herb Radix Salviae Miltiorrhizae, may exert an anti-inflammatory effect in microglia and may be neuroprotective by regulating microglial activation. Our results showed that Sal B significantly reduced the production of nitric oxide (NO), tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta) and reactive oxygen species (ROS) induced by lipopolysaccharide (LPS) treatment in rat primary microglia in a dose-dependent manner. Sal B had no effects on ATP-dependent IL-1beta release and interferon (IFN)-gamma-induced NO production. Sal B also suppressed LPS-induced inducible nitric oxide synthase (iNOS), TNF-alpha, and IL-1beta mRNA expression, which was accompanied by inhibiting transcription factor NF-kappaB activation. Sal B could protect neurons through inhibition of microglial activation in a microglia-neuron coculture system. In conclusion, these data demonstrate that anti-inflammatory activity of Sal B in microglia contributes to its neuroprotective effect and suggest that it may be useful for preventing microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Shao-Xia Wang
- Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, 300193, Nankai District, Tianjin, China
| | | | | | | | | |
Collapse
|
42
|
Zhou Y, Liang M, Li W, Li K, Li P, Hu Y, Yang Z. Protective effects of Eucommia ulmoides Oliv. bark and leaf on amyloid β-induced cytotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 28:342-349. [PMID: 21784025 DOI: 10.1016/j.etap.2009.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 05/20/2009] [Accepted: 05/24/2009] [Indexed: 05/31/2023]
Abstract
The objectives of this study were to investigate the protective effects of Eucommia ulmoides Oliv. (EUO) bark and leaf against cytotoxicity induced by amyloid-β peptide (Aβ) and to explore their active components. The PC-12 cells injury mediated by Aβ(25-35) was employed to assess the neuroprotective effects of EUO bark, EUO leaf and various compounds. Intracellular Ca(2+) determination, MTT reduction assay, lactate dehydrogenase leakage evaluation and HO33258/PI staining were used to quantitatively or qualitatively evaluate cell viability and injury. The organic solvents partition and the macroporous resin separation were also applied to tracing the active constituents of EUO bark. Moreover, the effects of 8 compounds (3 iridoid glucoside, 3 phenylpripanoids and 2 flavonoids) were tested to identify the active compounds of EUO leaf. The results demonstrated that the water extracts of EUO barks and leaves, geniposidic acid and chlorogenic acid could efficiently protect PC-12 cells against the cytotoxicity of Aβ(25-35). This research suggests that EUO may represent a potential treatment strategy for Alzheimer's disease. Meanwhile, geniposidic acid and chlorogenic acid are the major active constituents of EUO barks and leaves, respectively.
Collapse
Affiliation(s)
- Yongqiang Zhou
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Ministry of Education, Nanjing 210009, PR China
| | | | | | | | | | | | | |
Collapse
|
43
|
Zhang JJ, Zhang RF, Meng XK. Protective effect of pyrroloquinoline quinone against Abeta-induced neurotoxicity in human neuroblastoma SH-SY5Y cells. Neurosci Lett 2009; 464:165-9. [PMID: 19699263 DOI: 10.1016/j.neulet.2009.08.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 08/11/2009] [Accepted: 08/14/2009] [Indexed: 01/03/2023]
Abstract
The neurotoxicity of aggregated beta-amyloid (Abeta) has been implicated as a critical cause in the pathogenesis of Alzheimer's disease (AD). It can cause neurotoxicity in AD by evoking a cascade of oxidative damage-dependent apoptosis to neurons. In the present study, we for the first time investigated the protective effect of pyrroloquinoline quinone (PQQ), an anionic, water soluble compound that acts as a redox cofactor of bacterial dehydrogenases, on Abeta-induced SH-SY5Y cytotoxicity. Abeta(25-35) significantly reduced cell viability, increased the number of apoptotic-like cells, and increased ROS production. All of these phenotypes induced by Abeta(25-35) were markedly reversed by PQQ. PQQ pretreatment recovered cells from Abeta(25-35)-induced cell death, prevented Abeta(25-35)-induced apoptosis, and decreased ROS production. PQQ strikingly decreased Bax/Bcl-2 ratio, and suppressed the cleavage of caspase-3. These results indicated that PQQ could protect SH-SY5Y cells against beta-amyloid induced neurotoxicity.
Collapse
Affiliation(s)
- Jun-Jing Zhang
- Department of Surgery, The Affiliated Hospital of Inner Mongolia Medical College, 1 Tongdao Beijie, Hohhot, 010050, China.
| | | | | |
Collapse
|
44
|
Wang H, Xu Y, Yan J, Zhao X, Sun X, Zhang Y, Guo J, Zhu C. Acteoside protects human neuroblastoma SH-SY5Y cells against β-amyloid-induced cell injury. Brain Res 2009; 1283:139-47. [DOI: 10.1016/j.brainres.2009.05.101] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/24/2009] [Accepted: 05/27/2009] [Indexed: 12/21/2022]
|
45
|
Inhibition of H2O2-induced neuroblastoma cell cytotoxicity by a triazine derivative, AA3E2. Eur J Pharmacol 2009; 622:1-6. [PMID: 19619524 DOI: 10.1016/j.ejphar.2009.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/27/2009] [Accepted: 07/09/2009] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease is the major cause of senile dementia with the hallmark of beta-amyloid deposition in neurons. Although the main cause(s) of this deposition is not fully understood, however, the wealth of the present literature data supports the pivotal role of reactive oxygen and nitrogen species in both the initiation and progression of beta-amyloid aggregation and deposition. In the present study, we were interested to evaluate the free-radical protecting effect of AA3E2, a triazine derivative with a beta-amyloid-breaking activity, among SK-N-MC neuroblastoma cells exposed to hydrogen peroxide (H(2)O(2)) as an exogenous source of free radicals. Exposure of the cells to different doses of AA3E2 (1-16 microM) for 3h followed by subsequent exposure to a single dose of H(2)O(2) (mainly 150 microM) attenuated the extent of superoxide dismutase (SOD) and catalase (CAT) inhibition by H(2)O(2), in a dose dependent manner. Furthermore, significant reduction was observed in the extent of cellular lactate dehydrogenase release, intracellular ROS and the extent of apoptosis among the cells pre-treated with AA3E2. Based on these data, an antioxidant mode of action is proposed for AA3E2 besides its previously beta-amyloid-breaking activity.
Collapse
|
46
|
Zhou YQ, Yang ZL, Xu L, Li P, Hu YZ. Akebia saponin D, a saponin component from Dipsacus asper Wall, protects PC 12 cells against amyloid-beta induced cytotoxicity. Cell Biol Int 2009; 33:1102-10. [PMID: 19615455 DOI: 10.1016/j.cellbi.2009.06.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/20/2009] [Accepted: 06/27/2009] [Indexed: 10/20/2022]
Abstract
According to Traditional Chinese Medicine, Alzheimer's disease (AD) is regarded as senile dementia, and the etiopathogenesis lies in kidney deficiency during aging. Dipsacus asper Wall (DAW), a well-known traditional Chinese medicine for enhancing kidney activity, may possess the therapeutic effects against AD. Our objectives were to investigate the protective effects of DAW against the amyloid-beta peptide (A beta)-induced cytotoxicity and explore its major active components. Injury of PC 12 cells mediated by A beta(25-35) was adopted to assess the cytoprotective effects of DAW aqueous extract and various fractions. Salvianolic acid B, a polyphenol compound isolated from Salvia miltiorrhiza, was employed as a positive control agent due to its markedly protective effect against neurotoxicity of amyloid beta. Five chemical fractions (i.e. alkaloids, essential oil, saponins, iridoid glucoside and polysaccharides) were prepared for activity test and analyzed by HPLC for active components identification. In addition, Akebia saponin D (the most important compound in DAW saponins) and hederagenin (the mother nucleus of akebia saponin D) were prepared for testing of their activity. DAW water extract, saponins fraction and akebia saponin D had the neuroprotective capacity to antagonize A beta(25-35)-induced cytotoxicity in PC 12 cells. In contrast, other fractions and hederagenin had no cytoprotective action. This research suggests that DAW may represent a potential treatment strategy for AD and akebia saponin D is one of its active components.
Collapse
Affiliation(s)
- Yong-Qiang Zhou
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Ministry of Education, Nanjing 210009, PR China
| | | | | | | | | |
Collapse
|
47
|
Cao J, Qi LW, Chen J, Yi L, Li P, Ren MT, Li YJ. Application of liquid chromatography-electrospray ionization time-of-flight mass spectrometry for analysis and quality control of compound Danshen preparations. Biomed Chromatogr 2009; 23:397-405. [DOI: 10.1002/bmc.1130] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Sun Y, Zhu H, Wang J, Liu Z, Bi J. Isolation and purification of salvianolic acid A and salvianolic acid B from Salvia miltiorrhiza by high-speed counter-current chromatography and comparison of their antioxidant activity. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:733-7. [PMID: 19237321 DOI: 10.1016/j.jchromb.2009.02.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 02/03/2009] [Accepted: 02/03/2009] [Indexed: 11/17/2022]
Abstract
Water-soluble salvianolic acid A (Sal A) and salvianolic acid B (Sal B) were successfully isolated and purified from the crude extract of Salvia miltiorrhiza by high-speed counter-current chromatography (HSCCC). The solvent system was n-hexane-ethyl acetate-methanol-water (3:6:6:10, v/v/v/v). 4.27 mg of Sal A and 32.09 mg of Sal B were obtained from 260 mg of the crude sample. The purities of Sal A and Sal B were 96.67% and 97.43%, respectively. Their structures were identified by (1)H NMR and (13)C NMR. Antioxidant activities of Sal A and Sal B were also evaluated and compared by the methods of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS(+)) radical cation decolourisation assay. Both Sal A and Sal B showed high radical scavenging activities with their EC(50) values being 1.43+/-0.09 and 1.81+/-0.01 microg/ml in DPPH radical method. The ABTS results showed that Sal A and Sal B exhibited high total antioxidant activities, their EC(50) values were 1.35+/-0.00 and 1.43+/-0.01 microg/ml, respectively.
Collapse
Affiliation(s)
- Yinshi Sun
- College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | | | | | | | | |
Collapse
|
49
|
Wu HL, Li YH, Lin YH, Wang R, Li YB, Tie L, Song QL, Guo DA, Yu HM, Li XJ. Salvianolic acid B protects human endothelial cells from oxidative stress damage: a possible protective role of glucose-regulated protein 78 induction. Cardiovasc Res 2008; 81:148-58. [PMID: 18815184 DOI: 10.1093/cvr/cvn262] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The purposes of the present study were to both evaluate the protective effects of Salvianolic acid B (Sal B) and to determine the possible molecular mechanisms by which Sal B protects endothelial cells from damage caused by oxidative stress. METHODS AND RESULTS Pretreatment with Sal B markedly attenuated H(2)O(2)-induced viability loss, lactate dehydrogenase leakage and apoptosis in human umbilical vein endothelial cells (HUVECs). The mechanism of Sal B protection was studied using two-dimensional gel electrophoresis coupled with hybrid quadrupole time-of-flight mass spectrometry. Database searching implicated that glucose-regulated protein 78 (GRP78), a central regulator for endoplasmic reticulum (ER) stress, was up-regulated in Sal B-exposed HUVECs. GRP78 expression regulation was confirmed by western blot and RT-PCR (reverse transcription-polymerase chain reaction) analyses. Additionally, GRP94, which shares significant sequence homology with GRP78, was also up-regulated in Sal B-treated cells. Sal B caused pancreatic ER kinase (PKR)-like ER kinase (PERK) activation followed by the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2 alpha) and the expression of activating transcription factor 4 (ATF4). Knockdown of endogenous ATF4 expression partially repressed Sal B-induced GRP78 induction. Further investigation showed that ATF6 was also activated by Sal B. Knockdown of GRP78 by siRNA significantly reduced the protective effects of Sal B. CONCLUSION The results suggest that Sal B induces the expression of GRP78 by activating ATF6 and the PERK-eIF2 alpha-ATF4 pathway. Furthermore, up-regulation of GRP78 by Sal B may play an important role in protecting human endothelial cells from oxidative stress-induced cellular damage.
Collapse
Affiliation(s)
- Hong-Li Wu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Xueyuan Road, Haidian District, Beijing 100083, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Guo J, Sun K, Wang CS, Fang SP, Horie Y, Yang JY, Liu YY, Wang F, Liu LY, Fan JY, Hibi T, Han JY. Protective effects of dihydroxylphenyl lactic acid and salvianolic acid B on LPS-induced mesenteric microcirculatory disturbance in rats. Shock 2008; 29:205-11. [PMID: 17667359 DOI: 10.1097/shk.0b013e318070c61a] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Salvia miltiorrhiza is a Chinese medicine widely used for treatment of various cardiovascular diseases. However, little is known about the role of dihydroxylphenyl lactic acid (DLA) and salvianolic acid B (SAB), the main ingredients of S. miltiorrhiza, in the microcirculation. This study aimed to investigate the effect of DLA and SAB on LPS-elicited microcirculatory disturbance, focusing especially on leukocyte adhesion and its potential mechanism. Mesenteric venular diameter, velocity of red blood cells in venules, shear rate of the venular wall, numbers of leukocytes adherent to and emigrated across the venular wall, and mast cell degranulation were determined by an inverted microscope in rats after LPS infusion with or without DLA or SAB. Expression of CD11b and CD18 and production of superoxide anion (*O2-) and hydrogen peroxide (H2O2) by neutrophils were evaluated in vitro by flow cytometry. LPS exposure induced a significant increase in the number of adherent and emigrated leukocytes and mast cell degranulation, and a prominent decrease in the velocity of red blood cells in venules and shear rate of the venular wall. Additionally, in vitro experiments revealed an apparent enhancement in expression of CD11b and CD18 and production of *O2- and H2O2 by rat neutrophils by LPS stimulation. Treatment with DLA or SAB significantly ameliorated LPS-induced microcirculatory disturbance in rat mesentery and inhibited both the expression of CD11b and CD18 and the production of *O2- and H2O2 by neutrophils caused by LPS.
Collapse
Affiliation(s)
- Jun Guo
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|