1
|
Malatesta M, Fornasier E, Di Salvo ML, Tramonti A, Zangelmi E, Peracchi A, Secchi A, Polverini E, Giachin G, Battistutta R, Contestabile R, Percudani R. One substrate many enzymes virtual screening uncovers missing genes of carnitine biosynthesis in human and mouse. Nat Commun 2024; 15:3199. [PMID: 38615009 PMCID: PMC11016064 DOI: 10.1038/s41467-024-47466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/26/2024] [Indexed: 04/15/2024] Open
Abstract
The increasing availability of experimental and computational protein structures entices their use for function prediction. Here we develop an automated procedure to identify enzymes involved in metabolic reactions by assessing substrate conformations docked to a library of protein structures. By screening AlphaFold-modeled vitamin B6-dependent enzymes, we find that a metric based on catalytically favorable conformations at the enzyme active site performs best (AUROC Score=0.84) in identifying genes associated with known reactions. Applying this procedure, we identify the mammalian gene encoding hydroxytrimethyllysine aldolase (HTMLA), the second enzyme of carnitine biosynthesis. Upon experimental validation, we find that the top-ranked candidates, serine hydroxymethyl transferase (SHMT) 1 and 2, catalyze the HTMLA reaction. However, a mouse protein absent in humans (threonine aldolase; Tha1) catalyzes the reaction more efficiently. Tha1 did not rank highest based on the AlphaFold model, but its rank improved to second place using the experimental crystal structure we determined at 2.26 Å resolution. Our findings suggest that humans have lost a gene involved in carnitine biosynthesis, with HTMLA activity of SHMT partially compensating for its function.
Collapse
Affiliation(s)
- Marco Malatesta
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Martino Luigi Di Salvo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, Italian National Research Council, Rome, Italy
| | - Erika Zangelmi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Alessio Peracchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Andrea Secchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Eugenia Polverini
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Gabriele Giachin
- Department of Chemical Sciences, University of Padua, Padova, Italy
| | | | - Roberto Contestabile
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| | - Riccardo Percudani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| |
Collapse
|
2
|
Malinovsky AV. Why Threonine Is an Essential Amino Acid in Mammals and Birds: Studies at the Enzyme Level. BIOCHEMISTRY (MOSCOW) 2018; 83:795-799. [PMID: 30200864 DOI: 10.1134/s0006297918070039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The only pathway for the synthesis of essential amino acids in vertebrates is reversible transamination of their keto analogs with glutamic acid. At the same time, it is commonly accepted that such essential amino acids as lysine and threonine are not involved in transamination and, therefore, cannot be synthesized from their keto analogs. However, using radiolabeled isotopes, synthesis of threonine was demonstrated in rat liver and in a reaction mixture containing chicken liver threonine dehydrogenase. In the review, we discuss why threonine is an essential amino acid in mammals and birds based on the pathways of threonine biosynthesis in these two classes of vertebrates.
Collapse
Affiliation(s)
- A V Malinovsky
- Biofizpribor, Branch of the Experimental and Production Workshops, Federal Medical and Biological Agency, St. Petersburg, 197183, Russia.
| |
Collapse
|
3
|
Malinovsky AV. Reason for indispensability of threonine in humans and other mammals in comparative aspect. BIOCHEMISTRY (MOSCOW) 2017; 82:1055-1060. [DOI: 10.1134/s0006297917090097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Kaur G, Subramanian S. Evolutionary analysis of a novel zinc ribbon in the N-terminal region of threonine synthase. Cell Cycle 2017; 16:1918-1926. [PMID: 28820334 DOI: 10.1080/15384101.2017.1363937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Threonine synthase (TS) catalyzes the terminal reaction in the biosynthetic pathway of threonine and requires pyridoxal phosphate as a cofactor. TSs share a common catalytic domain with other fold type II PALP dependent enzymes. TSs are broadly grouped into two classes based on their sequence, quaternary structure, and enzyme regulation. We report the presence of a novel zinc ribbon domain in the N-terminal region preceding the catalytic core in TS. The zinc ribbon domain is present in TSs belonging to both classes. Our sequence analysis reveals that archaeal TSs possess all zinc chelating residues to bind a metal ion that are lacking in the structurally characterized homologs. Phylogenetic analysis suggests that TSs with an N-terminal zinc ribbon likely represents the ancestral state of the enzyme while TSs without a zinc ribbon must have diverged later in specific lineages. The zinc ribbon and its N- and C-terminal extensions are important for enzyme stability, activity and regulation. It is likely that the zinc ribbon domain is involved in higher order oligomerization or mediating interactions with other biomolecules leading to formation of larger metabolic complexes.
Collapse
Affiliation(s)
- Gurmeet Kaur
- a CSIR-Institute of Microbial Technology (IMTECH) , Chandigarh , India
| | | |
Collapse
|
5
|
Schiroli D, Ronda L, Peracchi A. Kinetic characterization of the human O-phosphoethanolamine phospho-lyase reveals unconventional features of this specialized pyridoxal phosphate-dependent lyase. FEBS J 2014; 282:183-99. [PMID: 25327712 DOI: 10.1111/febs.13122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 11/28/2022]
Abstract
Human O-phosphoethanolamine (PEA) phospho-lyase is a pyridoxal 5'-phosphate (PLP) dependent enzyme that catalyzes the degradation of PEA to acetaldehyde, phosphate and ammonia. Physiologically, the enzyme is involved in phospholipid metabolism and is expressed mainly in the brain, where its expression becomes dysregulated in the course of neuropsychiatric diseases. Mechanistically, PEA phospho-lyase shows a remarkable substrate selectivity, strongly discriminating against other amino compounds structurally similar to PEA. Herein, we studied the enzyme under steady-state and pre-steady-state conditions, analyzing its kinetic features and getting insights into the factors that contribute to its specificity. The pH dependence of the catalytic parameters and the pattern of inhibition by the product phosphate and by other anionic compounds suggest that the active site of PEA phospho-lyase is optimized to bind dianionic groups and that this is a prime determinant of the enzyme specificity towards PEA. Single- and multiple-wavelength stopped-flow studies show that upon reaction with PEA the main absorption band of PLP (λmax = 412 nm) rapidly blue-shifts to ~ 400 nm. Further experiments suggest that the newly formed and rather stable 400-nm species most probably represents a Michaelis (noncovalent) complex of PEA with the enzyme. Accumulation of such an early intermediate during turnover is unusual for PLP-dependent enzymes and appears counterproductive for absolute catalytic performance, but it can contribute to optimize substrate specificity. PEA phospho-lyase may hence represent a case of selectivity-efficiency tradeoff. In turn, the strict specificity of the enzyme seems important to prevent inactivation by other amines, structurally resembling PEA, that occur in the brain.
Collapse
Affiliation(s)
- Davide Schiroli
- Department of Life Sciences, Laboratory of Biochemistry, Molecular Biology and Bioinformatics, University of Parma, Italy
| | | | | |
Collapse
|
6
|
Fleischman NM, Das D, Kumar A, Xu Q, Chiu HJ, Jaroszewski L, Knuth MW, Klock HE, Miller MD, Elsliger MA, Godzik A, Lesley SA, Deacon AM, Wilson IA, Toney MD. Molecular characterization of novel pyridoxal-5'-phosphate-dependent enzymes from the human microbiome. Protein Sci 2014; 23:1060-76. [PMID: 24888348 DOI: 10.1002/pro.2493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 11/10/2022]
Abstract
Pyridoxal-5'-phosphate or PLP, the active form of vitamin B6, is a highly versatile cofactor that participates in a large number of mechanistically diverse enzymatic reactions in basic metabolism. PLP-dependent enzymes account for ∼1.5% of most prokaryotic genomes and are estimated to be involved in ∼4% of all catalytic reactions, making this an important class of enzymes. Here, we structurally and functionally characterize three novel PLP-dependent enzymes from bacteria in the human microbiome: two are from Eubacterium rectale, a dominant, nonpathogenic, fecal, Gram-positive bacteria, and the third is from Porphyromonas gingivalis, which plays a major role in human periodontal disease. All adopt the Type I PLP-dependent enzyme fold and structure-guided biochemical analysis enabled functional assignments as tryptophan, aromatic, and probable phosphoserine aminotransferases.
Collapse
|
7
|
Schiroli D, Cirrincione S, Donini S, Peracchi A. Strict reaction and substrate specificity of AGXT2L1, the human O-phosphoethanolamine phospho-lyase. IUBMB Life 2013; 65:645-50. [PMID: 23761375 DOI: 10.1002/iub.1178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/04/2013] [Indexed: 01/13/2023]
Abstract
Dysregulated expression of the AGXT2L1 gene has been associated to neuropsychiatric disorders. Recently the gene product was shown to possess O-phosphoethanolamine phospho-lyase activity. We here analyze the specificity of AGXT2L1 in terms of both reaction and substrate. We show that the enzyme, despite having evolved from a transaminase ancestor, is at least 500-fold more active as a lyase than as an aminotransferase. Furthermore, the lyase reaction is very selective for O-phosphoethanolamine, strongly discriminating against closely related compounds, and we dissect the factors that contribute to such narrow substrate specificity. Overall, AGXT2L1 function appears to be rigidly confined to phospholipid metabolism, which is altered in neuropsychiatric disturbances.
Collapse
Affiliation(s)
- Davide Schiroli
- Department of Biosciences, University of Parma, Parma, Italy
| | | | | | | |
Collapse
|
8
|
Zhaxybayeva O, Swithers KS, Foght J, Green AG, Bruce D, Detter C, Han S, Teshima H, Han J, Woyke T, Pitluck S, Nolan M, Ivanova N, Pati A, Land ML, Dlutek M, Doolittle WF, Noll KM, Nesbø CL. Genome sequence of the mesophilic Thermotogales bacterium Mesotoga prima MesG1.Ag.4.2 reveals the largest Thermotogales genome to date. Genome Biol Evol 2012; 4:700-8. [PMID: 22798451 PMCID: PMC3516359 DOI: 10.1093/gbe/evs059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Here we describe the genome of Mesotoga prima MesG1.Ag4.2, the first genome of a mesophilic Thermotogales bacterium. Mesotoga prima was isolated from a polychlorinated biphenyl (PCB)-dechlorinating enrichment culture from Baltimore Harbor sediments. Its 2.97 Mb genome is considerably larger than any previously sequenced Thermotogales genomes, which range between 1.86 and 2.30 Mb. This larger size is due to both higher numbers of protein-coding genes and larger intergenic regions. In particular, the M. prima genome contains more genes for proteins involved in regulatory functions, for instance those involved in regulation of transcription. Together with its closest relative, Kosmotoga olearia, it also encodes different types of proteins involved in environmental and cell-cell interactions as compared with other Thermotogales bacteria. Amino acid composition analysis of M. prima proteins implies that this lineage has inhabited low-temperature environments for a long time. A large fraction of the M. prima genome has been acquired by lateral gene transfer (LGT): a DarkHorse analysis suggests that 766 (32%) of predicted protein-coding genes have been involved in LGT after Mesotoga diverged from the other Thermotogales lineages. A notable example of a lineage-specific LGT event is a reductive dehalogenase gene-a key enzyme in dehalorespiration, indicating M. prima may have a more active role in PCB dechlorination than was previously assumed.
Collapse
Affiliation(s)
- Olga Zhaxybayeva
- Department of Biology, West Virginia University
- Department of Biological Sciences, Dartmouth College
| | | | - Julia Foght
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Anna G. Green
- Department of Molecular and Cell Biology, University of Connecticut
| | - David Bruce
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico
| | - Chris Detter
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico
| | - Shunsheng Han
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico
| | - Hazuki Teshima
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico
| | - James Han
- DOE Joint Genome Institute, Walnut Creek, California
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California
| | - Sam Pitluck
- DOE Joint Genome Institute, Walnut Creek, California
| | - Matt Nolan
- DOE Joint Genome Institute, Walnut Creek, California
| | | | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, California
| | | | - Marlena Dlutek
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - W. Ford Doolittle
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Kenneth M. Noll
- Department of Molecular and Cell Biology, University of Connecticut
| | - Camilla L. Nesbø
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, Oslo, Norway
- *Corresponding author: E-mail:
| |
Collapse
|
9
|
Expression quantitative trait Loci for extreme host response to influenza a in pre-collaborative cross mice. G3-GENES GENOMES GENETICS 2012; 2:213-21. [PMID: 22384400 PMCID: PMC3284329 DOI: 10.1534/g3.111.001800] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 12/08/2011] [Indexed: 01/05/2023]
Abstract
Outbreaks of influenza occur on a yearly basis, causing a wide range of symptoms across the human population. Although evidence exists that the host response to influenza infection is influenced by genetic differences in the host, this has not been studied in a system with genetic diversity mirroring that of the human population. Here we used mice from 44 influenza-infected pre-Collaborative Cross lines determined to have extreme phenotypes with regard to the host response to influenza A virus infection. Global transcriptome profiling identified 2671 transcripts that were significantly differentially expressed between mice that showed a severe ("high") and mild ("low") response to infection. Expression quantitative trait loci mapping was performed on those transcripts that were differentially expressed because of differences in host response phenotype to identify putative regulatory regions potentially controlling their expression. Twenty-one significant expression quantitative trait loci were identified, which allowed direct examination of genes associated with regulation of host response to infection. To perform initial validation of our findings, quantitative polymerase chain reaction was performed in the infected founder strains, and we were able to confirm or partially confirm more than 70% of those tested. In addition, we explored putative causal and reactive (downstream) relationships between the significantly regulated genes and others in the high or low response groups using structural equation modeling. By using systems approaches and a genetically diverse population, we were able to develop a novel framework for identifying the underlying biological subnetworks under host genetic control during influenza virus infection.
Collapse
|
10
|
Cui J, Shao F. Biochemistry and cell signaling taught by bacterial effectors. Trends Biochem Sci 2011; 36:532-40. [DOI: 10.1016/j.tibs.2011.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/08/2011] [Accepted: 07/18/2011] [Indexed: 12/22/2022]
|
11
|
Expanding metabolism for total biosynthesis of the nonnatural amino acid L-homoalanine. Proc Natl Acad Sci U S A 2010; 107:6234-9. [PMID: 20332210 DOI: 10.1073/pnas.0912903107] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dramatic increase in healthcare cost has become a significant burden to the world. Many patients are denied the accessibility of medication because of the high price of drugs. Total biosynthesis of chiral drug intermediates is an environmentally friendly approach that helps provide more affordable pharmaceuticals. Here we have expanded the natural metabolic capability to biosynthesize a nonnatural amino acid L-homoalanine, which is a chiral precursor of levetiracetam, brivaracetam, and ethambutol. We developed a selection strategy and altered the substrate specificity of ammonium-assimilating enzyme glutamate dehydrogenase. The specificity constant k(cat)/K(m) of the best mutant towards 2-ketobutyrate is 50-fold higher than that towards the natural substrate 2-ketoglutarate. Compared to transaminase IlvE and NADH-dependent valine dehydrogenases, the evolved glutamate dehydrogenase increased the conversion yield of 2-ketobutyrate to L-homoalanine by over 300% in aerobic condition. As a result of overexpressing the mutant glutamate dehydrogenase and Bacillus subtilis threonine dehydratase in a modified threonine-hyperproducing Escherichia coli strain (ATCC98082, DeltarhtA), 5.4 g/L L-homoalanine was produced from 30 g/L glucose (0.18 g/g glucose yield, 26% of the theoretical maximum). This work opens the possibility of total biosynthesis of other nonnatural chiral compounds that could be useful pharmaceutical intermediates.
Collapse
|
12
|
Rifas L, Weitzmann MN. A novel T cell cytokine, secreted osteoclastogenic factor of activated T cells, induces osteoclast formation in a RANKL-independent manner. ARTHRITIS AND RHEUMATISM 2009; 60:3324-35. [PMID: 19877052 PMCID: PMC2783420 DOI: 10.1002/art.24877] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Chronic T cell activation is central to the etiology of rheumatoid arthritis (RA), an inflammatory autoimmune disease that leads to severe focal bone erosions and generalized systemic osteoporosis. Previous studies have shown novel cytokine-like activities in medium containing activated T cells, characterized by potent induction of the osteoblastic production of interleukin-6 (IL-6), an inflammatory cytokine and stimulator of osteoclastogenesis, as well as induction of an activity that directly stimulates osteoclast formation in a manner independent of the key osteoclastogenic cytokine RANKL. This study was undertaken to identify the factors secreted by T cells that are responsible for these activities. METHODS Human T cells were activated using anti-human CD3 and anti-human CD28 antibodies for 72 hours in AIM V serum-free medium to obtain T cell-conditioned medium, followed by concentration and fractionation of the medium by fast-protein liquid chromatography. Biologically active fractions were resolved using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Major bands were analyzed by mass spectrometry, and a major candidate protein was identified. This novel cytokine was cloned, and its expression was analyzed using recombinant DNA technologies. RESULTS A single novel cytokine that could induce both osteoblastic IL-6 production and functional osteoclast formation in the absence of osteoblasts or RANKL and that was insensitive to the effects of the RANKL inhibitor osteoprotegerin was identified in the activated T cell-conditioned medium; this cytokine was designated secreted osteoclastogenic factor of activated T cells (SOFAT). Further analysis of SOFAT revealed that it was derived from an unusual messenger RNA splice variant coded by the threonine synthase-like 2 gene homolog, which is a conserved gene remnant coding for threonine synthase, an enzyme that functions only in microorganisms and plants. CONCLUSION SOFAT may act to exacerbate inflammation and/or bone turnover under inflammatory conditions such as RA or periodontitis and in conditions of estrogen deficiency.
Collapse
Affiliation(s)
- Leonard Rifas
- Department Of Pediatrics, Washington University School Of Medicine, St. Louis, Missouri
| | - M. Neale Weitzmann
- Division of Endocrinology & Metabolism & Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia 30033
| |
Collapse
|
13
|
Percudani R, Peracchi A. The B6 database: a tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinformatics 2009; 10:273. [PMID: 19723314 PMCID: PMC2748086 DOI: 10.1186/1471-2105-10-273] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 09/01/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Enzymes that depend on vitamin B6 (and in particular on its metabolically active form, pyridoxal 5'-phosphate, PLP) are of great relevance to biology and medicine, as they catalyze a wide variety of biochemical reactions mainly involving amino acid substrates. Although PLP-dependent enzymes belong to a small number of independent evolutionary lineages, they encompass more than 160 distinct catalytic functions, thus representing a striking example of divergent evolution. The importance and remarkable versatility of these enzymes, as well as the difficulties in their functional classification, create a need for an integrated source of information about them. DESCRIPTION The B6 database http://bioinformatics.unipr.it/B6db contains documented B6-dependent activities and the relevant protein families, defined as monophyletic groups of sequences possessing the same enzymatic function. One or more families were associated to each of 121 PLP-dependent activities with known sequences. Hidden Markov models (HMMs) were built from family alignments and incorporated in the database. These HMMs can be used for the functional classification of PLP-dependent enzymes in genomic sets of predicted protein sequences. An example of such analyses (a census of human genes coding for PLP-dependent enzymes) is provided here, whereas many more are accessible through the database itself. CONCLUSION The B6 database is a curated repository of biochemical and molecular information about an important group of enzymes. This information is logically organized and available for computational analyses, providing a key resource for the identification, classification and comparative analysis of B6-dependent enzymes.
Collapse
Affiliation(s)
- Riccardo Percudani
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy.
| | | |
Collapse
|