1
|
Nakazato Y, Otaki JM. Protein Delivery to Insect Epithelial Cells In Vivo: Potential Application to Functional Molecular Analysis of Proteins in Butterfly Wing Development. BIOTECH 2023; 12:biotech12020028. [PMID: 37092472 PMCID: PMC10123617 DOI: 10.3390/biotech12020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023] Open
Abstract
Protein delivery to cells in vivo has great potential for the functional analysis of proteins in nonmodel organisms. In this study, using the butterfly wing system, we investigated a method of protein delivery to insect epithelial cells that allows for easy access, treatment, and observation in real time in vivo. Topical and systemic applications (called the sandwich and injection methods, respectively) were tested. In both methods, green/orange fluorescent proteins (GFP/OFP) were naturally incorporated into intracellular vesicles and occasionally into the cytosol from the apical surface without any delivery reagent. However, the antibodies were not delivered by the sandwich method at all, and were delivered only into vesicles by the injection method. A membrane-lytic peptide, L17E, appeared to slightly improve the delivery of GFP/OFP and antibodies. A novel peptide reagent, ProteoCarry, successfully promoted the delivery of both GFP/OFP and antibodies into the cytosol via both the sandwich and injection methods. These protein delivery results will provide opportunities for the functional molecular analysis of proteins in butterfly wing development, and may offer a new way to deliver proteins into target cells in vivo in nonmodel organisms.
Collapse
Affiliation(s)
- Yugo Nakazato
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
2
|
Leboulle G, Gehne N, Froese A, Menzel R. In-vivo egfp expression in the honeybee Apis mellifera induced by electroporation and viral expression vector. PLoS One 2022; 17:e0263908. [PMID: 35653376 PMCID: PMC9162312 DOI: 10.1371/journal.pone.0263908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/02/2022] [Indexed: 11/18/2022] Open
Abstract
In this study we describe egfp expression induced by two techniques: in vivo electroporation and viral transduction in several cell types of the adult honeybee brain. Non-neuronal and neuronal cell types were identified and the expression persisted at least during three days. Kenyon cells, optic lobe neurons and protocerebral lobe neurons were electroporated. Astrocyte-like glia cells, fibrous lamellar glia cells and cortex glia cells were identified. Viral transduction targeted one specific type of glia cells that could not be identified. EGFP positive cells types were rather variable after electroporation, and viral transduction resulted in more homogenous groups of positive cells. We propose that these techniques remain a good alternative to transgenic animals because they potentially target only somatic cells.
Collapse
Affiliation(s)
- Gérard Leboulle
- Neurobiologie, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| | - Nora Gehne
- Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Anja Froese
- Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Randolf Menzel
- Neurobiologie, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Genetics in the Honey Bee: Achievements and Prospects toward the Functional Analysis of Molecular and Neural Mechanisms Underlying Social Behaviors. INSECTS 2019; 10:insects10100348. [PMID: 31623209 PMCID: PMC6835989 DOI: 10.3390/insects10100348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022]
Abstract
The European honey bee is a model organism for studying social behaviors. Comprehensive analyses focusing on the differential expression profiles of genes between the brains of nurse bees and foragers, or in the mushroom bodies—the brain structure related to learning and memory, and multimodal sensory integration—has identified candidate genes related to honey bee behaviors. Despite accumulating knowledge on the expression profiles of genes related to honey bee behaviors, it remains unclear whether these genes actually regulate social behaviors in the honey bee, in part because of the scarcity of genetic manipulation methods available for application to the honey bee. In this review, we describe the genetic methods applied to studies of the honey bee, ranging from classical forward genetics to recently developed gene modification methods using transposon and CRISPR/Cas9. We then discuss future functional analyses using these genetic methods targeting genes identified by the preceding research. Because no particular genes or neurons unique to social insects have been found yet, further exploration of candidate genes/neurons correlated with sociality through comprehensive analyses of mushroom bodies in the aculeate species can provide intriguing targets for functional analyses, as well as insight into the molecular and neural bases underlying social behaviors.
Collapse
|
4
|
Fujiwara H, Nishikawa H. Functional analysis of genes involved in color pattern formation in Lepidoptera. CURRENT OPINION IN INSECT SCIENCE 2016; 17:16-23. [PMID: 27720069 DOI: 10.1016/j.cois.2016.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 05/22/2023]
Abstract
In addition to the genome editing technology, novel functional analyses using electroporation are powerful tools to reveal the gene function in the color pattern formation. Using these methods, several genes involved in various larval color pattern formation are clarified in the silkworm Bombyx mori and some Papilio species. Furthermore, the coloration pattern mechanism underlying the longtime mystery of female-limited Batesian mimicry of Papilio polytes has been recently revealed. This review presents the recent progress on the molecular mechanisms and evolutionary process of coloration patterns contributing to various mimicry in Lepidoptera, especially focusing on the gene function in the silkworm and Papilio species.
Collapse
Affiliation(s)
- Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| | - Hideki Nishikawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
5
|
Puthumana J, Philip R, Bright Singh IS. Transgene expression in Penaeus monodon cells: evaluation of recombinant baculoviral vectors with shrimp specific hybrid promoters. Cytotechnology 2016; 68:1147-59. [PMID: 25982944 PMCID: PMC4960163 DOI: 10.1007/s10616-015-9872-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/27/2015] [Indexed: 12/30/2022] Open
Abstract
It has been realized that shrimp cell immortalization may not be accomplished without in vitro transformation by expressing immortalizing gene in cells. In this process, efficiency of transgene expression is confined to the ability of vectors to transmit gene of interests to the genome. Over the years, unavailability of such vectors has been hampering application of such a strategy in shrimp cells. We report the use of recombinant baculovirus mediated transduction using hybrid promoter system for transgene expression in lymphoid cells of Penaeus monodon. Two recombinant baculovirus vectors with shrimp viral promoters (WSSV-Ie1 and IHHNV-P2) were constructed (BacIe1-GFP and BacP2-GFP) and green fluorescent protein (GFP) used as the transgene. The GFP expression in cells under the control of hybrid promoters, PH-Ie1 or PH-P2, were analyzed and confirmed in shrimp cells. The results indicate that the recombinant baculovirus with shrimp specific viral promoters (hybrid) can be employed for delivery of foreign genes to shrimp cells for in vitro transformation.
Collapse
Affiliation(s)
- Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India.
| |
Collapse
|
6
|
Abstract
Although most of non-long terminal repeat (non-LTR) retrotransposons are incorporated in the host genome almost randomly, some non-LTR retrotransposons are incorporated into specific sequences within a target site. On the basis of structural and phylogenetic features, non-LTR retrotransposons are classified into two large groups, restriction enzyme-like endonuclease (RLE)-encoding elements and apurinic/apyrimidinic endonuclease (APE)-encoding elements. All clades of RLE-encoding non-LTR retrotransposons include site-specific elements. However, only two of more than 20 APE-encoding clades, Tx1 and R1, contain site-specific non-LTR elements. Site-specific non-LTR retrotransposons usually target within multi-copy RNA genes, such as rRNA gene (rDNA) clusters, or repetitive genomic sequences, such as telomeric repeats; this behavior may be a symbiotic strategy to reduce the damage to the host genome. Site- and sequence-specificity are variable even among closely related non-LTR elements and appeared to have changed during evolution. In the APE-encoding elements, the primary determinant of the sequence- specific integration is APE itself, which nicks one strand of the target DNA during the initiation of target primed reverse transcription (TPRT). However, other factors, such as interaction between mRNA and the target DNA, and access to the target region in the nuclei also affect the sequence-specificity. In contrast, in the RLE-encoding elements, DNA-binding motifs appear to affect their sequence-specificity, rather than the RLE domain itself. Highly specific integration properties of these site-specific non-LTR elements make them ideal alternative tools for sequence-specific gene delivery, particularly for therapeutic purposes in human diseases.
Collapse
|
7
|
LeBoeuf AC, Benton R, Keller L. The molecular basis of social behavior: models, methods and advances. Curr Opin Neurobiol 2013; 23:3-10. [DOI: 10.1016/j.conb.2012.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 08/24/2012] [Accepted: 08/29/2012] [Indexed: 12/30/2022]
|
8
|
Ando T, Fujiwara H. Electroporation-mediated somatic transgenesis for rapid functional analysis in insects. Development 2013; 140:454-8. [DOI: 10.1242/dev.085241] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transgenesis is a powerful technique for determining gene function; however, it is time-consuming. It is virtually impossible to carry out in non-model insects in which egg manipulation and screening are difficult. We have established a rapid genetic functional analysis system for non-model insects using a low-cost electroporator (costing under US$200) designed for somatic transformation with the piggyBac transposon. Using this system, we successfully generated somatic transgenic cell clones in various target tissues (e.g. olfactory neurons, wing epidermis, larval epidermis, muscle, fat body and trachea) of the silkworm Bombyx mori during development. We also induced stable and transient RNA interference (RNAi) using short hairpin RNA (shRNA)-mediating DNA vectors and direct transfer of small interfering RNAs (siRNAs), respectively. We found that these electroporation-mediated approaches could also be applied to the swallowtail butterfly Papilio xuthus and the red flour beetle Tribolium castaneum. Thus, this method could be a powerful genetic tool for elucidating various developmental phenomena in non-model insects.
Collapse
Affiliation(s)
- Toshiya Ando
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
9
|
Unique functions of repetitive transcriptomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:115-88. [PMID: 21035099 DOI: 10.1016/b978-0-12-381047-2.00003-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Repetitive sequences occupy a huge fraction of essentially every eukaryotic genome. Repetitive sequences cover more than 50% of mammalian genomic DNAs, whereas gene exons and protein-coding sequences occupy only ~3% and 1%, respectively. Numerous genomic repeats include genes themselves. They generally encode "selfish" proteins necessary for the proliferation of transposable elements (TEs) in the host genome. The major part of evolutionary "older" TEs accumulated mutations over time and fails to encode functional proteins. However, repeats have important functions also on the RNA level. Repetitive transcripts may serve as multifunctional RNAs by participating in the antisense regulation of gene activity and by competing with the host-encoded transcripts for cellular factors. In addition, genomic repeats include regulatory sequences like promoters, enhancers, splice sites, polyadenylation signals, and insulators, which actively reshape cellular transcriptomes. TE expression is tightly controlled by the host cells, and some mechanisms of this regulation were recently decoded. Finally, capacity of TEs to proliferate in the host genome led to the development of multiple biotechnological applications.
Collapse
|
10
|
O'Brochta DA, Handler AM. Perspectives on the state of insect transgenics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 627:1-18. [PMID: 18510010 DOI: 10.1007/978-0-387-78225-6_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genetic transformation is a critical component to the fundamental genetic analysis of insect species and holds great promise for establishing strains that improve population control and behavior for practical application. This is especially so for insects that are disease vectors, many of which are currently subject to genomic sequence analysis, and intensive population control measures that must be improved for better efficacy and cost-effectiveness. Transposon-mediated germ-line transformation has been the ultimate goal for most fundamental and practical studies, and impressive strides have been made in recent development of transgene vector and marker systems for several mosquito species. This has resulted in rapid advances in functional genomic sequence analysis and new strategies for biological control based on conditional lethality. Importantly, advances have also been made in our ability to use these systems more effectively in terms of enhanced stability and targeting to specific genomic loci. Nevertheless, not all insects are currently amenable to germ-line transformation techniques, and thus advances in transient somatic expression and paratransgenesis have also been critical, if not preferable for some applications. Of particular importance is how this technology will be used for practical application. Early ideas for population replacement of indigenous pests with innocuous transgenic siblings by transposon-vector spread, may require reevaluation in terms of our current knowledge of the behavior of transposons currently available for transformation. The effective implementation of any control program using released transgenics, will also benefit from broadening the perspective of these control measures as being more mainstream than exotic.
Collapse
Affiliation(s)
- David A O'Brochta
- University of Maryland Biotechnology Institute, Center for Biosystems Research, Rockville, MD, USA.
| | | |
Collapse
|
11
|
Reumer A, Van Loy T, Clynen E, Schoofs L. How functional genomics and genetics complements insect endocrinology. Gen Comp Endocrinol 2008; 155:22-30. [PMID: 17686480 DOI: 10.1016/j.ygcen.2007.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 06/27/2007] [Indexed: 01/19/2023]
Abstract
Insects are the most abundant animal group on Earth and have been the subject of genetic and physiological studies since the beginning of the 19th century. The public interest in understanding their biology increased as many insects have proven to exert a severe impact on human welfare and the environment. To trigger insect physiological and endocrinological research, the genome of several economical and ecological important insect species was recently sequenced. Following the availability of these genomic data many so called 'post-genomic' technologies have been developed to characterise gene function and to unravel signalling pathways underlying biological processes. For some species genomic research is further complemented with mutagenesis and reverse genetic studies. In the following, we present an overview of genomic and functional genetic methodologies that boosted endocrine research in insects.
Collapse
Affiliation(s)
- Ank Reumer
- Animal Physiology and Neurobiology Section, Research Group Functional Genomics and Proteomics, K.U.Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|