1
|
The explorations of dynamic interactions of paxillin at the focal adhesions. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140825. [PMID: 35926716 DOI: 10.1016/j.bbapap.2022.140825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Paxillin is one of the most important adapters in integrin-mediated adhesions that performs numerous crucial functions relying on its dynamic interactions. Its structural behavior serves different purposes, providing a base for several activities. The various domains of paxillin display different functions in the whole process of cell movements and have a significant role in cell adhesion, migration, signal transmission, and protein-protein interactions. On the other hand, some paxillin-associated proteins provide a unique spatiotemporal mechanism for regulating its dynamic characteristics in the tissue homeostasis and make it a more complex and decisive protein at the focal adhesions. This review briefly describes the structural adaptations and molecular mechanisms of recruitment of paxillin into adhesions, explains paxillin's binding dynamics and impact on adhesion stability and turnover, and reveals a variety of paxillin-associated regulatory mechanisms and how paxillin is embedded into the signaling networks.
Collapse
|
2
|
Zeng Y, Cao Y, Liu L, Zhao J, Zhang T, Xiao L, Jia M, Tian Q, Yu H, Chen S, Cai Y. SEPT9_i1 regulates human breast cancer cell motility through cytoskeletal and RhoA/FAK signaling pathway regulation. Cell Death Dis 2019; 10:720. [PMID: 31558699 PMCID: PMC6763430 DOI: 10.1038/s41419-019-1947-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023]
Abstract
Increasing cell mobility is the basis of tumor invasion and metastasis, and is therefore a therapeutic target for preventing the spread of many types of cancer. Septins are a family of cytoskeletal proteins with GTPase activity, and play a role in many important cellular functions, including cell migration. SEPT9 isoform 1 protein (SEPT9_i1) has been associated with breast tumor development and the enhancement of cell migration; however, the exact mechanism of how SEPT9_i1 might affect breast cancer progression remains to be elucidated. Here, we report that the expression of SEPT9_i1 positively correlated with paxillin, and both were significantly upregulated in invasive breast cancer tissues of patients with lymph node metastases. Lentivirus-mediated shRNA knockdown of SEPT9 in MCF-7 cells diminished tumor cell migration, focal adhesion (FA) maturation and the expression of β-actin, β-tubulin, Cdc42, RhoA, and Rac, whereas overexpression of SEPT9_i1 in SEPT9-knockdown MCF-7 cells promoted cell migration, FA maturation and relevant protein expression. Furthermore, overexpression of SEPT9_i1 in MCF-7 cells markedly increased FAK/Src/paxillin signaling, at least in part through RhoA/ROCK1 upstream activation. Transcriptome profiling suggested that SEPT9_i1 may directly affect “Focal adhesion” and “Regulation of actin cytoskeleton” signaling mechanisms. Finally, overexpression of SEPT9_i1 markedly enhanced lung metastases in vivo 6 weeks after tumor inoculation. These findings suggest that a mechanism of Septin-9-induced aberrant cancer cell migration is through cytoskeletal regulation and FA modulation, and encourages the use of SEPT9 as novel therapeutic target in the prevention of tumor metastasis.
Collapse
Affiliation(s)
- Yongqiu Zeng
- Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, Sichuan, China. .,Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.
| | - Yang Cao
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Lan Liu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiao Zhao
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Ting Zhang
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Lifan Xiao
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Man Jia
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Qiang Tian
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Hong Yu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Shaokun Chen
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yansen Cai
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Hu YL, Lu S, Szeto KW, Sun J, Wang Y, Lasheras JC, Chien S. FAK and paxillin dynamics at focal adhesions in the protrusions of migrating cells. Sci Rep 2014; 4:6024. [PMID: 25113375 PMCID: PMC4129417 DOI: 10.1038/srep06024] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 07/02/2014] [Indexed: 12/23/2022] Open
Abstract
Cell migration requires the fine spatiotemporal integration of many proteins that regulate the fundamental processes that drive cell movement. Focal adhesion (FA) dynamics is a continuous process involving coordination between FA and actin cytoskeleton, which is essential for cell migration. We studied the spatiotemporal relationship between the dynamics of focal adhesion kinase (FAK) and paxillin at FAs in the protrusion of living endothelial cells. Concurrent dual-color imaging showed that FAK was assembled at FA first, which was followed by paxillin recruitment to the FA. By tracking and quantifying FAK and paxillin in migrating cells, the normalized FAK/Paxillin fluorescence intensity (FI) ratio is > 1 (≈ 4 fold) at cell front, ≈ 1 at cell center, and < 1 at cell rear. The significantly higher FAK FI than paxillin FI at cell front indicates that the assembly of FAK-FAs occurs ahead of paxillin at cell front. To determine the time difference between the assemblies of FAK and paxillin at nascent FAs, FAs containing both FAK and paxillin were quantified by image analysis and time correlation. The results show that FAK assembles at the nascent FAs earlier than paxillin in the protrusions at cell front.
Collapse
Affiliation(s)
- Ying-Li Hu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine University of California, San Diego, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaoying Lu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine University of California, San Diego, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kai W. Szeto
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jie Sun
- Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, IL 61801 USA
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine University of California, San Diego, University of California, San Diego, La Jolla, CA 92093, USA
| | - Juan C. Lasheras
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine University of California, San Diego, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine University of California, San Diego, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Kim SY, Yang EG. Collective behaviors of mammalian cells on amine-coated silicon nanowires. NANOTECHNOLOGY 2013; 24:455704. [PMID: 24140651 DOI: 10.1088/0957-4484/24/45/455704] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Intensive studies with vertical nanowire (NW) arrays have illustrated broad implications for manipulating mammalian cells in vitro, but how cellular responses are influenced by the presence of NWs has not been thoroughly investigated. Here, we address collective cellular behaviors, including surface area of cells, membrane trafficking, focal adhesion distribution and dynamics, and cytoskeletal protein distribution on amine-coated silicon (Si) NWs with different physical properties. The degree of HeLa cell spreading was inversely proportional to the surface area occupied by the NWs, which was not affected by manipulation of membrane trafficking dynamics. In the presence of a diffusive focal complex around the NWs, strong, well organized focal adhesion was hardly visible on the NWs, implying that the cells were interacting weakly with the NW-embedded surface. Furthermore, we found that actin filament formation of the cells on long NWs was not favorable, and this could explain our observation of reduced cell spreading, as well as the decreased number of focal adhesion complexes. Taken together, our results suggest that cells can survive on silicon NWs by adjusting their morphology and adhesion behavior through actively organizing these molecules.
Collapse
Affiliation(s)
- So Yeon Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Korea
| | | |
Collapse
|
5
|
Kaneko Y, Day ML, Murphy CR. Uterine epithelial cells: Serving two masters. Int J Biochem Cell Biol 2013; 45:359-63. [DOI: 10.1016/j.biocel.2012.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/11/2012] [Accepted: 10/23/2012] [Indexed: 01/09/2023]
|
6
|
Upregulation of paxillin and focal adhesion signaling follows Dystroglycan Complex deletions and promotes a hypertensive state of differentiation. Eur J Cell Biol 2011; 90:249-60. [PMID: 20663583 DOI: 10.1016/j.ejcb.2010.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/27/2010] [Accepted: 06/23/2010] [Indexed: 02/06/2023] Open
Abstract
Anchorage to matrix is mediated for many cells not only by integrin-based focal adhesions but also by a parallel assembly of integral and peripheral membrane proteins known as the Dystroglycan Complex. Deficiencies in either dystrophin (mdx mice) or γ-sarcoglycan (γSG(-/-) mice) components of the Dystroglycan Complex lead to upregulation of numerous focal adhesion proteins, and the phosphoprotein paxillin proves to be among the most prominent. In mdx muscle, paxillin-Y31 and Y118 are both hyper-phosphorylated as are key sites in focal adhesion kinase (FAK) and the stretch-stimulatable pro-survival MAPK pathway, whereas γSG(-/-) muscle exhibits more erratic hyper-phosphorylation. In cultured myotubes, cell tension generated by myosin-II appears required for localization of paxillin to adhesions while vinculin appears more stably integrated. Overexpression of wild-type (WT) paxillin has no obvious effect on focal adhesion density or the physical strength of adhesion, but WT and a Y118F mutant promote contractile sarcomere formation whereas a Y31F mutant shows no effect, implicating Y31 in striation. Self-peeling of cells as well as Atomic Force Microscopy (AFM) probing of cells with or without myosin-II inhibition indicate an increase in cell tension within paxillin-overexpressing cells. However, prednisolone, a first-line glucocorticoid for muscular dystrophies, decreases cell tension without affecting paxillin at adhesions, suggesting a non-linear relationship between paxillin and cell tension. Hypertension that results from upregulation of integrin adhesions is thus a natural and treatable outcome of Dystroglycan Complex down-regulation.
Collapse
|
7
|
Balsara RD, Merryman R, Virjee F, Northway C, Castellino FJ, Ploplis VA. A deficiency of uPAR alters endothelial angiogenic function and cell morphology. Vasc Cell 2011; 3:10. [PMID: 21535874 PMCID: PMC3105951 DOI: 10.1186/2045-824x-3-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/02/2011] [Indexed: 01/19/2023] Open
Abstract
The angiogenic potential of a cell requires dynamic reorganization of the cytoskeletal architecture that involves the interaction of urokinase-type plasminogen activator receptor (uPAR) with the extracellular matrix. This study focuses on the effect of uPAR deficiency (uPAR-/-) on angiogenic function and associated cytoskeletal organization. Utilizing murine endothelial cells, it was observed that adhesion, migration, proliferation, and capillary tube formation were altered in uPAR-/- cells compared to wild-type (WT) cells. On a vitronectin (Vn) matrix, uPAR-/- cells acquired a "fried egg" morphology characterized by circular actin organization and lack of lamellipodia formation. The up-regulation of β1 integrin, FAK(P-Tyr925), and paxillin (P-Tyr118), and decreased Rac1 activation, suggested increased focal adhesions, but delayed focal adhesion turnover in uPAR-/- cells. This accounted for the enhanced adhesion, but attenuated migration, on Vn. VEGF-enriched Matrigel implants from uPAR-/- mice demonstrated a lack of mature vessel formation compared to WT mice. Collectively, these results indicate that a uPAR deficiency leads to decreased angiogenic functions of endothelial cells.
Collapse
Affiliation(s)
- Rashna D Balsara
- W, M, Keck Center for Transgene Research, University of Notre Dame, 230 Raclin-Carmichael Hall, Notre Dame, Indiana 46556, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Lapierre LA, Caldwell CM, Higginbotham JN, Avant KM, Hall J, Beauchamp RD, Goldenring JR. Transformation of rat intestinal epithelial cells by overexpression of Rab25 is microtubule dependent. Cytoskeleton (Hoboken) 2011; 68:97-111. [PMID: 21246754 DOI: 10.1002/cm.20497] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 11/11/2010] [Indexed: 12/18/2022]
Abstract
Little research has addressed the role of membrane trafficking and recycling in the regulation of the transformed phenotype of neoplastic cells. The small GTPase Rab25 is an epithelial-specific modulator of membrane recycling. Recent studies have demonstrated that Rab25 expression is up-regulated in a number of epithelial cancers and overexpression may increase the aggressive phenotype of certain cancers. We have utilized the nontransformed RIE cell line to examine the influence of Rab25 on transformation. Overexpression of Rab25 in RIE cells leads to morphological transformation as well as growth in soft agar, tumor formation in nude mice, disruption of integrin-based focal adhesions, and alteration in modified microtubule subsets. Although the predominance of recent cancer research has focused on the manipulation of the actin-based cytoskeleton, recycling trafficking relies on microtubules. Transformation of RIE cells through overexpression of Rab25, but not with H-Ras(V12) , was reversed by inhibitors of microtubule polymerization. These results suggest that up-regulation of Rab25 in RIE cells leads to microtubule-dependent transformation. Thus, depolymerization of microtubules may be a potent therapeutic target for cancer therapy through the reversal of the invasive phenotype of certain cancer cells.
Collapse
Affiliation(s)
- Lynne A Lapierre
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Inhibition of GGTase-I and FTase disrupts cytoskeletal organization of human PC-3 prostate cancer cells. Cell Biol Int 2010; 34:815-26. [PMID: 20446922 DOI: 10.1042/cbi20090288] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The mevalonate synthesis pathway produces intermediates for isoprenylation of small GTPases, which are involved in the regulation of actin cytoskeleton and cell motility. Here, we investigated the role of the prenylation transferases in the regulation of the cytoskeletal organization and motility of PC-3 prostate cancer cells. This was done by using FTI-277, GGTI-298 or NE-10790, the specific inhibitors of FTase (farnesyltransferase), GGTase (geranylgeranyltransferase)-I and -II, respectively. Treatment of PC-3 cells with GGTI-298 and FTI-277 inhibited migration and invasion in a time- and dose-dependent manner. This was associated with disruption of F-actin organization and decreased recovery of GFP-actin. Immunoblot analysis of various cytoskeleton-associated proteins showed that the most striking change in GGTI-298- and FTI-277-treated cells was a markedly decreased level of total and phosphorylated cofilin, whereas the level of cofilin mRNA was not decreased. The treatment of PC-3 cells with GGTI-298 also affected the dynamics of GFP-paxillin and decreased the levels of total and phosphorylated paxillin. The levels of phosphorylated FAK (focal adhesion kinase) and PAK (p-21-associated kinase)-2 were also lowered by GGTI-298, but levels of paxillin or FAK mRNAs were not affected. In addition, GGTI-298 had a minor effect on the activity of MMP-9. RNAi knockdown of GGTase-Ibeta inhibited invasion, disrupted F-actin organization and decreased the level of cofilin in PC-3 cells. NE-10790 did not have any effect on PC-3 prostate cancer cell motility or on the organization of the cytoskeleton. In conclusion, our results demonstrate the involvement of GGTase-I- and FTase-catalysed prenylation reactions in the regulation of cytoskeletal integrity and motility of prostate cancer cells and suggest them as interesting drug targets for development of inhibitors of prostate cancer metastasis.
Collapse
|
10
|
Lim SM, Kreipe BA, Trzeciakowski J, Dangott L, Trache A. Extracellular matrix effect on RhoA signaling modulation in vascular smooth muscle cells. Exp Cell Res 2010; 316:2833-48. [PMID: 20599954 DOI: 10.1016/j.yexcr.2010.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 05/25/2010] [Accepted: 06/09/2010] [Indexed: 02/02/2023]
Abstract
Morphological adaptations of vascular smooth muscle cells (VSMC) to the mechanically active environment in which they reside, are mediated by direct interactions with the extracellular matrix (ECM) which induces physiological changes at the intracellular level. This study aimed to analyze the effects of the ECM on RhoA-induced mechanical signaling that controls actin organization and focal adhesion formation. VSMC were transfected with RhoA constructs (wild type, dominant negative or constitutively active) and plated on different ECM proteins used as substrate (fibronectin, collagen IV, collagen I, and laminin) or poly-l-lysine as control. Morphological changes of the VSMC were detected by fluorescence confocal microscopy and total internal reflection fluorescence (TIRF) microscopy, and were independently verified using adhesion assays and Western blot analysis. Our results showed that the ECM has an important role in cell spreading, adhesion and morphology with a direct effect on modulating RhoA signaling. RhoA activity significantly affected the stress fibers and focal adhesions reorganization, but in a context imposed by the ECM. Thus, RhoA activity modulation in VSMC induced an increased activation of stress fibers and FA formation at 5h, while a significant inhibition was recorded at 24h after plating on the different ECM. Our findings provide biophysical evidence that ECM modulates VSMC response to mechanical stimuli inducing intracellular biochemical signaling involved in cellular adaptation to the local microenvironment.
Collapse
Affiliation(s)
- Soon-Mi Lim
- Department of Systems Biology & Translational Medicine, College of Medicine, Cardiovascular Research Institute, Texas A&M Health Science Center, 336 Reynolds Medical Bldg., College Station, TX 77843-1114, USA
| | | | | | | | | |
Collapse
|
11
|
Trache A, Lim SM. Integrated microscopy for real-time imaging of mechanotransduction studies in live cells. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:034024. [PMID: 19566317 DOI: 10.1117/1.3155517] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mechanical force is an important stimulus and determinant of many vascular smooth muscle cell functions including contraction, proliferation, migration, and cell attachment. Transmission of force from outside the cell through focal adhesions controls the dynamics of these adhesion sites and initiates intracellular signaling cascades that alter cellular behavior. To understand the mechanism by which living cells sense mechanical forces, and how they respond and adapt to their environment, a critical first step is to develop a new technology to investigate cellular behavior at subcellular level that integrates an atomic force microscope (AFM) with total internal reflection fluorescence (TIRF) and fast-spinning disk (FSD) confocal microscopy, providing high spatial and temporal resolution. AFM uses a nanosensor to measure the cell surface topography and can apply and measure mechanical force with high precision. TIRF microscopy is an optical imaging technique that provides high-contrast images with high z-resolution of fluorescently labeled molecules in the immediate vicinity of the cell-coverslip interface. FSD confocal microscopy allows rapid 3-D imaging throughout the cell in real time. The integrated system is broadly applicable across a wide range of molecular dynamic studies in any adherent live cells, allowing direct optical imaging of cell responses to mechanical stimulation in real time.
Collapse
Affiliation(s)
- Andreea Trache
- Texas A&M Health Science Center, Cardiovascular Research Institute, College of Medicine, Department of Systems Biology and Translational Medicine, College Station, Texas 77843-1114, USA.
| | | |
Collapse
|
12
|
Craig DH, Owen CR, Conway WC, Walsh MF, Downey C, Basson MD. Colchicine inhibits pressure-induced tumor cell implantation within surgical wounds and enhances tumor-free survival in mice. J Clin Invest 2008; 118:3170-80. [PMID: 18704196 DOI: 10.1172/jci34279] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 07/09/2008] [Indexed: 01/11/2023] Open
Abstract
Iatrogenic tumor cell implantation within surgical wounds can compromise curative cancer surgery. Adhesion of cancer cells, in particular colon cancer cells, is stimulated by exposure to increased extracellular pressure through a cytoskeleton-dependent signaling mechanism requiring FAK, Src, Akt, and paxillin. Mechanical stimuli during tumor resection may therefore negatively impact patient outcome. We hypothesized that perioperative administration of colchicine, which prevents microtubule polymerization, could disrupt pressure-stimulated tumor cell adhesion to surgical wounds and enhance tumor-free survival. Ex vivo treatment of Co26 and Co51 colon cancer cells with colchicine inhibited pressure-stimulated cell adhesion to murine surgical wounds and blocked pressure-induced FAK and Akt phosphorylation. Surgical wound contamination with pressure-activated Co26 and Co51 cells significantly reduced tumor-free survival compared with contamination with tumor cells under ambient pressure. Mice treated with pressure-activated Co26 and Co51 cells from tumors preoperatively treated with colchicine in vivo displayed reduced surgical site implantation and significantly increased tumor-free survival compared with mice exposed to pressure-activated cells from tumors not pretreated with colchicine. Our data suggest that pressure activation of malignant cells promotes tumor development and impairs tumor-free survival and that perioperative colchicine administration or similar interventions may inhibit this effect.
Collapse
Affiliation(s)
- David H Craig
- Department of Surgery, John D. Dingell VA Medical Center and Wayne State University, Detroit, Michigan 48201-1932, USA
| | | | | | | | | | | |
Collapse
|
13
|
Velasco-Velázquez MA, Salinas-Jazmín N, Mendoza-Patiño N, Mandoki JJ. Reduced paxillin expression contributes to the antimetastatic effect of 4-hydroxycoumarin on B16-F10 melanoma cells. Cancer Cell Int 2008; 8:8. [PMID: 18492274 PMCID: PMC2429896 DOI: 10.1186/1475-2867-8-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 05/20/2008] [Indexed: 11/10/2022] Open
Abstract
Background 4-Hydroxycoumarin (4-HC) is a coumarin that lacks anticoagulant activity. 4-HC affects the cytoskeletal stability and decreases cell adhesion and motility of the melanoma cell line B16-F10. Together with integrins and other cytoskeletal proteins, paxillin participates in the regulation of cell adhesion and motility, acting as an adapter protein at focal adhesions. The present study determined the participation of paxillin in the reported effects of 4-HC and analyzed the role of paxillin in the formation of melanoma metastases. Results 4-HC decreased protein and mRNA levels of α- and β-paxillin isoforms in B16-F10 cells. Paxillin downregulation correlated with an inadequate translocation of paxillin to focal adhesions and a reduced phosphotyr118-paxillin pool. Consequently, 4-HC altered paxillin-mediated signaling, decreasing the phosphorylation of FAK and the level of GTP-bound Rac-1. These results partially explain the mechanism of the previously reported effects of 4-HC. Additionally, we studied the effect of 4-HC on metastatic potential of B16-F10 cells through experimental metastasis assays. In vitro treatment of cells with 4-HC inhibited their capability to originate pulmonary metastases. 4-HC did not affect cell proliferation or survival, demonstrating that its antimetastatic effect is unrelated to changes on cell viability. We also studied the importance of paxillin in metastasis by transfecting melanoma cells with paxillin-siRNA. Transfection produced a modest reduction on metastatic potential, indicating that: i) paxillin plays a role as inducer of melanoma metastasis; and ii) paxillin downregulation is not sufficient to explain the antimetastatic effect of 4-HC. Therefore, we evaluated other changes in gene expression by differential display RT-PCR analysis. Treatment with 4-HC produced a downregulation of Adhesion Regulating Molecule-1 (ARM-1), which correlated with a decreased adhesion of melanoma cells to lung slides. Conclusion This study shows that reduced paxillin expression is associated with the impaired cell adhesion and motility seen in 4-HC-treated cells and partially contributes to the antimetastatic effect of 4-HC. In contrast, the role of ARM-1 reduced expression in the effects of 4-HC is still to be clarified. The antimetastatic effect of 4-HC suggests that this compound, or others with similar mode of action, might be useful for the development of adjuvant therapies for melanoma.
Collapse
Affiliation(s)
- Marco A Velasco-Velázquez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo, Postal 70-297, Ciudad Universitaria, México D,F, 04510, México.
| | | | | | | |
Collapse
|
14
|
Downey C, Craig DH, Basson MD. Pressure activates colon cancer cell adhesion via paxillin phosphorylation, Crk, Cas, and Rac1. Cell Mol Life Sci 2008; 65:1446-57. [PMID: 18392556 PMCID: PMC3971649 DOI: 10.1007/s00018-008-8038-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Physical forces can activate colon cancer cell adhesion, critical for metastasis. Paxillin is phosphorylated by FAK and required for pressure-stimulated adhesion. However, whether paxillin acts as an inert scaffolding protein or whether paxillin phosphorylation is required is unknown. Transfection with paxillin point-phosphorylation mutants demonstrated that phosphorylation at tyrosines 31 and 118 together is necessary for pressure-stimulated adhesion. We further evaluated potential paxillin partners. Reducing the adaptor protein Crk or the focal adhesion protein p130Cas blocked pressure-stimulated adhesion. Furthermore, Crk and p130Cas both displayed increased co-immunoprecipitation with paxillin in response to increased pressure, except in cells transfected with a Y31Y118 paxillin mutant. Inhibiting the small GTPase Rac1 also abolished pressure-stimulated adhesion, and reducing paxillin by siRNA blocked Rac1 phosphorylation by pressure. Thus, paxillin phosphorylation at tyrosines 31 and 118 together is necessary for pressure-induced adhesion. Paxillin, Crk and Cas form a trimeric complex that activates Rac1 and mediates this effect.
Collapse
Affiliation(s)
- C. Downey
- Department of Surgery, John D. Dingell VA Medical Center and Wayne State University, 4646 John R. Street, Detroit, MI 48201 USA
| | - D. H. Craig
- Department of Surgery, John D. Dingell VA Medical Center and Wayne State University, 4646 John R. Street, Detroit, MI 48201 USA
| | - M. D. Basson
- Department of Surgery, John D. Dingell VA Medical Center and Wayne State University, 4646 John R. Street, Detroit, MI 48201 USA
- Department of Anesthesiology, John D. Dingell VA Medical Center and Wayne State University, Detroit, MI 48201 USA
- Department of Anatomy and Cell Biology, John D. Dingell VA Medical Center and Wayne State University, Detroit, MI 48201 USA
| |
Collapse
|
15
|
Hu YL, Chien S. Dynamic motion of paxillin on actin filaments in living endothelial cells. Biochem Biophys Res Commun 2007; 357:871-6. [PMID: 17466945 PMCID: PMC2025639 DOI: 10.1016/j.bbrc.2007.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 04/01/2007] [Indexed: 01/09/2023]
Abstract
Our three-dimensional (3-D) images showed that paxillin co-localized on actin filaments as fibrous structures, as well as clusters, in endothelial cells (ECs). In living ECs under flow condition, we monitored concurrently the intracellular dynamics of DsRed2-paxillin and GFP-actin by time-lapse video recording and dual-color fluorescence imaging. The results showed that the dynamic motion of paxillin as fibrous structures was associated with actin filaments, but not with microtubules. Our findings suggest that the actin network plays an important role not only in the assembly/disassembly of paxillin at focal adhesions, but also as a track for the intracellular transport of paxillin, which is involved in signaling pathway.
Collapse
Affiliation(s)
- Ying-Li Hu
- Department of Bioengineering and the Whitaker Institute of Biomedical Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|