1
|
Galluccio M, Tripicchio M, Pochini L. The Human OCTN Sub-Family: Gene and Protein Structure, Expression, and Regulation. Int J Mol Sci 2024; 25:8743. [PMID: 39201429 PMCID: PMC11354717 DOI: 10.3390/ijms25168743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
OCTN1 and OCTN2 are membrane transport proteins encoded by the SLC22A4 and SLC22A5 genes, respectively. Even though several transcripts have been predicted by bioinformatics for both genes, only one functional protein isoform has been described for each of them. Both proteins are ubiquitous, and depending on the physiopathological state of the cell, their expression is regulated by well-known transcription factors, although some aspects have been neglected. A plethora of missense variants with uncertain clinical significance are reported both in the dbSNP and the Catalogue of Somatic Mutations in Cancer (COSMIC) databases for both genes. Due to their involvement in human pathologies, such as inflammatory-based diseases (OCTN1/2), systemic primary carnitine deficiency (OCTN2), and drug disposition, it would be interesting to predict the impact of variants on human health from the perspective of precision medicine. Although the lack of a 3D structure for these two transport proteins hampers any speculation on the consequences of the polymorphisms, the already available 3D structures for other members of the SLC22 family may provide powerful tools to perform structure/function studies on WT and mutant proteins.
Collapse
Affiliation(s)
- Michele Galluccio
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, 87036 Arcavacata di Rende, Italy;
| | - Martina Tripicchio
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, 87036 Arcavacata di Rende, Italy;
| | - Lorena Pochini
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, 87036 Arcavacata di Rende, Italy;
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
2
|
Pike B, Zhao J, Hicks JA, Wang F, Hagen R, Liu HC, Odle J, Lin X. Intestinal Carnitine Status and Fatty Acid Oxidation in Response to Clofibrate and Medium-Chain Triglyceride Supplementation in Newborn Pigs. Int J Mol Sci 2023; 24:ijms24076066. [PMID: 37047049 PMCID: PMC10094207 DOI: 10.3390/ijms24076066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
To investigate the role of peroxisome proliferator-activated receptor alpha (PPARα) in carnitine status and intestinal fatty acid oxidation in neonates, a total of 72 suckled newborn piglets were assigned into 8 dietary treatments following a 2 (±0.35% clofibrate) × 4 (diets with: succinate+glycerol (Succ), tri-valerate (TC5), tri-hexanoate (TC6), or tri-2-methylpentanoate (TMPA)) factorial design. All pigs received experimental milk diets with isocaloric energy for 5 days. Carnitine statuses were evaluated, and fatty acid oxidation was measured in vitro using [1-14C]-palmitic acid (1 mM) as a substrate in absence or presence of L659699 (1.6 µM), iodoacetamide (50 µM), and carnitine (1 mM). Clofibrate increased concentrations of free (41%) and/or acyl-carnitine (44% and 15%) in liver and plasma but had no effects in the intestine. The effects on carnitine status were associated with the expression of genes involved in carnitine biosynthesis, absorption, and transportation. TC5 and TMPA stimulated the increased fatty acid oxidation rate induced by clofibrate, while TC6 had no effect on the increased fatty acid oxidation induced by clofibrate (p > 0.05). These results suggest that dietary clofibrate improved carnitine status and increased fatty acid oxidation. Propionyl-CoA, generated from TC5 and TMPA, could stimulate the increased fatty acid oxidation rate induced by clofibrate as anaplerotic carbon sources.
Collapse
Affiliation(s)
- Brandon Pike
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Jinan Zhao
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Julie A Hicks
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Feng Wang
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Rachel Hagen
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Hsiao-Ching Liu
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Xi Lin
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
3
|
Mhaimeed N, Mhaimeed N, Shad MU. Pharmacokinetic mechanisms underlying clinical cases of valproic acid autoinduction: A review. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
4
|
Zhou S, Shu Y. Transcriptional Regulation of Solute Carrier (SLC) Drug Transporters. Drug Metab Dispos 2022; 50:DMD-MR-2021-000704. [PMID: 35644529 PMCID: PMC9488976 DOI: 10.1124/dmd.121.000704] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/02/2022] [Accepted: 05/16/2022] [Indexed: 09/03/2023] Open
Abstract
Facilitated transport is necessitated for large size, charged, and/or hydrophilic drugs to move across the membrane. The drug transporters in the solute carrier (SLC) superfamily, mainly including organic anion-transporting polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), organic cation/carnitine transporters (OCTNs), peptide transporters (PEPTs), and multidrug and toxin extrusion proteins (MATEs), are critical facilitators of drug transport and distribution in human body. The expression of these SLC drug transporters is found in tissues throughout the body, with high abundance in the epithelial cells of major organs for drug disposition, such as intestine, liver, and kidney. These SLC drug transporters are clinically important in drug absorption, metabolism, distribution, and excretion. The mechanisms underlying their regulation have been revealing in recent years. Epigenetic and nuclear receptor-mediated transcriptional regulation of SLC drug transporters have particularly attracted much attention. This review focuses on the transcriptional regulation of major SLC drug transporter genes. Revealing the mechanisms underlying the transcription of those critical drug transporters will help us understand pharmacokinetics and pharmacodynamics, ultimately improving drug therapeutic effectiveness while minimizing drug toxicity. Significance Statement It has become increasingly recognized that solute carrier (SLC) drug transporters play a crucial, and sometimes determinative, role in drug disposition and response, which is reflected in decision-making during not only clinical drug therapy but also drug development. Understanding the mechanisms accounting for the transcription of these transporters is critical to interpret their abundance in various tissues under different conditions, which is necessary to clarify the pharmacological response, adverse effects, and drug-drug interactions for clinically used drugs.
Collapse
Affiliation(s)
- Shiwei Zhou
- Pharmaceutical Sciences, University of Maryland, United States
| | - Yan Shu
- Pharmaceutical Sciences, University of Maryland, United States
| |
Collapse
|
5
|
Bennett S, Shad MU. Valproic acid autoinduction: a case-based review. Int J Bipolar Disord 2021; 9:27. [PMID: 34468892 PMCID: PMC8408294 DOI: 10.1186/s40345-021-00232-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/29/2021] [Indexed: 11/10/2022] Open
Abstract
Although valproic acid (VPA) induces the metabolism of multiple other drugs, the clinical reports of VPA autoinduction are rare. A comprehensive literature search yielded only one published case series, which provided the rationale to conduct a review of the published cases along with a new case of VPA autoinduction. Although there may be myriad of reasons for lack of published cases of VPA autoinduction, potential underreporting may be one of the core reasons. Lack of understanding into the highly complex metabolism of VPA may also make it difficult to recognize and report VPA autoinduction. However, it is important to mention that in addition to autoinduction increased elimination of VPA may be mediated by several pharmacokinetic (PK) factors, such as drug interactions, genetic polymorphisms of metabolic enzymes, and protein displacement reactions. As VPA is metabolized by multiple metabolic pathways, the risk for drug interactions is relatively high. There is also a growing evidence for high genetic inducibility of some enzymes involved in VPA metabolism. Protein displacement reactions with VPA increase the biologically active and readily metabolizable free fraction and pose a diagnostic challenge as they are usually not requested by most clinicians. Thus, monitoring of free fraction with total VPA levels may prevent clinically serious outcomes and optimize VPA treatment in clinically challenging patients. This case-based review compares the clinical data from three published cases and a new case of VPA autoinduction to enhance clinicians' awareness of this relatively rare but clinically relevant phenomenon along with a discussion of potential underlying mechanisms.
Collapse
Affiliation(s)
| | - Mujeeb U Shad
- University of Nevada Las Vegas, Las Vegas, NV, USA. .,Touro University Nevada, Las Vegas, NV, USA. .,Valley Health System, Las Vegas, NV, USA.
| |
Collapse
|
6
|
Peron G, Sut S, Dal Ben S, Voinovich D, Dall'Acqua S. Untargeted UPLC-MS metabolomics reveals multiple changes of urine composition in healthy adult volunteers after consumption of curcuma longa L. extract. Food Res Int 2019; 127:108730. [PMID: 31882111 DOI: 10.1016/j.foodres.2019.108730] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/06/2019] [Accepted: 09/28/2019] [Indexed: 01/21/2023]
Abstract
Curcuma longa L. is used as food supplement to prevent diseases, although limited studies have been performed on healthy subjects up to now. In the present work, an untargeted UPLC-MS metabolomics approach was applied to study the changes of 24-hours urinary composition on healthy volunteers due to a 28-days daily consumption of a dried C. longa extract containing a standardized amount of curcuminoids. Changes in the excretion of different metabolites were observed after supplementation. Curcumin and two metabolic derivatives (hexahydrocurcumin and dihydrocurcumin) were detected in urine, indicating the absorption of the main curcuminoid from the extract and its further metabolism by liver and gut microbiota. For the first time ar-turmerone, the main apolar constituent of curcuma, was detected in urine in intact form, and its presence was confirmed by a targeted GC-MS analysis. The increase of tetranor-PGJM and tetranor-PGDM, two prostaglandin-D2 metabolites, was observed, being related to the anti-inflammatory effect exerted by curcuma. The variation of the amounts of HPAG, PAG, proline-betaine and hydroxyphenyllactic acid indicate that the supplementation induced changes to the activity of gut microbiota. Finally, the reduced excretion of niacin metabolites (nicotinuric acid, trigonelline and 2PY) and medium- and short-chain acylcarnitines suggests that curcuma could induce the mitochondrial β-oxidation of fatty acids for energy production in healthy subjects. Overall, the results indicate that a prolonged daily consumption of a dried curcuma extract exerts multiple effects on healthy subjects, furthermore they show the opportunity offered by untargeted metabolomics for the study of the bioactivity of natural extracts in healthy human volunteers.
Collapse
Affiliation(s)
- Gregorio Peron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.
| | - Simone Dal Ben
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, I-34127 Trieste, Italy
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, I-34127 Trieste, Italy.
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.
| |
Collapse
|
7
|
Ringseis R, Keller J, Eder K. Basic mechanisms of the regulation of L-carnitine status in monogastrics and efficacy of L-carnitine as a feed additive in pigs and poultry. J Anim Physiol Anim Nutr (Berl) 2018; 102:1686-1719. [PMID: 29992642 DOI: 10.1111/jpn.12959] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/19/2022]
Abstract
A great number of studies have investigated the potential of L-carnitine as feed additive to improve performance of different monogastric and ruminant livestock species, with, however, discrepant outcomes. In order to understand the reasons for these discrepant outcomes, it is important to consider the determinants of L-carnitine status and how L-carnitine status is regulated in the animal's body. While it is a long-known fact that L-carnitine is endogenously biosynthesized in certain tissues, it was only recently recognized that critical determinants of L-carnitine status, such as intestinal L-carnitine absorption, tissue L-carnitine uptake, endogenous L-carnitine synthesis and renal L-carnitine reabsorption, are regulated by specific nutrient sensing nuclear receptors. This review aims to give a more in-depth understanding of the basic mechanisms of the regulation of L-carnitine status in monogastrics taking into account the most recent evidence on nutrient sensing nuclear receptors and evaluates the efficacy of L-carnitine as feed additive in monogastric livestock by providing an up-to-date overview about studies with L-carnitine supplementation in pigs and poultry.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Janine Keller
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, Gießen, Germany
| |
Collapse
|
8
|
Metabolic Alterations Associated with Atorvastatin/Fenofibric Acid Combination in Patients with Atherogenic Dyslipidaemia: A Randomized Trial for Comparison with Escalated-Dose Atorvastatin. Sci Rep 2018; 8:14642. [PMID: 30279504 PMCID: PMC6168550 DOI: 10.1038/s41598-018-33058-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/18/2018] [Indexed: 01/03/2023] Open
Abstract
In the current study, the metabolic effects of atorvastatin dose escalation versus atorvastatin/fenofibric acid combination were compared using metabolomics analyses. Men and women with combined hyperlipidaemia were initially prescribed atorvastatin (10 mg, ≥4 weeks). Patients who reached low-density lipoprotein-cholesterol targets, but had triglyceride and high-density lipoprotein-cholesterol levels ≥150 mg/dL and <50 mg/dL, respectively, were randomized to receive atorvastatin 20 mg or atorvastatin 10 mg/fenofibric acid 135 mg for 12 weeks. Metabolite profiling of serum was performed and changes in metabolites after drug treatment in the two groups were compared. Analysis was performed using patients' samples obtained before and after treatment. Of 89 screened patients, 37 who met the inclusion criteria were randomized, and 34 completed the study. Unlike that in the dose-escalation group, distinct clustering of both lipid and aqueous metabolites was observed in the combination group after treatment. Most lipid metabolites of acylglycerols and many of ceramides decreased, while many of sphingomyelins increased in the combination group. Atorvastatin dose escalation modestly decreased lysophosphatidylcholines; however, the effect of combination therapy was variable. Most aqueous metabolites decreased, while L-carnitine remarkably increased in the combination group. In conclusion, the atorvastatin/fenofibric acid combination induced distinct metabolite clustering. Our results provide comprehensive information regarding metabolic changes beyond conventional lipid profiles for this combination therapy.
Collapse
|
9
|
Ringseis R, Keller J, Eder K. Regulation of carnitine status in ruminants and efficacy of carnitine supplementation on performance and health aspects of ruminant livestock: a review. Arch Anim Nutr 2018; 72:1-30. [PMID: 29313385 DOI: 10.1080/1745039x.2017.1421340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Carnitine has long been known to play a critical role for energy metabolism. Due to this, a large number of studies have been carried out to investigate the potential of supplemental carnitine in improving performance of livestock animals including ruminants, with however largely inconsistent results. An important issue that has to be considered when using carnitine as a feed additive is that the efficacy of supplemental carnitine is probably dependent on the animal's carnitine status, which is affected by endogenous carnitine synthesis, carnitine uptake from the gastrointestinal tract and carnitine excretion. The present review aims to summarise the current knowledge of the regulation of carnitine status and carnitine homeostasis in ruminants, and comprehensively evaluate the efficacy of carnitine supplementation on performance and/or health in ruminant livestock by comparing the outcomes of studies with carnitine supplementation in dairy cattle, growing and finishing cattle and sheep. While most of the studies show that supplemental carnitine, even in ruminally unprotected form, is bioavailable in ruminants, its effect on either milk or growth performance is largely disappointing. However, supplemental carnitine appears to be a useful strategy to offer protection against ammonia toxicity caused by consumption of high levels of non-protein N or forages with high levels of soluble N both, in cattle and sheep.
Collapse
Affiliation(s)
- Robert Ringseis
- a Institute of Animal Nutrition and Nutrition Physiology , Justus-Liebig-University Gießen , Gießen , Germany
| | - Janine Keller
- a Institute of Animal Nutrition and Nutrition Physiology , Justus-Liebig-University Gießen , Gießen , Germany
| | - Klaus Eder
- a Institute of Animal Nutrition and Nutrition Physiology , Justus-Liebig-University Gießen , Gießen , Germany
| |
Collapse
|
10
|
Zhou X, Ringseis R, Wen G, Eder K. The pro-inflammatory cytokine tumor necrosis factor α stimulates expression of the carnitine transporter OCTN2 (novel organic cation transporter 2) and carnitine uptake via nuclear factor-κB in Madin-Darby bovine kidney cells. J Dairy Sci 2015; 98:3840-8. [PMID: 25892691 DOI: 10.3168/jds.2014-9044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/13/2015] [Indexed: 01/22/2023]
Abstract
Carnitine uptake into tissues is mediated mainly by the novel organic cation transporter 2 (OCTN2), whose expression is upregulated in the liver of early-lactating dairy cows. It has been shown recently that pro-inflammatory cytokines, including tumor necrosis factor α (TNFα), stimulate OCTN2 expression and carnitine uptake in intestinal cells and inflamed intestinal mucosa. Given that many early-lactating dairy cows show typical signs of hepatic and systemic inflammation, such as elevated concentrations of circulating TNFα and activation of the key regulator of inflammation, nuclear factor κB (NF-κB), in tissues, it is possible that upregulation of OCTN2 and increase of carnitine uptake by TNFα is mediated by NF-κB, a mechanism that might contribute to the upregulation of OCNT2 in the liver of early-lactating dairy cows. Thus, in the present study, we tested the hypothesis that TNFα stimulates OCTN2 gene expression and carnitine uptake via NF-κB in the bovine Madin-Darby bovine kidney (MDBK) cell line. Treatment with TNFα caused activation of NF-κB, increased the mRNA and protein concentration of OCTN2, and stimulated the uptake of carnitine in MDBK cells. In contrast, combined treatment of MDBK cells with TNFα and the NF-κB inhibitor BAY 11-7085 completely blocked the effect of TNFα on OCTN2 mRNA and protein concentration and uptake of carnitine. These findings suggest that the bovine OCTN2 gene and carnitine uptake are regulated by NF-κB. Future studies are required to show the in vivo relevance of this regulatory mechanism in cattle.
Collapse
Affiliation(s)
- X Zhou
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | - R Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | - G Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | - K Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany.
| |
Collapse
|
11
|
Kohjima M, Enjoji M, Yada R, Yoshimoto T, Nakamura T, Fukuizumi K, Fukushima N, Murata Y, Nakashima M, Kato M, Kotoh K, Shirabe K, Maehara Y, Nakajima A, Nozaki Y, Honda A, Matsuzaki Y, Nakamuta M. Pathophysiological analysis of primary biliary cirrhosis focusing on choline/phospholipid metabolism. Liver Int 2015; 35:1095-102. [PMID: 24620780 DOI: 10.1111/liv.12526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/05/2014] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Injury to biliary epithelial cells caused by disorders in bile composition may be the initial step in the pathogenesis of primary biliary cirrhosis (PBC). We therefore examined choline/phospholipid metabolism in livers of patients with PBC. METHODS Hepatic levels of mRNA encoded by choline metabolism-related genes in early stage PBC patients were quantified by real-time RT-PCR. Serum cholesterol and triglyceride concentrations in each lipoprotein compartment and serum/tissue choline levels were also measured. OCT1 expression was quantified by genotype (rs683369 and rs622342). RESULTS Serum choline concentrations were significantly higher in PBC patients than in normal individuals, with the concentrations in the former lowered by treatment with fibrates. Hepatic choline levels were markedly lower in PBC patients than in controls. The levels of expression of genes associated with choline uptake (OCT1 and CTL1), phosphatidylcholine synthesis (PEMT and BHMT), and phosphatidylcholine transport (MDR3) were significantly upregulated in PBC compared with control livers. Serum cholesterol concentrations and the cholesterol/triglyceride ratio in serum very low density lipoprotein were markedly higher in PBC patients than in controls. In PBC liver, OCT1 protein levels were lower in patients with minor (CG/GG at rs683369 and/or CC at rs622342) than major (CC at rs683369 and AA at rs622342) genotypes of the OCT1 gene. CONCLUSION During early stage PBC, hepatocellular choline uptake and PC synthesis become dysregulated. OCT1 genotypes may influence the pathogenesis of PBC.
Collapse
Affiliation(s)
- Motoyuki Kohjima
- Department of Gastroenterology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Luo H, Zhang Y, Guo H, Zhang L, Li X, Ringseis R, Wen G, Hui D, Liang A, Eder K, He D. Transcriptional regulation of the human, porcine and bovine OCTN2 gene by PPARα via a conserved PPRE located in intron 1. BMC Genet 2014; 15:90. [PMID: 25299939 PMCID: PMC4363911 DOI: 10.1186/s12863-014-0090-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/06/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The novel organic cation transporter 2 (OCTN2) is the physiologically most important carnitine transporter in tissues and is responsible for carnitine absorption in the intestine, carnitine reabsorption in the kidney and distribution of carnitine between tissues. Genetic studies clearly demonstrated that the mouse OCTN2 gene is directly regulated by peroxisome proliferator-activated receptor α (PPARα). Despite its well conserved role as an important regulator of lipid catabolism in general, the specific genes under control of PPARα within each lipid metabolic pathway were shown to differ between species and it is currently unknown whether the OCTN2 gene is also a PPARα target gene in pig, cattle, and human. In the present study we examined the hypothesis that the porcine, bovine, and human OCTN2 gene are also PPARα target genes. RESULTS Using positional cloning and reporter gene assays we identified a functional PPRE, each in the intron 1 of the porcine, bovine, and human OCTN2 gene. Gel shift assay confirmed binding of PPARα to this PPRE in the porcine, bovine, and the human OCTN2 gene. CONCLUSIONS The results of the present study show that the porcine, bovine, and human OCTN2 gene, like the mouse OCTN2 gene, is directly regulated by PPARα. This suggests that regulation of genes involved in carnitine uptake by PPARα is highly conserved across species.
Collapse
Affiliation(s)
- Huidi Luo
- Institute of Animal Husbandry and Veterinary Medicine, Shanxi Provincial Academy of Agricultural Sciences, Taiyuan, 030031, P. R. China.
| | - Yuanqing Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Shanxi Provincial Academy of Agricultural Sciences, Taiyuan, 030031, P. R. China.
| | - Huihui Guo
- Institute of Animal Husbandry and Veterinary Medicine, Shanxi Provincial Academy of Agricultural Sciences, Taiyuan, 030031, P. R. China.
| | - Li Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Shanxi Provincial Academy of Agricultural Sciences, Taiyuan, 030031, P. R. China.
| | - Xi Li
- Institute of Animal Husbandry and Veterinary Medicine, Shanxi Provincial Academy of Agricultural Sciences, Taiyuan, 030031, P. R. China.
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, 35392, Giessen, Germany.
| | - Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, 35392, Giessen, Germany.
| | - Dequan Hui
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Aihua Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, 35392, Giessen, Germany.
| | - Dongchang He
- Institute of Animal Husbandry and Veterinary Medicine, Shanxi Provincial Academy of Agricultural Sciences, Taiyuan, 030031, P. R. China.
| |
Collapse
|
13
|
Czeredys M, Samluk Ł, Michalec K, Tułodziecka K, Skowronek K, Nałęcz KA. Caveolin-1--a novel interacting partner of organic cation/carnitine transporter (Octn2): effect of protein kinase C on this interaction in rat astrocytes. PLoS One 2013; 8:e82105. [PMID: 24349196 PMCID: PMC3862573 DOI: 10.1371/journal.pone.0082105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/27/2013] [Indexed: 11/28/2022] Open
Abstract
OCTN2 - the Organic Cation Transporter Novel family member 2 (SLC22A5) is known to be a xenobiotic/drug transporter. It transports as well carnitine - a compound necessary for oxidation of fatty acids and mutations of its gene cause primary carnitine deficiency. Octn2 regulation by protein kinase C (PKC) was studied in rat astrocytes - cells in which β-oxidation takes place in the brain. Activation of PKC with phorbol ester stimulated L-carnitine transport and increased cell surface presence of the transporter, although no PKC-specific phosphorylation of Octn2 could be detected. PKC activation resulted in an augmented Octn2 presence in cholesterol/sphingolipid-rich microdomains of plasma membrane (rafts) and increased co-precipitation of Octn2 with raft-proteins, caveolin-1 and flotillin-1. Deletion of potential caveolin-1 binding motifs pointed to amino acids 14–22 and 447–454 as the caveolin-1 binding sites within Octn2 sequence. A direct interaction of Octn2 with caveolin-1 in astrocytes upon PKC activation was detected by proximity ligation assay, while such an interaction was excluded in case of flotillin-1. Functioning of a multi-protein complex regulated by PKC has been postulated in rOctn2 trafficking to the cell surface, a process which could be important both under physiological conditions, when carnitine facilitates fatty acids catabolism and controls free Coenzyme A pool as well as in pathology, when transport of several drugs can induce secondary carnitine deficiency.
Collapse
Affiliation(s)
- Magdalena Czeredys
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Łukasz Samluk
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Katarzyna Michalec
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Karolina Tułodziecka
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Krzysztof Skowronek
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Katarzyna A. Nałęcz
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- * E-mail:
| |
Collapse
|
14
|
Wallace BD, Redinbo MR. Xenobiotic-sensing nuclear receptors involved in drug metabolism: a structural perspective. Drug Metab Rev 2012; 45:79-100. [PMID: 23210723 DOI: 10.3109/03602532.2012.740049] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Xenobiotic compounds undergo a critical range of biotransformations performed by the phase I, II, and III drug-metabolizing enzymes. The oxidation, conjugation, and transportation of potentially harmful xenobiotic and endobiotic compounds achieved by these catalytic systems are significantly regulated, at the gene expression level, by members of the nuclear receptor (NR) family of ligand-modulated transcription factors. Activation of NRs by a variety of endo- and exogenous chemicals are elemental to induction and repression of drug-metabolism pathways. The master xenobiotic sensing NRs, the promiscuous pregnane X receptor and less-promiscuous constitutive androstane receptor are crucial to initial ligand recognition, jump-starting the metabolic process. Other receptors, including farnesoid X receptor, vitamin D receptor, hepatocyte nuclear factor 4 alpha, peroxisome proliferator activated receptor, glucocorticoid receptor, liver X receptor, and RAR-related orphan receptor, are not directly linked to promiscuous xenobiotic binding, but clearly play important roles in the modulation of metabolic gene expression. Crystallographic studies of the ligand-binding domains of nine NRs involved in drug metabolism provide key insights into ligand-based and constitutive activity, coregulator recruitment, and gene regulation. Structures of other, noncanonical transcription factors also shed light on secondary, but important, pathways of control. Pharmacological targeting of some of these nuclear and atypical receptors has been instituted as a means to treat metabolic and developmental disorders and provides a future avenue to be explored for other members of the xenobiotic-sensing NRs.
Collapse
Affiliation(s)
- Bret D Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
15
|
Shibani M, Keller J, König B, Kluge H, Hirche F, Stangl G, Ringseis R, Eder K. Effects of fish oil and conjugated linoleic acids on carnitine homeostasis in laying hens. Br Poult Sci 2012; 53:431-8. [DOI: 10.1080/00071668.2012.713464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- M. Shibani
- a Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen , 35392 Gießen , Germany
| | - J. Keller
- a Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen , 35392 Gießen , Germany
| | - B. König
- b Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg , 06120 Halle (Saale) , Germany
| | - H. Kluge
- b Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg , 06120 Halle (Saale) , Germany
| | - F. Hirche
- b Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg , 06120 Halle (Saale) , Germany
| | - G.I. Stangl
- b Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg , 06120 Halle (Saale) , Germany
| | - R. Ringseis
- a Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen , 35392 Gießen , Germany
| | - K. Eder
- a Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen , 35392 Gießen , Germany
| |
Collapse
|
16
|
Ringseis R, Wen G, Eder K. Regulation of Genes Involved in Carnitine Homeostasis by PPARα across Different Species (Rat, Mouse, Pig, Cattle, Chicken, and Human). PPAR Res 2012; 2012:868317. [PMID: 23150726 PMCID: PMC3486131 DOI: 10.1155/2012/868317] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 09/27/2012] [Indexed: 11/17/2022] Open
Abstract
Recent studies in rodents convincingly demonstrated that PPARα is a key regulator of genes involved in carnitine homeostasis, which serves as a reasonable explanation for the phenomenon that energy deprivation and fibrate treatment, both of which cause activation of hepatic PPARα, causes a strong increase of hepatic carnitine concentration in rats. The present paper aimed to comprehensively analyse available data from genetic and animal studies with mice, rats, pigs, cows, and laying hens and from human studies in order to compare the regulation of genes involved in carnitine homeostasis by PPARα across different species. Overall, our comparative analysis indicates that the role of PPARα as a regulator of carnitine homeostasis is well conserved across different species. However, despite demonstrating a well-conserved role of PPARα as a key regulator of carnitine homeostasis in general, our comprehensive analysis shows that this assumption particularly applies to the regulation by PPARα of carnitine uptake which is obviously highly conserved across species, whereas regulation by PPARα of carnitine biosynthesis appears less well conserved across species.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | - Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| |
Collapse
|
17
|
Treatment with pharmacological PPARα agonists stimulates the ubiquitin proteasome pathway and myofibrillar protein breakdown in skeletal muscle of rodents. Biochim Biophys Acta Gen Subj 2012; 1830:2105-17. [PMID: 23041501 DOI: 10.1016/j.bbagen.2012.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/28/2012] [Accepted: 09/28/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Treatment of hyperlipidemic patients with fibrates, agonists of peroxisome proliferator-activated receptor α (PPARα), provokes muscle atrophy as a side effect. The molecular mechanism underlying this phenomenon is still unknown. We tested the hypothesis that activation of PPARα leads to an up-regulation of the ubiquitin proteasome system (UPS) which plays a major role in protein degradation in muscle. METHODS Rats, wild-type and PPARα-deficient mice (PPARα(-/-)) were treated with synthetic PPARα agonists (clofibrate, WY-14,643) to study their effect on the UPS and myofibrillar protein breakdown in muscle. RESULTS In rats and wild-type mice but not PPARα(-/-) mice, clofibrate or WY-14,643 caused increases in mRNA and protein levels of the ubiquitin ligases atrogin-1 and MuRF1 in muscle. Wild-type mice treated with WY-14,643 had a greater 3-methylhistidine release from incubated muscle and lesser muscle weights. In addition, wild-type mice but not PPARα(-/-) mice treated with WY-14,643 had higher amounts of ubiquitin-protein conjugates, a decreased activity of PI3K/Akt1 signalling, and an increased activity of FoxO1 transcription factor in muscle. Reporter gene and gel shift experiments revealed that the atrogin-1 and MuRF1 promoter do not contain functional PPARα DNA-binding sites. CONCLUSIONS These findings indicate that fibrates stimulate ubiquitination of proteins in skeletal muscle which in turn stimulates protein degradation. Up-regulation of ubiquitin ligases is probably not mediated by PPARα-dependent gene transcription but by PPARα-dependent inhibition of the PI3K/Akt1 signalling pathway leading to activation of FoxO1. GENERAL SIGNIFICANCE PPARα plays a role in the regulation of the ubiquitin proteasome system.
Collapse
|
18
|
Wang L, Giannoudis A, Austin G, Clark RE. Peroxisome proliferator-activated receptor activation increases imatinib uptake and killing of chronic myeloid leukemia cells. Exp Hematol 2012; 40:811-9.e2. [PMID: 22677017 DOI: 10.1016/j.exphem.2012.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/08/2012] [Accepted: 05/29/2012] [Indexed: 12/13/2022]
Abstract
Low pretreatment expression of the imatinib uptake transporter human organic cation transporter 1 (hOCT1) is associated with inferior complete cytogenetic response rates, progression-free survival, and overall survival in imatinib-treated chronic myeloid leukemia (CML). Upregulation of hOCT1 can therefore increase the uptake of imatinib. The hOCT1 gene is transactivated by hepatocyte nuclear factor 4α in human liver, and peroxisome proliferator-activated receptors (PPAR) α and γ activation increases OCT1 expression in mouse hepatocytes. Here we report that no isoform of hepatocyte nuclear factor 4α is expressed in CML lines or in CML primary cells. In contrast, both PPARα and γ were expressed in all CML cell lines and primary cells studied. PPARα agonist treatment increased imatinib killing of CML KCL22 cells and primitive CD34(+) cells, and also upregulates hOCT1 gene expression and increases imatinib uptake into KCL22 cells and primary cells. PPARα agonists might potentially be of clinical use in CML patients failing imatinib.
Collapse
Affiliation(s)
- Lihui Wang
- Section of Haematology, Department of Molecular and Cancer Medicine, the University of Liverpool, Liverpool, UK
| | | | | | | |
Collapse
|
19
|
Schlegel G, Keller J, Hirche F, Geissler S, Schwarz FJ, Ringseis R, Stangl GI, Eder K. Expression of genes involved in hepatic carnitine synthesis and uptake in dairy cows in the transition period and at different stages of lactation. BMC Vet Res 2012; 8:28. [PMID: 22417075 PMCID: PMC3361467 DOI: 10.1186/1746-6148-8-28] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 03/14/2012] [Indexed: 12/14/2022] Open
Abstract
Background In rodents and pigs, it has shown that carnitine synthesis and uptake of carnitine into cells are regulated by peroxisome proliferator-activated receptor α (PPARA), a transcription factor which is physiologically activated during fasting or energy deprivation. Dairy cows are typically in a negative energy balance during early lactation. We investigated the hypothesis that genes of carnitine synthesis and uptake in dairy cows are enhanced during early lactation. Results mRNA abundances of PPARA and some of its classical target genes and genes involved in carnitine biosynthesis [trimethyllysine dioxygenase (TMLHE), 4-N-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1), γ-butyrobetaine dioxygenase (BBOX1)] and uptake of carnitine [novel organic cation transporter 2 (SLC22A5)] as well as carnitine concentrations in liver biopsy samples of 20 dairy cows in late pregnancy (3 wk prepartum) and early lactation (1 wk, 5 wk, 14 wk postpartum) were determined. From 3 wk prepartum to 1 wk postpartum, mRNA abundances of PPARΑ and several PPARΑ target genes involved in fatty acid uptake, fatty acid oxidation and ketogenesis in the liver were strongly increased. Simultaneously, mRNA abundances of enzymes of carnitine synthesis (TMLHE: 10-fold; ALDH9A1: 6-fold; BBOX1: 1.8-fold) and carnitine uptake (SLC22A5: 13-fold) and the concentration of carnitine in the liver were increased from 3 wk prepartum to 1 wk postpartum (P < 0.05). From 1 wk to 5 and 14 wk postpartum, mRNA abundances of these genes and hepatic carnitine concentrations were declining (P < 0.05). There were moreover positive correlations between plasma concentrations of non-esterified fatty acids (NEFA) and hepatic carnitine concentrations at 1 wk, 5 wk and 14 wk postpartum (P < 0.05). Conclusions The results of this study show for the first time that the expression of hepatic genes of carnitine synthesis and cellular uptake of carnitine is enhanced in dairy cows during early lactation. These changes might provide an explanation for increased hepatic carnitine concentrations observed in 1 wk postpartum and might be regarded as a physiologic means to provide liver cells with sufficient carnitine required for transport of excessive amounts of NEFA during a negative energy balance.
Collapse
Affiliation(s)
- Gloria Schlegel
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Scalise M, Galluccio M, Accardi R, Cornet I, Tommasino M, Indiveri C. Human OCTN2 (SLC22A5) is down-regulated in virus- and nonvirus-mediated cancer. Cell Biochem Funct 2012; 30:419-25. [PMID: 22374795 DOI: 10.1002/cbf.2816] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/17/2012] [Accepted: 01/31/2012] [Indexed: 12/27/2022]
Abstract
The expression of carnitine plasma membrane transporter OCTN2 was evaluated in virus and nonvirus-mediated cancer. Both OCTN2 mRNA and protein levels were reduced in keratinocytes retrotransduced with HPV16 E6 and E7 compared with the control. The OCTN2 expression was reduced also in keratinocytes retrotransduced with the sole HPV16 E6. A similar down-regulation of OCTN2 mRNA level was observed in a naturally HPV16-infected cancer cell line, CaSki, harbouring several copies of HPV16 whole genome. The mechanism of down-regulation is not related to p53 transcriptional activity because in SAOS (p53-null) cell line, the restoration of p53 expression did not rescue OCTN2 expression. The treatment of keratinocytes retrotransduced with HPV16 E6 and E7 with 5-aza-cytidine rescued the OCTN2 expression, indicating that the mechanism of down-regulation is linked to DNA methylation. Low levels of mRNA expression of OCTN2 were found also in several nonvirus-related epithelial cancer cell lines. The treatment of those cell lines with 5-aza-cytidine again rescued the expression of OCTN2 as well. These data demonstrate for the first time that the OCTN2 transporter is generally down-regulated in virus and nonvirus-mediated epithelial cancers, probably via methylation of its promoter region.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Department of Cell Biology, University of Calabria, Via P. Bucci 4c 87036 Arcavacata di Rende, Italy
| | | | | | | | | | | |
Collapse
|
21
|
The mouse gene encoding the carnitine biosynthetic enzyme 4-N-trimethylaminobutyraldehyde dehydrogenase is regulated by peroxisome proliferator-activated receptor α. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:357-65. [PMID: 22285688 DOI: 10.1016/j.bbagrm.2012.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 11/23/2022]
Abstract
Genes involved in carnitine uptake and synthesis, such as organic cation transporter-2 (OCTN2) and γ-butyrobetaine dioxygenase (BBD), have been shown to be regulated by peroxisome proliferator-activated receptor (PPAR)α directly. Whether other genes encoding enzymes involved in the carnitine synthesis pathway, such as 4-N-trimethylaminobutyraldehyde dehydrogenase (TMABA-DH) and trimethyllysine dioxygenase (TMLD), are also direct PPARα target genes is less clear. In silico-analysis of the mouse TMLD promoter and first intron and the TMABA-DH promoter revealed several putative peroxisome proliferator response elements (PPRE) with high similarity to the consensus PPRE. Luciferase reporter gene assays using either a 2kb TMLD promoter or a 4kb TMLD first intron reporter constructs revealed no functional PPRE. In contrast, reporter gene assays using wild-type and mutated 5´-truncation TMABA-DH promoter reporter constructs showed that one PPRE located at position -132 in the proximal promoter is probably functional. Using gel shift assays we observed in vitro-binding of PPARα to this PPRE. Moreover, using chromatin immunoprecipitation assays we found that PPARα also binds in vivo to a nucleotide sequence spanning the PPRE at -132, which confirms that this PPRE is functional. In conclusion, the present study shows that the mouse TMABA-DH gene is a direct PPARα target gene. Together with the recent identification of the mouse BBD and the mouse OCTN2 genes as PPARα target genes this finding confirm that PPARα plays a key role in the regulation of carnitine homeostasis by controlling genes involved in carnitine synthesis and carnitine uptake.
Collapse
|
22
|
Role of carnitine in the regulation of glucose homeostasis and insulin sensitivity: evidence from in vivo and in vitro studies with carnitine supplementation and carnitine deficiency. Eur J Nutr 2011; 51:1-18. [PMID: 22134503 DOI: 10.1007/s00394-011-0284-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 11/17/2011] [Indexed: 10/15/2022]
Abstract
BACKGROUND Although carnitine is best known for its role in the import of long-chain fatty acids (acyl groups) into the mitochondrial matrix for subsequent β-oxidation, carnitine is also necessary for the efflux of acyl groups out of the mitochondria. Since intracellular accumulation of acyl-CoA derivatives has been implicated in the development of insulin resistance, carnitine supplementation has gained attention as a tool for the treatment of insulin resistance. More recent studies even point toward a causative role for carnitine insufficiency in developing insulin resistance during states of chronic metabolic stress, such as obesity, which can be reversed by carnitine supplementation. METHODS The present review provides an overview about data from both animal and human studies reporting effects of either carnitine supplementation or carnitine deficiency on parameters of glucose homeostasis and insulin sensitivity in order to establish the less well-recognized role of carnitine in regulating glucose homeostasis. RESULTS Carnitine supplementation studies in both humans and animals demonstrate an improvement of glucose tolerance, in particular during insulin-resistant states. In contrast, less consistent results are available from animal studies investigating the association between carnitine deficiency and glucose intolerance. The majority of studies dealing with this question could either find no association or even reported that carnitine deficiency lowers blood glucose and improves insulin sensitivity. CONCLUSIONS In view of the abovementioned beneficial effect of carnitine supplementation on glucose tolerance during insulin-resistant states, carnitine supplementation might be an effective tool for improvement of glucose utilization in obese type 2 diabetic patients. However, further studies are necessary to explain the conflicting observations from studies dealing with carnitine deficiency.
Collapse
|
23
|
Wen G, Kühne H, Rauer C, Ringseis R, Eder K. Mouse γ-butyrobetaine dioxygenase is regulated by peroxisome proliferator-activated receptor α through a PPRE located in the proximal promoter. Biochem Pharmacol 2011; 82:175-83. [PMID: 21549104 DOI: 10.1016/j.bcp.2011.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/12/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
Abstract
Convincing evidence from studies with peroxisome proliferator-activated receptor (PPAR)α-deficient mice suggested that the carnitine biosynthetic enzyme γ-butyrobetaine dioxygenase (BBD) is regulated by PPARα. However, the identification of BBD as a direct PPARα target gene as well as its exact regulation remained to be demonstrated. In silico-analysis of the mouse BBD promoter revealed seven putative peroxisome proliferator response elements (PPRE) with high similarity to the consensus PPRE. Luciferase reporter gene assays using mutated and non-mutated serial 5'-truncation BBD promoter reporter constructs revealed that one PPRE located at -75 to -87 relative to the transcription start site in the proximal BBD promoter is probably functional. Using gel shift assays we observed in vitro-binding of PPARα/RXRα heterodimer to this PPRE confirming that it is functional. In conclusion, the present study clearly shows that mouse BBD is a direct PPARα target gene and that transcriptional up-regulation of mouse BBD by PPARα is likely mediated by binding of the PPARα/RXR heterodimer to one PPRE located in its proximal promoter region. The results confirm emerging evidence from recent studies that PPARα plays a key role in the regulation of carnitine homeostasis by controlling genes involved in both, carnitine synthesis and carnitine uptake.
Collapse
Affiliation(s)
- Gaiping Wen
- Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-Universität, Heinrich-Buff-Ring Giessen, Germany
| | | | | | | | | |
Collapse
|
24
|
Chang TT, Shyu MK, Huang MC, Hsu CC, Yeh SY, Chen MR, Lin CJ. Hypoxia-Mediated Down-Regulation of OCTN2 and PPARα Expression in Human Placentas and in BeWo Cells. Mol Pharm 2010; 8:117-25. [DOI: 10.1021/mp100137q] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ting-Ting Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan, Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ming-Kwang Shyu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan, Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Min-Chuan Huang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan, Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chen-Chi Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan, Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Szu-Yu Yeh
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan, Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Mei-Ru Chen
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan, Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chun-Jung Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan, Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
25
|
Rakhshandehroo M, Knoch B, Müller M, Kersten S. Peroxisome proliferator-activated receptor alpha target genes. PPAR Res 2010; 2010:612089. [PMID: 20936127 PMCID: PMC2948931 DOI: 10.1155/2010/612089] [Citation(s) in RCA: 560] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 08/09/2010] [Indexed: 12/11/2022] Open
Abstract
The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.
Collapse
Affiliation(s)
- Maryam Rakhshandehroo
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | - Bianca Knoch
- Food, Metabolism & Microbiology, Food & Textiles Group, AgResearch, Palmerston North 4442, New Zealand
- Institute of Food, Nutrition & Human Health, Massey University, Tennent Drive, Palmerston North 4442, New Zealand
| | - Michael Müller
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| |
Collapse
|
26
|
Flanagan JL, Simmons PA, Vehige J, Willcox MD, Garrett Q. Role of carnitine in disease. Nutr Metab (Lond) 2010; 7:30. [PMID: 20398344 PMCID: PMC2861661 DOI: 10.1186/1743-7075-7-30] [Citation(s) in RCA: 369] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 04/16/2010] [Indexed: 02/06/2023] Open
Abstract
Carnitine is a conditionally essential nutrient that plays a vital role in energy production and fatty acid metabolism. Vegetarians possess a greater bioavailability than meat eaters. Distinct deficiencies arise either from genetic mutation of carnitine transporters or in association with other disorders such as liver or kidney disease. Carnitine deficiency occurs in aberrations of carnitine regulation in disorders such as diabetes, sepsis, cardiomyopathy, malnutrition, cirrhosis, endocrine disorders and with aging. Nutritional supplementation of L-carnitine, the biologically active form of carnitine, is ameliorative for uremic patients, and can improve nerve conduction, neuropathic pain and immune function in diabetes patients while it is life-saving for patients suffering primary carnitine deficiency. Clinical application of carnitine holds much promise in a range of neural disorders such as Alzheimer's disease, hepatic encephalopathy and other painful neuropathies. Topical application in dry eye offers osmoprotection and modulates immune and inflammatory responses. Carnitine has been recognized as a nutritional supplement in cardiovascular disease and there is increasing evidence that carnitine supplementation may be beneficial in treating obesity, improving glucose intolerance and total energy expenditure.
Collapse
|
27
|
High Affinity Carnitine Transporters from OCTN Family in Neural Cells. Neurochem Res 2010; 35:743-8. [DOI: 10.1007/s11064-010-0131-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2010] [Indexed: 12/30/2022]
|
28
|
The role of peroxisome proliferator-activated receptor α in transcriptional regulation of novel organic cation transporters. Eur J Pharmacol 2010; 628:1-5. [DOI: 10.1016/j.ejphar.2009.11.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 11/08/2009] [Accepted: 11/17/2009] [Indexed: 12/26/2022]
|
29
|
Organic cation/carnitine transporter OCTN3 is present in astrocytes and is up-regulated by peroxisome proliferators-activator receptor agonist. Int J Biochem Cell Biol 2009; 41:2599-609. [DOI: 10.1016/j.biocel.2009.08.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 08/26/2009] [Accepted: 08/30/2009] [Indexed: 11/18/2022]
|
30
|
Carnitine synthesis and uptake into cells are stimulated by fasting in pigs as a model of nonproliferating species. J Nutr Biochem 2009; 20:840-7. [DOI: 10.1016/j.jnutbio.2008.07.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 07/18/2008] [Accepted: 07/30/2008] [Indexed: 01/05/2023]
|
31
|
Wen G, Ringseis R, Eder K. Mouse OCTN2 is directly regulated by peroxisome proliferator-activated receptor alpha (PPARalpha) via a PPRE located in the first intron. Biochem Pharmacol 2009; 79:768-76. [PMID: 19819229 DOI: 10.1016/j.bcp.2009.10.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 09/30/2009] [Accepted: 10/01/2009] [Indexed: 10/20/2022]
Abstract
Recent studies provided strong evidence to suggest that organic cation transporter 2 (OCTN2) is a direct target gene of peroxisome proliferator-activated receptor alpha (PPARalpha). However, subsequent studies failed to demonstrate a functional peroxisome proliferator response element (PPRE) in the promoter region of the OCTN2 gene. In the present study we hypothesized that the OCTN2 gene is transcriptionally induced by PPARalpha via a functional PPRE located in the first intron. In silico-analysis of the first intron of mouse OCTN2 revealed 11 putative PPRE with high similarity to the consensus PPRE. In addition, reporter gene assays using a mouse OCTN2 intron reporter construct containing a cluster of three partially overlapping PPRE (PPREint-1-8-10) revealed a marked response to exogenous mouse PPARalpha/RXRalpha and subsequent stimulation with PPARalpha agonist WY-14,643. Introduction of a selective mutation in either PPRE8 or PPRE10 in the PPREint-1-8-10 reporter constructs caused a substantial loss of the responsiveness to PPARalpha activation, but a selective mutation in PPRE1 resulted in a complete loss of responsiveness to PPARalpha activation. Moreover, gel shift assays revealed binding of PPARalpha/RXRalpha heterodimer to the PPRE1 of mouse OCTN2 first intron. In conclusion, the present study shows that mouse OCTN2 is a direct target gene of PPARalpha and that transcriptional upregulation of OCTN2 by PPARalpha is likely mediated via PPRE1 in its first intron.
Collapse
Affiliation(s)
- Gaiping Wen
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120 Halle (Saale), Germany
| | | | | |
Collapse
|
32
|
Fibrates may Cause an Abnormal Urinary Betaine Loss Which is Associated with Elevations in Plasma Homocysteine. Cardiovasc Drugs Ther 2009; 23:395-401. [DOI: 10.1007/s10557-009-6188-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Gutgesell A, Wen G, König B, Koch A, Spielmann J, Stangl GI, Eder K, Ringseis R. Mouse carnitine-acylcarnitine translocase (CACT) is transcriptionally regulated by PPARalpha and PPARdelta in liver cells. Biochim Biophys Acta Gen Subj 2009; 1790:1206-16. [PMID: 19577614 DOI: 10.1016/j.bbagen.2009.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hepatic PPARalpha acts as the primary mediator of the adaptive response to fasting by upregulation of a number of genes involved in fatty acid catabolism. Whether carnitine-acylcarnitine translocase (CACT), which mediates the import of acylcarnitines into the mitochondrial matrix for subsequent beta-oxidation of fatty acid moieties, is also regulated by PPARalpha in the liver has not yet been investigated. METHODS AND RESULTS Herein, we observed that hepatic mRNA abundance of CACT was increased by both, fasting and treatment with PPARalpha agonist WY-14,643 in wild-type mice but not PPARalpha-knockout mice (P<0.05). Cell culture experiments revealed that CACT mRNA abundance was higher in liver cells treated with either WY-14,643 or PPARdelta agonist GW0742, but not with PPARgamma agonist troglitazone (TGZ) than in control cells (P<0.05). In addition, reporter assays revealed activation of mouse CACT promoter by WY-14,643 and GW0742, but not TGZ. Moreover, deletion and mutation analyses of CACT promoter and 5'-UTR revealed one functional PPRE in the 5'-UTR of mouse CACT. GENERAL SIGNIFICANCE CACT is upregulated by PPARalpha and PPARdelta, probably by binding to a functional PPRE at position +45 to +57 relative to the transcription start site. The upregulation of CACT by PPARalpha and PPARdelta, which are both important for the regulation of fatty acid oxidation in tissues during fasting, may increase the import of acylcarnitine into the mitochondrial matrix during fasting.
Collapse
Affiliation(s)
- Anke Gutgesell
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 2, 06120 Halle, Saale, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ide T, Lim JS, Odbayar TO, Nakashima Y. Comparative study of sesame lignans (sesamin, episesamin and sesamolin) affecting gene expression profile and fatty acid oxidation in rat liver. J Nutr Sci Vitaminol (Tokyo) 2009; 55:31-43. [PMID: 19352061 DOI: 10.3177/jnsv.55.31] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The impact of sesamin, episesamin and sesamolin (sesame lignans) on hepatic gene expression profiles was compared with a DNA microarray. Male Sprague-Dawley rats were fed experimental diets containing 0.2% sesamin, episesamin or sesamolin, and a control diet free of lignans for 15 d. Compared to a lignan-free diet, a diet containing sesamin, episesamin and sesamolin caused 1.5- and 2-fold changes in the expression of 128 and 40, 526 and 152, and 516 and 140 genes, respectively. The lignans modified not only the mRNA levels of many enzymes involved in hepatic fatty acid oxidation, but also those of proteins involved in the transportation of fatty acids into hepatocytes and their organelles, and regulating hepatic concentrations of carnitine, CoA and malonyl-CoA. It is apparent that sesame lignans stimulate hepatic fatty acid oxidation by affecting the gene expression of various proteins regulating hepatic fatty acid metabolism. We also observed that lignans modified the gene expression of various proteins involved in hepatic lipogenesis, cholesterogenesis and glucose metabolism. The changes were generally greater with episesamin and sesamolin than with sesamin. In terms of the amounts accumulated in serum and the liver, the lignans ranked in the order sesamolin, episesamin and sesamin. The differences in bio-availability among these lignans appear to be important to their divergent physiological activities.
Collapse
Affiliation(s)
- Takashi Ide
- Laboratory of Nutritional Function, National Food Research Institute, 2-1-12 Kannondai, Tsukuba 305-8642, Japan.
| | | | | | | |
Collapse
|
35
|
Liangpunsakul S, Wou SE, Wineinger KD, Zeng Y, Cyganek I, Jayaram HN, Crabb DW. Effects of WY-14,643 on the phosphorylation and activation of AMP-dependent protein kinase. Arch Biochem Biophys 2009; 485:10-5. [PMID: 19236843 DOI: 10.1016/j.abb.2009.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 02/16/2009] [Accepted: 02/18/2009] [Indexed: 12/20/2022]
Abstract
BACKGROUND AMP-dependent protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR) alpha facilitate fatty acid oxidation. We have shown that treatment of hepatoma cells with ethanol or feeding ethanol-containing diets to mice inhibited both PPARalpha and AMPK activity. Importantly, WY-14,643 reversed the development of fatty liver in alcohol-fed mice. Whether WY-14,643, a PPARalpha agonist, has any effects on AMPK is not known. The aim of this study was to investigate the effect of WY-14,643 on AMPK activity. METHODS The effect of WY-14,643 on AMPK phosphorylation and activity were examined in rat hepatoma cells (H4IIEC3). The effect of WY-14,643 on upstream kinases of AMPK, PKC-zeta/LKB1, intracellular AMP:ATP ratio, oxidative stress, and AMPK gene expression were studied. RESULTS Treatment of the H4IIEC3 cells with WY-14,643 for 24h led to 60% increase in the phosphorylation of AMPK. The effect of WY-14,643 on AMPK phosphorylation is PKC-zeta/LKB1 independent. WY-14,643 did not alter the levels of intracellular AMP:ATP ratio and it did not increase the levels of reactive oxygen species at 24-h of treatment. WY-14,643-induced AMPK alpha subunit expression by 2- to 2.5-fold, but there was no change in AMPKalpha subunit protein at 24h. The effect of WY-14,643 on AMPK phosphorylation did not altered by the presence of an NADPH oxidase inhibitor. CONCLUSIONS WY-14,643 induced AMPKalpha subunit phosphorylation and the activity of the enzyme. This was associated with induction of AMPKalpha1 and alpha2 mRNA, but the mechanism for this activation is uncertain.
Collapse
Affiliation(s)
- Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine and Roudebush Veterans Administration Medical Center, 545 N. Barnhill Drive, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Gutgesell A, Ringseis R, Brandsch C, Stangl GI, Hirche F, Eder K. Peroxisome proliferator-activated receptor alpha and enzymes of carnitine biosynthesis in the liver are down-regulated during lactation in rats. Metabolism 2009; 58:226-32. [PMID: 19154956 DOI: 10.1016/j.metabol.2008.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
Abstract
This study investigated the hypothesis that lactation lowers gene expression of peroxisome proliferator-activated receptor (PPAR) alpha in the liver and that this leads to a down-regulation of hepatic enzymes involved in carnitine synthesis and novel organic cation transporters (OCTNs). Thirty-two pregnant female rats were divided into 4 groups. In the first group, all pups were removed, whereas in the other groups, litters were adjusted to sizes of 4, 10, or 18 pups per dam. Dams suckling their litters, irrespective of litter size, had lower relative messenger RNA concentrations of PPARalpha, various classic PPARalpha target genes involved in fatty acid catabolism, as well as enzymes involved in carnitine synthesis (trimethyllysine dioxygenase, 4-N-trimethylaminobutyraldehyde dehydrogenase, gamma-butyrobetaine dioxygenase) and OCTN1 in the liver than dams whose litters were removed (P < .05). Moreover, dams suckling their litters had a reduced activity of gamma-butyrobetaine dioxygenase in the liver and reduced concentrations of carnitine in plasma, liver, and muscle compared with dams without litters (P < .05). In conclusion, the present study demonstrates for the first time that lactation leads to a down-regulation of PPARalpha and genes involved in hepatic carnitine synthesis and uptake of carnitine (OCTN1) in the liver, irrespective of litter size. It is moreover suggested that down-regulation of PPARalpha in the liver may be a means to conserve energy and metabolic substrates for milk production in the mammary gland.
Collapse
Affiliation(s)
- Anke Gutgesell
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University of Halle-Wittenberg, D-06108 Halle, Saale, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Fischer M, Varady J, Hirche F, Kluge H, Eder K. Supplementation of L-carnitine in pigs: Absorption of carnitine and effect on plasma and tissue carnitine concentrations. Arch Anim Nutr 2009; 63:1-15. [DOI: 10.1080/17450390802611636] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Ringseis R, Luci S, Spielmann J, Kluge H, Fischer M, Geissler S, Wen G, Hirche F, Eder K. Clofibrate treatment up-regulates novel organic cation transporter (OCTN)-2 in tissues of pigs as a model of non-proliferating species. Eur J Pharmacol 2008; 583:11-7. [DOI: 10.1016/j.ejphar.2008.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 12/17/2007] [Accepted: 01/14/2008] [Indexed: 01/09/2023]
|
39
|
PPARα Mediates Transcriptional Upregulation of Novel Organic Cation Transporters-2 and -3 and Enzymes Involved in Hepatic Carnitine Synthesis. Exp Biol Med (Maywood) 2008; 233:356-65. [DOI: 10.3181/0706-rm-168] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We tested the hypothesis that transcription of novel organic cation transporters (OCTNs) is directly regulated by peroxisome proliferator–activated receptor (PPAR)-α. Therefore, wild-type mice and mice deficient in PPARα (PPARα−/−) were treated with the PPARα agonist WY 14,643. Wild-type mice treated with WY 14,643 had a greater abundance of OCTN2 mRNA in their liver, muscle, kidney, and small intestine and a greater abundance of OCTN3 mRNA in kidney and small intestine than did untreated wild-type mice ( P < 0.05). Moreover, wild-type mice treated with WY 14,643 had greater mRNA abundances of enzymes involved in hepatic carnitine synthesis (4-N-trimethylaminobutyraldehyde dehydrogenase, γ-butyrobetaine dioxygenase) and increased carnitine concentrations in liver and muscle than did untreated wild-type mice ( P < 0.05). Untreated PPARα−/− mice had a lower abundance of OCTN2 mRNA in liver, kidney, and small intestine and lower carnitine concentrations in plasma, liver, and kidney than did untreated wild-type mice ( P < 0.05). In PPARα−/− mice, treatment with WY 14,643 did not influence mRNA abundance of OCTN2 and OCTN3 and carnitine concentrations in all tissues analyzed. The abundance of OCTN1 mRNA in all the tissues analyzed was not changed by treatment with WY 14,643 in wild-type or PPARα−/− mice. In conclusion, this study shows that transcriptional upregulation of OCTN2 and OCTN3 in tissues and of enzymes involved in hepatic carnitine biosynthesis are mediated by PPARα. It also shows that PPARα mediates changes of whole-body carnitine homeostasis in mice by upregulation of carnitine transporters and enzymes involved in carnitine synthesis.
Collapse
|
40
|
Luci S, Hirche F, Eder K. Fasting and Caloric Restriction Increases mRNA Concentrations of Novel Organic Cation Transporter-2 and Carnitine Concentrations in Rat Tissues. ANNALS OF NUTRITION AND METABOLISM 2008; 52:58-67. [DOI: 10.1159/000118872] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 11/06/2007] [Indexed: 11/19/2022]
|
41
|
Maeda T, Wakasawa T, Funabashi M, Fukushi A, Fujita M, Motojima K, Tamai I. Regulation of Octn2 Transporter (SLC22A5) by Peroxisome Proliferator Activated Receptor Alpha. Biol Pharm Bull 2008; 31:1230-6. [DOI: 10.1248/bpb.31.1230] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomoji Maeda
- Department of Membrane Transport and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Takeru Wakasawa
- Department of Membrane Transport and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Miho Funabashi
- Department of Membrane Transport and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Akimasa Fukushi
- Department of Membrane Transport and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Masaharu Fujita
- Department of Membrane Transport and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | - Ikumi Tamai
- Department of Membrane Transport and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
42
|
Hirai T, Fukui Y, Motojima K. PPARalpha agonists positively and negatively regulate the expression of several nutrient/drug transporters in mouse small intestine. Biol Pharm Bull 2007; 30:2185-90. [PMID: 17978498 DOI: 10.1248/bpb.30.2185] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A systematic analysis to examine the effects of peroxisome proliferator-activated receptor (PPAR)alpha agonists on the expression levels of all the nutrient/drug plasma-membrane transporters in the mouse small intestine was performed. Transporter mRNAs that were induced or repressed by two independent PPARalpha-specific agonists were identified by a genome-wide microarray method, and the changes were confirmed by real-time PCR using RNA isolated from the intestines and livers of wild-type and PPARalpha-null mice. Expression levels of seven nutrient/drug transporters (Abcd3, Octn2/Slc22a5, FATP2/Slc27a2, Slc22a21, Mct13/Slc16a13, Slc23a1 and Bcrp/Abcg2) in the intestine were up-regulated and the expression level of one (Mrp1/Abcc1) was down-regulated by PPARalpha; although the previously report that the H(+)/peptide co-transporter 1 (Pept1) is up-regulated by PPARalpha was not replicated in our study. We propose that the transport processes can be coordinately regulated with intracellular metabolism by nutrient nuclear receptors.
Collapse
Affiliation(s)
- Toshitake Hirai
- Department of Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | | | | |
Collapse
|
43
|
van Vlies N, Ferdinandusse S, Turkenburg M, Wanders RJA, Vaz FM. PPAR alpha-activation results in enhanced carnitine biosynthesis and OCTN2-mediated hepatic carnitine accumulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1134-42. [PMID: 17692817 DOI: 10.1016/j.bbabio.2007.07.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 06/18/2007] [Accepted: 07/05/2007] [Indexed: 11/16/2022]
Abstract
In fasted rodents hepatic carnitine concentration increases considerably which is not observed in PPAR alpha-/- mice, indicating that PPAR alpha is involved in carnitine homeostasis. To investigate the mechanisms underlying the PPAR alpha-dependent hepatic carnitine accumulation we measured carnitine biosynthesis enzyme activities, levels of carnitine biosynthesis intermediates, acyl-carnitines and OCTN2 mRNA levels in tissues of untreated, fasted or Wy-14643-treated wild type and PPAR alpha-/- mice. Here we show that both enhancement of carnitine biosynthesis (due to increased gamma-butyrobetaine dioxygenase activity), extra-hepatic gamma-butyrobetaine synthesis and increased hepatic carnitine import (OCTN2 expression) contributes to the increased hepatic carnitine levels after fasting and that these processes are PPAR alpha-dependent.
Collapse
Affiliation(s)
- Naomi van Vlies
- Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Koch A, König B, Luci S, Stangl GI, Eder K. Dietary oxidised fat up regulates the expression of organic cation transporters in liver and small intestine and alters carnitine concentrations in liver, muscle and plasma of rats. Br J Nutr 2007; 98:882-9. [PMID: 17524183 DOI: 10.1017/s000711450775691x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It has been shown that treatment of rats with clofibrate, a synthetic agonist of PPARalpha, increases mRNA concentration of organic cation transporters (OCTN)-1 and -2 and concentration of carnitine in the liver. Since oxidised fats have been demonstrated in rats to activate hepatic PPARalpha, we tested the hypothesis that they also up regulate OCTN. Eighteen rats were orally administered either sunflower-seed oil (control group) or an oxidised fat prepared by heating sunflower-seed oil, for 6 d. Rats administered the oxidised fat had higher mRNA concentrations of typical PPARalpha target genes such as acyl-CoA oxidase, cytochrome P450 4A1 and carnitine palmitoyltransferases-1A and -2 in liver and small intestine than control rats (P < 0.05). Furthermore, rats treated with oxidised fat had higher hepatic mRNA concentrations of OCTN1 (1.5-fold) and OCTN2 (3.1-fold), a higher carnitine concentration in the liver and lower carnitine concentrations in plasma, gastrocnemius and heart muscle than control rats (P < 0.05). Moreover, rats administered oxidised fat had a higher mRNA concentration of OCTN2 in small intestine (2.4-fold; P < 0.05) than control rats. In conclusion, the present study shows that an oxidised fat causes an up regulation of OCTN in the liver and small intestine. An increased hepatic carnitine concentration in rats treated with the oxidised fat is probably at least in part due to an increased uptake of carnitine into the liver which in turn leads to reduced plasma and muscle carnitine concentrations. The present study supports the hypothesis that nutrients acting as PPARalpha agonists influence whole-body carnitine homeostasis.
Collapse
Affiliation(s)
- Alexander Koch
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University of Halle-Wittenberg, Emil-Abderhalden-Strasse 26, D-06108 Halle (Saale), Germany
| | | | | | | | | |
Collapse
|