1
|
Zhang N, Nao J, Zhang S, Dong X. Novel insights into the activating transcription factor 4 in Alzheimer's disease and associated aging-related diseases: Mechanisms and therapeutic implications. Front Neuroendocrinol 2024; 74:101144. [PMID: 38797197 DOI: 10.1016/j.yfrne.2024.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Ageing is inherent to all human beings, most mechanistic explanations of ageing results from the combined effects of various physiological and pathological processes. Additionally, aging pivotally contributes to several chronic diseases. Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding protein family, has recently emerged as a pivotal player owing to its indispensable role in the pathophysiological processes of Alzheimer's disease and aging-related diseases. Moreover, ATF4 is integral to numerous biological processes. Therefore, this article aims to comprehensively review relevant research on the role of ATF4 in the onset and progression of aging-related diseases, elucidating its potential mechanisms and therapeutic approaches. Our objective is to furnish scientific evidence for the early identification of risk factors in aging-related diseases and pave the way for new research directions for their treatment. By elucidating the signaling pathway network of ATF4 in aging-related diseases, we aspire to gain a profound understanding of the molecular and cellular mechanisms, offering novel strategies for addressing aging and developing related therapeutics.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, the Seventh Clinical College of China Medical University, No. 24 Central Street, Xinfu District, Fushun 113000, Liaoning, China.
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Shun Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| |
Collapse
|
2
|
Podmanicky O, Gao F, Munro B, Jennings MJ, Boczonadi V, Hathazi D, Mueller JS, Horvath R. Mitochondrial aminoacyl-tRNA synthetases trigger unique compensatory mechanisms in neurons. Hum Mol Genet 2024; 33:435-447. [PMID: 37975900 PMCID: PMC10877469 DOI: 10.1093/hmg/ddad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/05/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
Mitochondrial aminoacyl-tRNA synthetase (mt-ARS) mutations cause severe, progressive, and often lethal diseases with highly heterogeneous and tissue-specific clinical manifestations. This study investigates the molecular mechanisms triggered by three different mt-ARS defects caused by biallelic mutations in AARS2, EARS2, and RARS2, using an in vitro model of human neuronal cells. We report distinct molecular mechanisms of mitochondrial dysfunction among the mt-ARS defects studied. Our findings highlight the ability of proliferating neuronal progenitor cells (iNPCs) to compensate for mitochondrial translation defects and maintain balanced levels of oxidative phosphorylation (OXPHOS) components, which becomes more challenging in mature neurons. Mutant iNPCs exhibit unique compensatory mechanisms, involving specific branches of the integrated stress response, which may be gene-specific or related to the severity of the mitochondrial translation defect. RNA sequencing revealed distinct transcriptomic profiles showing dysregulation of neuronal differentiation and protein translation. This study provides valuable insights into the tissue-specific compensatory mechanisms potentially underlying the phenotypes of patients with mt-ARS defects. Our novel in vitro model may more accurately represent the neurological presentation of patients and offer an improved platform for future investigations and therapeutic development.
Collapse
Affiliation(s)
- Oliver Podmanicky
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Ed Adrian Building, Robinson Way, Cambridge, CB2 0PY, United Kingdom
| | - Fei Gao
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Ed Adrian Building, Robinson Way, Cambridge, CB2 0PY, United Kingdom
| | - Benjamin Munro
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Ed Adrian Building, Robinson Way, Cambridge, CB2 0PY, United Kingdom
| | - Matthew J Jennings
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Ed Adrian Building, Robinson Way, Cambridge, CB2 0PY, United Kingdom
- Department of Neurology, Columbia University, 630 West 168 St, New York, NY 10032, United States
| | - Veronika Boczonadi
- Biosciences Institute, International Centre for Life, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| | - Denisa Hathazi
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Ed Adrian Building, Robinson Way, Cambridge, CB2 0PY, United Kingdom
| | - Juliane S Mueller
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Ed Adrian Building, Robinson Way, Cambridge, CB2 0PY, United Kingdom
- Dubowitz Neuromuscular Centre, Department of Neuropathology, Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
| | - Rita Horvath
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Ed Adrian Building, Robinson Way, Cambridge, CB2 0PY, United Kingdom
| |
Collapse
|
3
|
Waigi EW, Webb RC, Moss MA, Uline MJ, McCarthy CG, Wenceslau CF. Soluble and insoluble protein aggregates, endoplasmic reticulum stress, and vascular dysfunction in Alzheimer's disease and cardiovascular diseases. GeroScience 2023; 45:1411-1438. [PMID: 36823398 PMCID: PMC10400528 DOI: 10.1007/s11357-023-00748-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/28/2023] [Indexed: 02/25/2023] Open
Abstract
Dementia refers to a particular group of symptoms characterized by difficulties with memory, language, problem-solving, and other thinking skills that affect a person's ability to perform everyday activities. Alzheimer's disease (AD) is the most common form of dementia, affecting about 6.2 million Americans aged 65 years and older. Likewise, cardiovascular diseases (CVDs) are a major cause of disability and premature death, impacting 126.9 million adults in the USA, a number that increases with age. Consequently, CVDs and cardiovascular risk factors are associated with an increased risk of AD and cognitive impairment. They share important age-related cardiometabolic and lifestyle risk factors, that make them among the leading causes of death. Additionally, there are several premises and hypotheses about the mechanisms underlying the association between AD and CVD. Although AD and CVD may be considered deleterious to health, the study of their combination constitutes a clinical challenge, and investigations to understand the mechanistic pathways for the cause-effect and/or shared pathology between these two disease constellations remains an active area of research. AD pathology is propagated by the amyloid β (Aβ) peptides. These peptides give rise to small, toxic, and soluble Aβ oligomers (SPOs) that are nonfibrillar, and it is their levels that show a robust correlation with the extent of cognitive impairment. This review will elucidate the interplay between the effects of accumulating SPOs in AD and CVDs, the resulting ER stress response, and their role in vascular dysfunction. We will also address the potential underlying mechanisms, including the possibility that SPOs are among the causes of vascular injury in CVD associated with cognitive decline. By revealing common mechanistic underpinnings of AD and CVD, we hope that novel experimental therapeutics can be designed to reduce the burden of these devastating diseases. Graphical abstract Alzheimer's disease (AD) pathology leads to the release of Aβ peptides, and their accumulation in the peripheral organs has varying effects on various components of the cardiovascular system including endoplasmic reticulum (ER) stress and vascular damage. Image created with BioRender.com.
Collapse
Affiliation(s)
- Emily W Waigi
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - R Clinton Webb
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
| | - Melissa A Moss
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Mark J Uline
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Cameron G McCarthy
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
| | - Camilla Ferreira Wenceslau
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA.
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA.
| |
Collapse
|
4
|
Tarawneh R. Microvascular Contributions to Alzheimer Disease Pathogenesis: Is Alzheimer Disease Primarily an Endotheliopathy? Biomolecules 2023; 13:830. [PMID: 37238700 PMCID: PMC10216678 DOI: 10.3390/biom13050830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer disease (AD) models are based on the notion that abnormal protein aggregation is the primary event in AD, which begins a decade or longer prior to symptom onset, and culminates in neurodegeneration; however, emerging evidence from animal and clinical studies suggests that reduced blood flow due to capillary loss and endothelial dysfunction are early and primary events in AD pathogenesis, which may precede amyloid and tau aggregation, and contribute to neuronal and synaptic injury via direct and indirect mechanisms. Recent data from clinical studies suggests that endothelial dysfunction is closely associated with cognitive outcomes in AD and that therapeutic strategies which promote endothelial repair in early AD may offer a potential opportunity to prevent or slow disease progression. This review examines evidence from clinical, imaging, neuropathological, and animal studies supporting vascular contributions to the onset and progression of AD pathology. Together, these observations support the notion that the onset of AD may be primarily influenced by vascular, rather than neurodegenerative, mechanisms and emphasize the importance of further investigations into the vascular hypothesis of AD.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Center for Memory and Aging, University of New Mexico, Albuquerque, NM 87106, USA
| |
Collapse
|
5
|
Hayakawa-Ogura M, Tana, Nakagawa T, Itoh M. GADD34 suppresses eIF2α phosphorylation and improves cognitive function in Alzheimer's disease-model mice. Biochem Biophys Res Commun 2023; 654:112-119. [PMID: 36907138 DOI: 10.1016/j.bbrc.2023.02.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
Alzheimer's disease (AD) causes neurodegeneration, leading to cognitive impairment and memory loss. Our previous studies have demonstrated that the induction of growth arrest and DNA damage-inducible gene 34 (GADD34) by quercetin can affect eukaryotic translation initiation factor 2α (eIF2α) phosphorylation-activated transcription factor 4 (ATF4) signaling. However, the relationship between GADD34 expression and cognitive function has not been clarified. In this study, we determined the direct effect of GADD34 on memory. To achieve this, truncated GADD34 (GADD34.5) was injected into the mouse brain to suppress eIF2α phosphorylation and evaluate memory. The injection of GADD34.5 into the hippocampus in AD-model mice did not improve novel object recognition but improved novel object location. The injection of GADD34.5 into the amygdala also resulted in the maintenance of contextual fear memory based on the fear condition test. These results suggest that GADD34 is effective in improving memory for spatial cognition and contextual fear conditioning in AD by inhibiting eIF2α phosphorylation. In summary, GADD34 suppresses eIF2α phosphorylation in the brain and prevents memory loss. As quercetin feeding increases GADD34 expression, it might be used in preventative applications for AD.
Collapse
Affiliation(s)
- Miki Hayakawa-Ogura
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Tana
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Toshiyuki Nakagawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Masanori Itoh
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.
| |
Collapse
|
6
|
Wang C, Liu H, Xu S, Deng Y, Xu B, Yang T, Liu W. Ferroptosis and Neurodegenerative Diseases: Insights into the Regulatory Roles of SLC7A11. Cell Mol Neurobiol 2023:10.1007/s10571-023-01343-7. [PMID: 36988772 DOI: 10.1007/s10571-023-01343-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Programed cell death plays a key role in promoting human development and maintaining homeostasis. Ferroptosis is a recently identified pattern of programmed cell death that is closely associated with the onset and progression of neurodegenerative diseases. Ferroptosis is mainly caused by the intracellular accumulation of iron-dependent lipid peroxides. The cysteine/glutamate antibody Solute carrier family 7 member 11 (SLC7A11, also known as xCT) functions to import cysteine for glutathione biosynthesis and antioxidant defense. SLC7A11 has a significant impact on ferroptosis, and inhibition of SLC7A11 expression promotes ferroptosis. Moreover, SLC7A11 is also closely associated with neurodegenerative diseases. In this paper, we summarize the relationship between ferroptosis and neurodegenerative diseases and the role of SLC7A11 during this process. The various regulatory mechanisms of SLC7A11 are also discussed. In conclusion, we are looking forward to a theoretical basis for further understanding the occurrence and development of ferroptosis in SLC7A11 and neurodegenerative diseases, and to seek new clues for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chen Wang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Haihui Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Si Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
7
|
Yang T, Zhang Y, Chen L, Thomas ER, Yu W, Cheng B, Li X. The potential roles of ATF family in the treatment of Alzheimer's disease. Biomed Pharmacother 2023; 161:114544. [PMID: 36934558 DOI: 10.1016/j.biopha.2023.114544] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/20/2023] Open
Abstract
Activating transcription factors, ATFs, is a family of transcription factors that activate gene expression and transcription by recognizing and combining the cAMP response element binding proteins (CREB). It is present in various viruses as a cellular gene promoter. ATFs is involved in regulating the mammalian gene expression that is associated with various cell physiological processes. Therefore, ATFs play an important role in maintaining the intracellular homeostasis. ATF2 and ATF3 is mostly involved in mediating stress responses. ATF4 regulates the oxidative metabolism, which is associated with the survival of cells. ATF5 is presumed to regulate apoptosis, and ATF6 is involved in the regulation of endoplasmic reticulum stress (ERS). ATFs is actively studied in oncology. At present, there has been an increasing amount of research on ATFs for the treatment of neurological diseases. Here, we have focused on the different types of ATFs and their association with Alzheimer's disease (AD). The level of expression of different ATFs have a significant difference in AD patients when compared to healthy control. Recent studies have suggested that ATFs are implicated in the pathogenesis of AD, such as neuronal repair, maintenance of synaptic activity, maintenance of cell survival, inhibition of apoptosis, and regulation of stress responses. In this review, the potential role of ATFs for the treatment of AD has been highlighted. In addition, we have systematically reviewed the progress of research on ATFs in AD. This review will provide a basic and innovative understanding on the pathogenesis and treatment of AD.
Collapse
Affiliation(s)
- Ting Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Yuhong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Lixuan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | | | - Wenjing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Bo Cheng
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000, China.
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
8
|
Inhibition of the ISR abrogates mGluR5-dependent long-term depression and spatial memory deficits in a rat model of Alzheimer's disease. Transl Psychiatry 2022; 12:96. [PMID: 35260557 PMCID: PMC8904583 DOI: 10.1038/s41398-022-01862-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Soluble amyloid-β-protein (Aβ) oligomers, a major hallmark of AD, trigger the integrated stress response (ISR) via multiple pathologies including neuronal hyperactivation, microvascular hypoxia, and neuroinflammation. Increasing eIF2α phosphorylation, the core event of ISR, facilitates metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD), and suppressing its phosphorylation has the opposite effect. Having found the facilitation of mGluR5-LTD by Aβ in live rats, we wondered if suppressing eIF2α phosphorylation cascade would protect against the synaptic plasticity and cognitive disrupting effects of Aβ. We demonstrate here that the facilitation of mGluR5-LTD in a delayed rat model by single i.c.v. injection of synthetic Aβ1-42. Systemic administration of the small-molecule inhibitor of the ISR called ISRIB (trans-isomer) prevents Aβ-facilitated LTD and abrogates spatial learning and memory deficits in the hippocampus in exogenous synthetic Aβ-injected rats. Moreover, ex vivo evidence indicates that ISRIB normalizes protein synthesis in the hippocampus. Targeting the ISR by suppressing the eIF2α phosphorylation cascade with the eIF2B activator ISRIB may provide protective effects against the synaptic and cognitive disruptive effects of Aβ which likely mediate the early stage of sporadic AD.
Collapse
|
9
|
Nakagawa K, Islam S, Ueda M, Nakagawa T. Endoplasmic reticulum stress contributes to the decline in doublecortin expression in the immature neurons of mice with long-term obesity. Sci Rep 2022; 12:1022. [PMID: 35046482 PMCID: PMC8770636 DOI: 10.1038/s41598-022-05012-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/03/2022] [Indexed: 12/25/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) plays an important role in hippocampus-dependent function. The number of doublecortin (Dcx)-positive immature neurons in the dentate gyrus decreases over time, especially in the early stages of Alzheimer’s disease (AD), and is further reduced in later stages of AD. Obesity in midlife is associated with dementia later in life; however, the underlying mechanisms by which obesity results in the development of dementia later in life remain unknown. Here, we show that endoplasmic reticulum (ER) stress was activated in the hippocampus and processes of Dcx-expressing immature neurons were shortened, coexpressing CHOP in APP23 AD model mice with high-fat diet-induced long-term obesity and in aged Leprdb/db (db/db) mice. Moreover, in cells differentiating from hippocampal neurospheres, Dcx mRNA was rapidly degraded via a microRNA (miRNA) pathway after thapsigargin treatment in vitro. These results indicate that loss of Dcx mRNA induced by ER stress during AHN may cause memory impairment in obese individuals later in life.
Collapse
Affiliation(s)
- Kiyomi Nakagawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Saiful Islam
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram Laboratories, Chattogram, 4220, Bangladesh
| | - Masashi Ueda
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Toshiyuki Nakagawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.
| |
Collapse
|
10
|
Tana, Nakagawa T. Luteolin ameliorates depression-like behaviors by suppressing ER stress in a mouse model of Alzheimer's disease. Biochem Biophys Res Commun 2022; 588:168-174. [PMID: 34959189 DOI: 10.1016/j.bbrc.2021.12.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly population. Inflammation plays an important role in AD, as microglia respond to several pathological insults, such as Aβ, and exert protective homeostatic functions (anti-inflammatory) and detrimental inflammatory functions (proinflammatory). During the development of AD, chronic inflammation that accompanies aging causes microglial priming, a state of hyperactivation in response to stimulation, indicating that suppressing microglial priming may be a therapeutic intervention for AD. Endoplasmic reticulum (ER) stress is crucial for inflammation through NF-kB and inflammasome activation. To identify natural flavonoids that regulate ER stress, a DNA microarray was performed using the brains of AD model mice after long-term intake of quercetin, after which the connectivity map (CMap) assay was carried out. We found that luteolin suppresses lipopolysaccharide (LPS)-induced interleukin 1β (IL1β) expression by inhibiting ER stress. Immunohistochemical analyses showed that CD68 levels were reduced in the brain after intraperitoneal injection of luteolin in a mouse model of AD, suppressing IL1β production. As shown by behavioral analyses using the tail suspension test (TST) and forced swimming test (FST), depression-like behaviors were ameliorated in luteolin-treated AD model mice. These findings indicate that luteolin prevents ER stress to suppress microglial activation in the brain, improving individual activity.
Collapse
Affiliation(s)
- Tana
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Toshiyuki Nakagawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.
| |
Collapse
|
11
|
Elfiky AM, Mahmoud AA, Elreedy HA, Ibrahim KS, Ghazy MA. Quercetin stimulates the non-amyloidogenic pathway via activation of ADAM10 and ADAM17 gene expression in aluminum chloride-induced Alzheimer's disease rat model. Life Sci 2021; 285:119964. [PMID: 34537230 DOI: 10.1016/j.lfs.2021.119964] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
AIMS Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder characterized by declined cognitive functions in the elderly. Quercetin (Q) is a potent flavonol that has neuroprotective effects on AD derangements. The present study aimed to evaluate the α-secretase stimulatory function of Q through activation of ADAM10 and ADAM17 gene expression in the aluminum chloride (AlCl3)-induced AD rat model. MAIN METHODS After induction of AD in rats by oral administration of AlCl3 (50 mg/kg) for 28 days, the Q doses (25 and 50 mg/kg) were orally administered for 28 days. Rats performed the behavioral assessments during the last week of the treatment period. Hippocampi were harvested for assessments of the neurochemical and histopathological examinations and gene expression analysis. KEY FINDINGS Administration of Q to AlCl3-induced AD rat model attenuated behavioral deficits, improved cholinergic and dopaminergic dysfunctions, and diminished insoluble amyloid β (Aβ) plaques aggregation in the hippocampus. These ameliorative effects of Q were associated with down-regulation of APP, BACE1, APH1, and PSEN1 and up-regulation of ADAM10 and ADAM17 gene expression levels in the hippocampus. SIGNIFICANCE The present study suggests that Q might attenuate neurotransmission impairment, Aβ aggregation in the hippocampus, and behavioral deficits in the AlCl3-induce AD rat model via up-regulating ADAM 10 and ADAM 17 (α-secretase) gene expression, leading to the inhibition of the amyloidogenic pathway. In support of the present finding, we suggest that ADAM10 and ADAM17 activation might be potential drug targets for AD to counteract the Aβ aggregation and cognitive deterioration.
Collapse
Affiliation(s)
- Asmaa M Elfiky
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Center, Cairo, Egypt
| | - Asmaa A Mahmoud
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Hala A Elreedy
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Center, Cairo, Egypt
| | - Khadiga S Ibrahim
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Center, Cairo, Egypt
| | - Mohamed A Ghazy
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt; Biotechnology Program, Basic and applied Science Institute, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt
| |
Collapse
|
12
|
Moradi Majd R, Mayeli M, Rahmani F. Pathogenesis and promising therapeutics of Alzheimer disease through eIF2α pathway and correspondent kinases. Metab Brain Dis 2020; 35:1241-1250. [PMID: 32681467 DOI: 10.1007/s11011-020-00600-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/05/2020] [Indexed: 01/10/2023]
Abstract
Eukaryotic initiation factor 2 (eIF2α) pathway is overactivated in Alzheimer disease and is probably associated with synaptic and memory deficiencies. EIF2α protein is principally in charge of the regulation of protein synthesis in eukaryotic cells. Four kinases responsible for eIF2α phosphorylation at ser-51 are: General control non-derepressible-2 kinase (GCN2), double-stranded RNA-activated protein kinase (PKR), PKR-like endoplasmic reticulum kinase (PERK), and heme-regulated inhibitor kinase (HRI) are the four kinases. They lead to reduced levels of general translation and paradoxical increase of stress-responsive mRNAs expression including the B-secretase (BACE1) and the transcriptional modulator activating transcription factor 4 (ATF4), which in turn accelerates the beta-amyloidogenesis, tau phosphorylation, proapoptotic pathway induction and autophagy elements formation leading to the main pathological hallmarks of AD. Findings suggest that genetic or pharmacological inhibition of correspondent kinases can restore memory and prevent neurodegeneration. This implies that inhibition of eIF2α phosphorylation through respondent kinases is indeed a feasible prospect of clinical application. This review discusses recent therapeutic approaches targeting eIF2α pathway and provides an overview of the links between correspondent kinases overactivation with neurodegeneration in AD.
Collapse
Affiliation(s)
- Reza Moradi Majd
- Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mahsa Mayeli
- Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Farzaneh Rahmani
- Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
13
|
Bond S, Lopez-Lloreda C, Gannon PJ, Akay-Espinoza C, Jordan-Sciutto KL. The Integrated Stress Response and Phosphorylated Eukaryotic Initiation Factor 2α in Neurodegeneration. J Neuropathol Exp Neurol 2020; 79:123-143. [PMID: 31913484 DOI: 10.1093/jnen/nlz129] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
The proposed molecular mechanisms underlying neurodegenerative pathogenesis are varied, precluding the development of effective therapies for these increasingly prevalent disorders. One of the most consistent observations across neurodegenerative diseases is the phosphorylation of eukaryotic initiation factor 2α (eIF2α). eIF2α is a translation initiation factor, involved in cap-dependent protein translation, which when phosphorylated causes global translation attenuation. eIF2α phosphorylation is mediated by 4 kinases, which, together with their downstream signaling cascades, constitute the integrated stress response (ISR). While the ISR is activated by stresses commonly observed in neurodegeneration, such as oxidative stress, endoplasmic reticulum stress, and inflammation, it is a canonically adaptive signaling cascade. However, chronic activation of the ISR can contribute to neurodegenerative phenotypes such as neuronal death, memory impairments, and protein aggregation via apoptotic induction and other maladaptive outcomes downstream of phospho-eIF2α-mediated translation inhibition, including neuroinflammation and altered amyloidogenic processing, plausibly in a feed-forward manner. This review examines evidence that dysregulated eIF2a phosphorylation acts as a driver of neurodegeneration, including a survey of observations of ISR signaling in human disease, inspection of the overlap between ISR signaling and neurodegenerative phenomenon, and assessment of recent encouraging findings ameliorating neurodegeneration using developing pharmacological agents which target the ISR. In doing so, gaps in the field, including crosstalk of the ISR kinases and consideration of ISR signaling in nonneuronal central nervous system cell types, are highlighted.
Collapse
Affiliation(s)
- Sarah Bond
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Claudia Lopez-Lloreda
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patrick J Gannon
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cagla Akay-Espinoza
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly L Jordan-Sciutto
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Quercetin Regulates the Integrated Stress Response to Improve Memory. Int J Mol Sci 2019; 20:ijms20112761. [PMID: 31195662 PMCID: PMC6600673 DOI: 10.3390/ijms20112761] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
The initiation of protein synthesis is suppressed under several stress conditions, inducing phosphorylation of the α-subunit of the eukaryotic initiation factor 2 (eIF2α), thereby inactivating the GTP-GDP recycling protein eIF2B. By contrast, the mammalian activating transcription factor 4 (ATF4, also known as cAMP response element binding protein 2 (CREB2)) is still translated under stress conditions. Four protein kinases (general control nonderepressible-2 (GCN2) kinase, double-stranded RNA-activated protein kinase (PKR), PKR-endoplasmic reticulum (ER)-related kinase (PERK), and heme-regulated inhibitor kinase (HRI)) phosphorylate eIF2α in the presence of stressors such as amino acid starvation, viral infection, ER stress, and heme deficiency. This signaling reaction is known as the integrated stress response (ISR). Here, we review ISR signaling in the brain in a mouse model of Alzheimer’s disease (AD). We propose that targeting ISR signaling with quercetin has therapeutic potential, because it suppresses amyloid-β (Aβ) production in vitro and prevents cognitive impairments in a mouse model of AD.
Collapse
|
15
|
Treadmill exercise decreases β-amyloid burden in APP/PS1 transgenic mice involving regulation of the unfolded protein response. Neurosci Lett 2019; 703:125-131. [DOI: 10.1016/j.neulet.2019.03.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 11/22/2022]
|
16
|
Martin-Jiménez CA, García-Vega Á, Cabezas R, Aliev G, Echeverria V, González J, Barreto GE. Astrocytes and endoplasmic reticulum stress: A bridge between obesity and neurodegenerative diseases. Prog Neurobiol 2017; 158:45-68. [DOI: 10.1016/j.pneurobio.2017.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022]
|
17
|
Leung HW, Foo G, Banumurthy G, Chai X, Ghosh S, Mitra-Ganguli T, VanDongen AMJ. The effect of Bacopa monnieri on gene expression levels in SH-SY5Y human neuroblastoma cells. PLoS One 2017; 12:e0182984. [PMID: 28832626 PMCID: PMC5568221 DOI: 10.1371/journal.pone.0182984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022] Open
Abstract
Bacopa monnieri is a plant used as a nootropic in Ayurveda, a 5000-year-old system of traditional Indian medicine. Although both animal and clinical studies supported its role as a memory enhancer, the molecular and cellular mechanism underlying Bacopa's nootropic action are not understood. In this study, we used deep sequencing (RNA-Seq) to identify the transcriptome changes upon Bacopa treatment on SH-SY5Y human neuroblastoma cells. We identified several genes whose expression levels were regulated by Bacopa. Biostatistical analysis of the RNA-Seq data identified biological pathways and molecular functions that were regulated by Bacopa, including regulation of mRNA translation and transmembrane transport, responses to oxidative stress and protein misfolding. Pathway analysis using the Ingenuity platform suggested that Bacopa may protect against brain damage and improve brain development. These newly identified molecular and cellular determinants may contribute to the nootropic action of Bacopa and open up a new direction of investigation into its mechanism of action.
Collapse
Affiliation(s)
- How-Wing Leung
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Gabriel Foo
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | | | - Xiaoran Chai
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Sujoy Ghosh
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | | | - Antonius M J VanDongen
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
18
|
Abstract
Numerous environmental, physiological, and pathological insults disrupt protein-folding homeostasis in the endoplasmic reticulum (ER), referred to as ER stress. Eukaryotic cells evolved a set of intracellular signaling pathways, collectively termed the unfolded protein response (UPR), to maintain a productive ER protein-folding environment through reprogramming gene transcription and mRNA translation. The UPR is largely dependent on transcription factors (TFs) that modulate expression of genes involved in many physiological and pathological conditions, including development, metabolism, inflammation, neurodegenerative diseases, and cancer. Here we summarize the current knowledge about these mechanisms, their impact on physiological/pathological processes, and potential therapeutic applications.
Collapse
Affiliation(s)
- Jaeseok Han
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si, Choongchungnam-do 31151, Republic of Korea
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92307 USA
| |
Collapse
|
19
|
Remondelli P, Renna M. The Endoplasmic Reticulum Unfolded Protein Response in Neurodegenerative Disorders and Its Potential Therapeutic Significance. Front Mol Neurosci 2017; 10:187. [PMID: 28670265 PMCID: PMC5472670 DOI: 10.3389/fnmol.2017.00187] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022] Open
Abstract
In eukaryotic cells, the endoplasmic reticulum (ER) is the cell compartment involved in secretory protein translocation and quality control of secretory protein folding. Different conditions can alter ER function, resulting in the accumulation of unfolded or misfolded proteins within the ER lumen. Such a condition, known as ER stress, elicits an integrated adaptive response known as the unfolded protein response (UPR) that aims to restore proteostasis within the secretory pathway. Conversely, in prolonged cell stress or insufficient adaptive response, UPR signaling causes cell death. ER dysfunctions are involved and contribute to neuronal degeneration in several human diseases, including Alzheimer, Parkinson and Huntington disease and amyotrophic lateral sclerosis. The correlations between ER stress and its signal transduction pathway known as the UPR with neuropathological changes are well established. In addition, much evidence suggests that genetic or pharmacological modulation of UPR could represent an effective strategy for minimizing the progressive neuronal loss in neurodegenerative diseases. Here, we review recent results describing the main cellular mechanisms linking ER stress and UPR to neurodegeneration. Furthermore, we provide an up-to-date panoramic view of the currently pursued strategies for ameliorating the toxic effects of protein unfolding in disease by targeting the ER UPR pathway.
Collapse
Affiliation(s)
- Paolo Remondelli
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università degli Studi di SalernoSalerno, Italy
| | - Maurizio Renna
- Cambridge Institute for Medical Research, Department of Medical Genetics, Wellcome Trust, Addenbrooke's Hospital, University of CambridgeCambridge, United Kingdom
| |
Collapse
|
20
|
Salminen A, Kauppinen A, Kaarniranta K. Hypoxia/ischemia activate processing of Amyloid Precursor Protein: impact of vascular dysfunction in the pathogenesis of Alzheimer's disease. J Neurochem 2017; 140:536-549. [DOI: 10.1111/jnc.13932] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/05/2016] [Accepted: 12/10/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Antero Salminen
- Department of Neurology; Institute of Clinical Medicine; University of Eastern Finland; Kuopio Finland
| | - Anu Kauppinen
- School of Pharmacy; Faculty of Health Sciences; University of Eastern Finland; Kuopio Finland
| | - Kai Kaarniranta
- Department of Ophthalmology; Institute of Clinical Medicine; University of Eastern Finland; Kuopio Finland
- Department of Ophthalmology; Kuopio University Hospital; Kuopio Finland
| |
Collapse
|
21
|
Cabral-Miranda F, Hetz C. ER Stress and Neurodegenerative Disease: A Cause or Effect Relationship? Curr Top Microbiol Immunol 2017; 414:131-157. [PMID: 28864830 DOI: 10.1007/82_2017_52] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The accumulation of protein aggregates has a fundamental role in the patophysiology of distinct neurodegenerative diseases. This phenomenon may have a common origin, where disruption of intracellular mechanisms related to protein homeostasis (here termed proteostasis) control during aging may result in abnormal protein aggregation. The unfolded protein response (UPR) embodies a major element of the proteostasis network triggered by endoplasmic reticulum (ER) stress. Chronic ER stress may operate as possible mechanism of neurodegenerative and synaptic dysfunction, and in addition contribute to the abnormal aggregation of key disease-related proteins. In this article we overview the most recent findings suggesting a causal role of ER stress in neurodegenerative diseases.
Collapse
Affiliation(s)
- Felipe Cabral-Miranda
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Independencia 1027, P.O.BOX 70086, Santiago, Chile.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile. .,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile. .,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Independencia 1027, P.O.BOX 70086, Santiago, Chile. .,Buck Institute for Research on Aging, Novato, CA, 94945, USA. .,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Improvement of memory recall by quercetin in rodent contextual fear conditioning and human early-stage Alzheimer’s disease patients. Neuroreport 2016; 27:671-6. [DOI: 10.1097/wnr.0000000000000594] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Halliday M, Mallucci GR. Review: Modulating the unfolded protein response to prevent neurodegeneration and enhance memory. Neuropathol Appl Neurobiol 2016; 41:414-27. [PMID: 25556298 PMCID: PMC5053297 DOI: 10.1111/nan.12211] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/23/2014] [Indexed: 12/13/2022]
Abstract
Recent evidence has placed the unfolded protein response (UPR) at the centre of pathological processes leading to neurodegenerative disease. The translational repression caused by UPR activation starves neurons of the essential proteins they need to function and survive. Restoration of protein synthesis, via genetic or pharmacological means, is neuroprotective in animal models, prolonging survival. This is of great interest due to the observation of UPR activation in the post mortem brains of patients with Alzheimer's, Parkinson's, tauopathies and prion diseases. Protein synthesis is also an essential step in the formation of new memories. Restoring translation in disease or increasing protein synthesis from basal levels has been shown to improve memory in numerous models. As neurodegenerative diseases often present with memory impairments, targeting the UPR to both provide neuroprotection and enhance memory provides an extremely exciting novel therapeutic target.
Collapse
Affiliation(s)
- Mark Halliday
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicester, UK
| | - Giovanna R Mallucci
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicester, UK.,Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| |
Collapse
|
24
|
Hayakawa M, Itoh M, Ohta K, Li S, Ueda M, Wang MX, Nishida E, Islam S, Suzuki C, Ohzawa K, Kobori M, Inuzuka T, Nakagawa T. Quercetin reduces eIF2α phosphorylation by GADD34 induction. Neurobiol Aging 2015; 36:2509-18. [DOI: 10.1016/j.neurobiolaging.2015.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 04/28/2015] [Accepted: 05/10/2015] [Indexed: 01/11/2023]
|
25
|
De Felice FG, Lourenco MV. Brain metabolic stress and neuroinflammation at the basis of cognitive impairment in Alzheimer's disease. Front Aging Neurosci 2015; 7:94. [PMID: 26042036 PMCID: PMC4436878 DOI: 10.3389/fnagi.2015.00094] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/04/2015] [Indexed: 12/13/2022] Open
Abstract
Brain metabolic dysfunction is known to influence brain activity in several neurological disorders, including Alzheimer’s disease (AD). In fact, deregulation of neuronal metabolism has been postulated to play a key role leading to the clinical outcomes observed in AD. Besides deficits in glucose utilization in AD patients, recent evidence has implicated neuroinflammation and endoplasmic reticulum (ER) stress as components of a novel form of brain metabolic stress that develop in AD and other neurological disorders. Here we review findings supporting this novel paradigm and further discuss how these mechanisms seem to participate in synapse and cognitive impairments that are germane to AD. These deleterious processes resemble pathways that act in peripheral tissues leading to insulin resistance and glucose intolerance, in an intriguing molecular connection linking AD to diabetes. The discovery of detailed mechanisms leading to neuronal metabolic stress may be a key step that will allow the understanding how cognitive impairment develops in AD, thereby offering new avenues for effective disease prevention and therapeutic targeting.
Collapse
Affiliation(s)
- Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| |
Collapse
|
26
|
Chaveroux C, Carraro V, Canaple L, Averous J, Maurin AC, Jousse C, Muranishi Y, Parry L, Mesclon F, Gatti E, Mallet J, Ravassard P, Pierre P, Fafournoux P, Bruhat A. In vivo imaging of the spatiotemporal activity of the eIF2 -ATF4 signaling pathway: Insights into stress and related disorders. Sci Signal 2015; 8:rs5. [DOI: 10.1126/scisignal.aaa0549] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Wei N, Zhu LQ, Liu D. ATF4: a Novel Potential Therapeutic Target for Alzheimer's Disease. Mol Neurobiol 2014; 52:1765-1770. [PMID: 25381575 DOI: 10.1007/s12035-014-8970-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/28/2014] [Indexed: 12/27/2022]
Abstract
Activating transcription factor 4 (ATF4) belongs to the activating transcription factor family and its expression is increased upon the stimulation of a diverse array of microenvironmental stresses. ATF4 plays a major role in the development, metabolism, and memory formation. Alzheimer's disease (AD) is a prevalent neurodegenerative disease in aged population. The dominant pathological changes in AD brain, including the neurofibrillary tangles, consist of hyperphosphorylated tau protein, senile plaques composed of β-amyloid proteins, loss of neurons in the whole brain, and dysfunction of synapses. The protein level of ATF4 is upregulated in both AD brain and AD mouse model, indicating its latent roles in the pathogenesis of this disease. In this paper, we reviewed the related literatures about the interaction of ATF4 with the different types of pathological changes in AD brain and pointed out some unsolved problems in this area. We also proposed that a fine regulation of ATF4 in separate neurons or brain regions might be benefit to the therapy of AD.
Collapse
Affiliation(s)
- Na Wei
- Institute of Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ling-Qiang Zhu
- Institute of Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Dan Liu
- Institute of Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
28
|
Omi T, Tanimukai H, Kanayama D, Sakagami Y, Tagami S, Okochi M, Morihara T, Sato M, Yanagida K, Kitasyoji A, Hara H, Imaizumi K, Maurice T, Chevallier N, Marchal S, Takeda M, Kudo T. Fluvoxamine alleviates ER stress via induction of Sigma-1 receptor. Cell Death Dis 2014; 5:e1332. [PMID: 25032855 PMCID: PMC4123092 DOI: 10.1038/cddis.2014.301] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/16/2014] [Accepted: 06/06/2014] [Indexed: 01/02/2023]
Abstract
We recently demonstrated that endoplasmic reticulum (ER) stress induces sigma-1 receptor (Sig-1R) expression through the PERK pathway, which is one of the cell's responses to ER stress. In addition, it has been demonstrated that induction of Sig-1R can repress cell death signaling. Fluvoxamine (Flv) is a selective serotonin reuptake inhibitor (SSRI) with a high affinity for Sig-1R. In the present study, we show that treatment of neuroblastoma cells with Flv induces Sig-1R expression by increasing ATF4 translation directly, through its own activation, without involvement of the PERK pathway. The Flv-mediated induction of Sig-1R prevents neuronal cell death resulting from ER stress. Moreover, Flv-induced ER stress resistance reduces the infarct area in mice after focal cerebral ischemia. Thus, Flv, which is used frequently in clinical practice, can alleviate ER stress. This suggests that Flv could be a feasible therapy for cerebral diseases caused by ER stress.
Collapse
Affiliation(s)
- T Omi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Psychiatry, Osaka General Medical center, Sumiyoshi-ku, Osaka, Japan
| | - H Tanimukai
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - D Kanayama
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Y Sakagami
- Department of Psychiatry, Osaka General Medical center, Sumiyoshi-ku, Osaka, Japan
| | - S Tagami
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - M Okochi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - T Morihara
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - M Sato
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - K Yanagida
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - A Kitasyoji
- Gifu Pharmaceutical University, Department of Biofunctional Molecules, Gifu, Japan
| | - H Hara
- Gifu Pharmaceutical University, Department of Biofunctional Molecules, Gifu, Japan
| | - K Imaizumi
- Department of Biochemistry, Graduate School of Biomedical & Health Sciences Hiroshima University, Hiroshima, Japan
| | - T Maurice
- Team II Endogenous Neuroprotection in Neurodegenerative Diseases INSERM U. 710, EPHE, University of Montpellier cc 105, place Eugene Bataillon, Montpellier cedex 5, France
| | - N Chevallier
- Team II Endogenous Neuroprotection in Neurodegenerative Diseases INSERM U. 710, EPHE, University of Montpellier cc 105, place Eugene Bataillon, Montpellier cedex 5, France
| | - S Marchal
- Team II Endogenous Neuroprotection in Neurodegenerative Diseases INSERM U. 710, EPHE, University of Montpellier cc 105, place Eugene Bataillon, Montpellier cedex 5, France
| | - M Takeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - T Kudo
- Department of Psychiatry, Osaka University Health Care Center, Toyonaka, Osaka, Japan
| |
Collapse
|
29
|
Kontos CK, Scorilas A, Papavassiliou AG. The role of transcription factors in laboratory medicine. Clin Chem Lab Med 2014; 51:1563-71. [PMID: 23612552 DOI: 10.1515/cclm-2013-0077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/11/2013] [Indexed: 12/25/2022]
Abstract
Accumulating genetic and epigenetic modifications lead to alterations in gene expression, resulting in dysregulation of cellular homeostasis. The transcriptional machinery comprises many factors that cooperate to modulate gene expression. "Crosstalk" between DNA-bound transcription factors may have synergistic or antagonistic effects on the rate of transcription. The aberrant expression of several transcription regulators in the vast majority of pathological conditions including neurodegenerative diseases and various malignancies, as well as their involvement in many cancer-related processes such as cell growth regulation, angiogenesis, invasion, and metastasis, renders transcription factors very appealing as potential molecular biomarkers and as candidates for targeted therapy. In the present mini-review, we provide a brief overview of the transcriptional machinery and summarize current knowledge regarding the implication of key transcription factors such as AP-1, NF-κB, STATs, HOX proteins, and histone modifiers, in human diseases, with emphasis on cancer.
Collapse
Affiliation(s)
- Christos K Kontos
- Faculty of Biology, Department of Biochemistry and Molecular Biology, University of Athens, Athens, Greece
| | | | | |
Collapse
|
30
|
Hetz C, Mollereau B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 2014; 15:233-49. [PMID: 24619348 DOI: 10.1038/nrn3689] [Citation(s) in RCA: 513] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) is a homeostatic mechanism by which cells regulate levels of misfolded proteins in the endoplasmic reticulum (ER). Although it is well characterized in non-neuronal cells, a proliferation of papers over the past few years has revealed a key role for the UPR in normal neuronal function and as an important driver of neurodegenerative diseases. A complex scenario is emerging in which distinct UPR signalling modules have specific and even opposite effects on neurodegeneration depending on the disease context. Here, we provide an overview of the most recent findings addressing the biological relevance of ER stress in the nervous system.
Collapse
Affiliation(s)
- Claudio Hetz
- 1] Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. [2] Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, University of Chile, Santiago, Chile. [3] Neurounion Biomedical Foundation, Santiago, Chile. [4] Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Bertrand Mollereau
- Laboratory of Molecular Biology of the Cell, CNRS UMR5239, Ecole Normale Supérieure de Lyon, UMS3444 Biosciences Lyon Gerland, University of Lyon, Lyon 69364, France
| |
Collapse
|
31
|
Polyglutamine expansion disturbs the endoplasmic reticulum formation, leading to caspase-7 activation through Bax. Biochem Biophys Res Commun 2014; 443:1232-8. [PMID: 24388981 DOI: 10.1016/j.bbrc.2013.12.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 12/22/2013] [Indexed: 01/13/2023]
Abstract
The endoplasmic reticulum (ER) plays a pivotal role in cellular functions such as the ER stress response. However, the effect of the ER membrane on caspase activation remains unclear. This study reveals that polyglutamine oligomers augmented at ER induce insertion of Bax into the ER membrane, thereby activating caspase-7. In line with the role of ER in cell death induced by polyglutamine expansion, the ER membrane was found to be disrupted and dilated in the brain of a murine model of Huntington's disease. We can conclude that polyglutamine expansion may drive caspase-7 activation by disrupting the ER membrane.
Collapse
|
32
|
Cornejo VH, Hetz C. The unfolded protein response in Alzheimer’s disease. Semin Immunopathol 2013; 35:277-92. [DOI: 10.1007/s00281-013-0373-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/13/2013] [Indexed: 01/05/2023]
|
33
|
Kang IJ, Jang BG, In S, Choi B, Kim M, Kim MJ. Phlorotannin-rich Ecklonia cava reduces the production of beta-amyloid by modulating alpha- and gamma-secretase expression and activity. Neurotoxicology 2013; 34:16-24. [PMID: 23041113 DOI: 10.1016/j.neuro.2012.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/13/2012] [Accepted: 09/27/2012] [Indexed: 12/11/2022]
Abstract
Beta-amyloid (Aβ) is a major pathogenic peptide in Alzheimer's disease (AD) and is generated by the processing of amyloid precursor protein (APP). We have previously reported that the brown algae Ecklonia cava, which has anti-oxidant and anti-inflammatory functions, decreased Aβ production and further aggregation in HEK293 cells expressing the APP Swedish mutation. Here, we show the reduction mechanism of Aβ production using the butanol extract of Ecklonia cava through the examination of expression and activity of alpha-, beta-, and gamma-secretase. Treatment with the extract resulted in the activation of alpha-secretase with a contrasting decrease in its mRNA and protein expression. This activation was consistent with the translocation of the extract into the plasma membrane of the secretase. Gamma-secretase activity was lowered by E. cava, and this effect may be due to the decreased expression of PSEN1 mRNA and protein. In addition, the basal nuclear location of PSEN1, which may affect chromosome missegregation in neurodegenerative disease, was reduced by the extract, despite the significance of this finding remains unclear. Taken together, these results led us to conclude that E. cava regulated the expression and activity of gamma-secretase and alpha-secretase, leading to a reduction in Aβ production by the stable cells. Our data indicate that E. cava is a novel natural-product candidate for AD treatment, although further in vivo studies are needed.
Collapse
Affiliation(s)
- Il-Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon-Do 200-702, South Korea
| | | | | | | | | | | |
Collapse
|
34
|
Li S, Hayakawa-Yano Y, Itoh M, Ueda M, Ohta K, Suzuki Y, Mizuno A, Ohta E, Hida Y, Wang MX, Nakagawa T. Olfaxin as a novel Prune2 isoform predominantly expressed in olfactory system. Brain Res 2012; 1488:1-13. [DOI: 10.1016/j.brainres.2012.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 09/05/2012] [Accepted: 10/01/2012] [Indexed: 01/01/2023]
|
35
|
The brain's response to an essential amino acid-deficient diet and the circuitous route to a better meal. Mol Neurobiol 2012; 46:332-48. [PMID: 22674217 DOI: 10.1007/s12035-012-8283-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/24/2012] [Indexed: 12/16/2022]
Abstract
The essential (indispensable) amino acids (IAA) are neither synthesized nor stored in metazoans, yet they are the building blocks of protein. Survival depends on availability of these protein precursors, which must be obtained in the diet; it follows that food selection is critical for IAA homeostasis. If even one of the IAA is depleted, its tRNA becomes quickly deacylated and the levels of charged tRNA fall, leading to disruption of global protein synthesis. As they have priority in the diet, second only to energy, the missing IAA must be restored promptly or protein catabolism ensues. Animals detect and reject an IAA-deficient meal in 20 min, but how? Here, we review the molecular basis for sensing IAA depletion and repletion in the brain's IAA chemosensor, the anterior piriform cortex (APC). As animals stop eating an IAA-deficient meal, they display foraging and altered choice behaviors, to improve their chances of encountering a better food. Within 2 h, sensory cues are associated with IAA depletion or repletion, leading to learned aversions and preferences that support better food selection. We show neural projections from the APC to appetitive and consummatory motor control centers, and to hedonic, motivational brain areas that reinforce these adaptive behaviors.
Collapse
|
36
|
Chadwick W, Mitchell N, Martin B, Maudsley S. Therapeutic targeting of the endoplasmic reticulum in Alzheimer's disease. Curr Alzheimer Res 2012; 9:110-9. [PMID: 22329655 PMCID: PMC4682200 DOI: 10.2174/156720512799015055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 06/14/2011] [Accepted: 08/09/2011] [Indexed: 12/21/2022]
Abstract
The extensive prevalence of Alzheimer's disease (AD) places a tremendous burden physiologically, socially and economically upon those directly suffering and those caring for sufferers themselves. Considering the steady increases in numbers of patients diagnosed with Alzheimer's, the number of effective pharmacotherapeutic strategies to tackle the disease is still relatively few. As with many other neurodegenerative mechanisms, AD, is characterized by the continued presence and accumulation of cytotoxic protein aggregates, i.e. of beta-amyloid and the microtubule associated protein, tau. Therefore, one novel therapeutic avenue for the treatment of AD may be the actual targeting of factors that control protein synthesis, packaging and degradation. One of the prime cellular targets that, if effectively modulated, could accomplish this is the endoplasmic reticulum (ER). The ER can not only control cellular protein synthesis, trafficking and degradation but it is also closely associated with cytoprotective mechanisms, including calcium ion regulation and unfolded protein responses. This review will delineate some of the most important functional physiological features of the ER that, if effectively modulated, could result in beneficial amelioration or remediation of the negative cellular aspects of AD initiation and progression. While not a classical drug target, even with minimal levels of beneficial modulation, its multifactorial efficacy may amplify small effects resulting in significant therapeutic efficacy.
Collapse
Affiliation(s)
- Wayne Chadwick
- Receptor Pharmacology Unit, National Institute on Aging, Baltimore MD 21224, USA
| | - Nicholas Mitchell
- Department of Biology, St. Bonaventure University, St. Bonaventure, NY 14778, USA
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging, Baltimore MD 21224, USA
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging, Baltimore MD 21224, USA
| |
Collapse
|
37
|
Ohta K, Mizuno A, Li S, Itoh M, Ueda M, Ohta E, Hida Y, Wang MX, Furoi M, Tsuzuki Y, Sobajima M, Bohmoto Y, Fukushima T, Kobori M, Inuzuka T, Nakagawa T. Endoplasmic reticulum stress enhances γ-secretase activity. Biochem Biophys Res Commun 2011; 416:362-6. [DOI: 10.1016/j.bbrc.2011.11.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/20/2022]
|
38
|
Mitsuda T, Omi T, Tanimukai H, Sakagami Y, Tagami S, Okochi M, Kudo T, Takeda M. Sigma-1Rs are upregulated via PERK/eIF2α/ATF4 pathway and execute protective function in ER stress. Biochem Biophys Res Commun 2011; 415:519-25. [PMID: 22079628 DOI: 10.1016/j.bbrc.2011.10.113] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 10/25/2011] [Indexed: 01/28/2023]
Abstract
Sigma-1 receptors (Sig-1Rs) are the ER resident proteins. Sig-1Rs in the brain have been reported to be significantly reduced in patients with schizophrenia. The impediment of regulating Sig-1Rs expression levels increases the risk for schizophrenia. Thus elucidating the mechanism regulating Sig-1Rs expression might provide the strategy to prevent mental disorders. In this study, we have demonstrated that Sig-1Rs were transcriptionally upregulated by ATF4 in ER stress. Moreover, ATF4 directly bounds to the 5' flanking region of Sig-1R gene. The reporter activities using this region were enhanced in ER stress, or by ATF4 alone. The reporter activities with the pathogenic polymorphisms (GC-241-240TT, T-485A) were reduced. In addition, the processing of Caspase-4 was inhibited by Sig-1Rs. These results indicate that Sig-1Rs are transcriptionally upregulated via the PERK/eIF2α/ATF4 pathway and ameliolate cell death signaling. This study is the first report identifying the transcription factor regulating Sig-1Rs expression.
Collapse
Affiliation(s)
- Teruhiko Mitsuda
- Psychiatry, Department of Integrated Medicine, Division of Internal Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Oda A, Tamaoka A, Araki W. Oxidative stress up-regulates presenilin 1 in lipid rafts in neuronal cells. J Neurosci Res 2010; 88:1137-45. [PMID: 19885829 DOI: 10.1002/jnr.22271] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxidative stress is associated with beta-amyloid peptide (A beta) accumulation in the brains of Alzheimer's disease patients. A beta is generated upon the sequential proteolytic cleavage of transmembrane amyloid precursor protein (APP) by two membrane-bound proteases, beta-secretase (BACE1) and the gamma-secretase complex comprising presenilin 1 (PS1), nicastrin, APH-1 and PEN-2. Recent evidence suggests that significant amounts of BACE1 and gamma-secretase components localize in the cholesterol-rich region of membranes known as lipid rafts, where A beta production occurs preferentially. In this study, we investigated the effects of oxidative stress on the BACE1 and gamma-secretase components in lipid rafts using human neuroblastoma SH-SY5Y cells exposed to ethacrynic acid (EA), a compound that induces cellular glutathione depletion. Following exposure of cells to EA, heme oxygenase-1, a marker protein of oxidative stress, was strongly induced. Moreover, treatment with EA resulted in a significant increase in PS1 protein levels, but not those of nicastrin, APH-1, PEN-2 or BACE1, in both cell lysates and the lipid raft fraction. This increase in PS1 protein expression was prevented by co-treatment with an antioxidant, N-acetylcysteine (NAC). EA additionally induced a significant increase in PS1 mRNA expression, which was inhibited by NAC. Finally, EA treatment was found to promote A beta secretion from cells expressing Swedish mutant APP. It appears that in our cell culture model, oxidative stress enhances PS1 protein levels in lipid rafts via up-regulation of PS1 transcription, which may constitute the mechanism underlying the oxidative stress-associated promotion of A beta production.
Collapse
Affiliation(s)
- Akiko Oda
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | | | | |
Collapse
|
40
|
Activation of eukaryotic initiation factor-2 α-kinases in okadaic acid-treated neurons. Neuroscience 2010; 169:1831-9. [PMID: 20600673 DOI: 10.1016/j.neuroscience.2010.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 05/17/2010] [Accepted: 06/10/2010] [Indexed: 01/19/2023]
Abstract
Phosphorylation of eukaryotic initiation factor-2 alpha (eIF2 alpha) is increased in Alzheimer's disease (AD) and this protein can be phosphorylated by several kinases, including double-stranded RNA-dependent protein kinase (PKR), PKR-like endoplasmic reticulum kinase (PERK), amino acids-regulated eIF2 alpha kinase (GCN2) and heme-regulated eIF2 alpha kinase (HRI). PKR and PERK especially are activated in the AD brain, and GCN2 is reported to increase presenilin-1 (PS1) activity. Okadaic acid (OA), a protein phosphatase-2A (PP2A) inhibitor, is known to increase tau phosphorylation, beta-amyloid (A beta) deposition and neuronal death, which are the pathological characteristics of AD. Here, we show that the phosphorylation of eIF2 alpha is increased and its kinases, PKR, PERK and GCN2 are activated in rat neurons by OA. Activating transcription factor (ATF4) which induces apoptosis in response to eIF2 alpha phosphorylation was increased and translocated to nuclei in OA-treated neurons. These results suggest that the successive events of activation of eIF2 alpha kinases and eIF2 alpha phosphorylation leading to ATF4 nuclear translocation may contribute to neuronal death. However, PKR inhibitors did not reduce eIF2 alpha phosphorylation or neuronal toxicity despite inhibiting PKR activity. These results suggest that PKR might not be the most responsible kinase for eIF2 alpha phosphorylation or cell death in PP2A-inhibited conditions such as AD.
Collapse
|
41
|
An alternative spliced mouse presenilin-2 mRNA encodes a novel gamma-secretase inhibitor. FEBS Lett 2009; 583:1403-8. [PMID: 19376115 DOI: 10.1016/j.febslet.2009.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/02/2009] [Accepted: 04/03/2009] [Indexed: 12/23/2022]
Abstract
The gamma-secretase, composed of presenilin-1 (PS1) or presenilin-2 (PS2), nicastrin (NCT), anterior pharynx-defective phenotype 1 (APH-1), and PEN-2, is critical for the development of Alzheimer's disease (AD). PSs are autoproteolytically cleaved, producing an N-terminal fragment (NTF) and a hydrophilic loop domain-containing C-terminal fragment. However, the role of the loop domain in the gamma-secretase complex assembly remains unknown. Here, we report a novel PS2 isoform generated by alternative splicing, named PS2beta, which is composed of an NTF with a hydrophilic loop domain. PS2beta disturbed the interaction between NCT and APH-1, resulting in the inhibition of amyloid-beta production. We concluded that PS2beta may inhibit gamma-secretase activity by affecting the gamma-secretase complex assembly.
Collapse
|
42
|
Takahashi K, Niidome T, Akaike A, Kihara T, Sugimoto H. Amyloid precursor protein promotes endoplasmic reticulum stress-induced cell death via C/EBP homologous protein-mediated pathway. J Neurochem 2009; 109:1324-37. [PMID: 19476545 DOI: 10.1111/j.1471-4159.2009.06067.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) is known to activate the ER, which is termed ER stress. Here, we demonstrated that amyloid precursor protein (APP) is a novel mediator of ER stress-induced apoptosis through the C/EBP homologous protein (CHOP) pathway. Expression of APP mRNA was elevated by tunicamycin- or dithiothreitol-induced ER stress. The levels of C83 and APP intracellular domain (AICD) fragments, which are cleaved from APP, were significantly increased under ER stress, although the protein level of full-length APP was decreased. Cellular viability was reduced in APP-over-expressing cells, which was attenuated by treatment with a gamma-secretase inhibitor, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT). Cellular viability was also reduced in AICD-FLAG-over-expressing cells. The mRNA and protein levels of CHOP, an ER stress-responsive gene, were remarkably increased by APP over-expression, which was attenuated by treatment with DAPT. CHOP mRNA induction was also found in AICD-FLAG-over-expressing cells. Cell death and CHOP up-regulation by ER stress were attenuated by APP knockdown. Data obtained with a luciferase assay and chromatin immunoprecipitation assay indicated that AICD associates with the promoter region of the CHOP gene. In conclusion, ER stress-induced APP undergoes alpha- and gamma-secretase cleavage and subsequently induces CHOP-mediated cell death.
Collapse
Affiliation(s)
- Keita Takahashi
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|