1
|
Comparative Structural and Compositional Analyses of Cow, Buffalo, Goat and Sheep Cream. Foods 2021; 10:foods10112643. [PMID: 34828924 PMCID: PMC8618205 DOI: 10.3390/foods10112643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022] Open
Abstract
Factors affecting milk and milk fraction composition, such as cream, are poorly understood, with most research and human health application associated with cow cream. In this study, proteomic and lipidomic analyses were performed on cow, goat, sheep and Bubalus bubalis (from now on referred to as buffalo), bulk milk cream samples. Confocal laser scanning microscopy was used to determine the composition, including protein, lipid and their glycoconjugates, and the structure of the milk fat globules. BLAST2GO was used to annotate functional indicators of cream protein. Functional annotation of protein highlighted a broad level of similarity between species. However, investigation of specific biological process terms revealed distinct differences in antigen processing and presentation, activation, and production of molecular mediators of the immune response. Lipid analyses revealed that saturated fatty acids were lowest in sheep cream and similar in the cream of the other species. Palmitic acid was highest in cow and lowest in sheep cream. Cow and sheep milk fat globules were associated with thick patches of protein on the surface, while buffalo and goat milk fat globules were associated with larger areas of aggregated protein and significant surface adsorbed protein, respectively. This study highlights the differences between cow, goat, sheep, and buffalo milk cream, which can be used to support their potential application in functional foods such as infant milk formula.
Collapse
|
2
|
Ding N, Neumann NF, Price LM, Braithwaite SL, Balachandran A, Belosevic M, Gamal El-Din M. Ozone inactivation of infectious prions in rendering plant and municipal wastewaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 470-471:717-725. [PMID: 24184548 DOI: 10.1016/j.scitotenv.2013.09.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 09/21/2013] [Accepted: 09/29/2013] [Indexed: 06/02/2023]
Abstract
Disposal of tissues and organs associated with prion accumulation and infectivity in infected animals (designated as Specified Risk Materials [SRM]) is strictly regulated by the Canadian Food Inspection Agency (CFIA); however, the contamination of wastewater from slaughterhouses that handle SRM still poses public concern. In this study, we examined for the first time the partitioning of infectious prions in rendering plant wastewater and found that a large proportion of infectious prions were partitioned into the scum layer formed at the top after gravity separation, while quite a few infectious prions still remained in the wastewater. Subsequently, we assessed the ozone inactivation of infectious prions in the raw, natural gravity-separated and dissolved air flotation (DAF)-treated (i.e., primary-treated) rendering plant wastewater, and in a municipal final effluent (i.e., secondary-treated municipal wastewater). At applied ozone doses of 43.4-44.6 mg/L, ozone was instantaneously depleted in the raw rendering plant wastewater, while a greater than 4-log10 inactivation was achieved at a 5 min exposure in the DAF-treated rendering plant wastewater. Prion inactivation in the municipal final effluent was conducted with two levels of applied ozone doses of 13.4 and 22.5mg/L, and a greater than 4-log10 inactivation was achieved at a 5 min exposure with the higher ozone dose. Efficiency factor Hom (EFH) models were used to model (i.e., fit) the experimental data. The CT (disinfectant concentration multiplied by contact time) values were determined for 2- and 3-log10 inactivation in the municipal final effluent treated with an ozone dose of 13.4 mg/L. Our results indicate that ozone could serve as a final barrier for prion inactivation in primary- and/or secondary-treated wastewaters.
Collapse
Affiliation(s)
- Ning Ding
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Norman F Neumann
- Department of Public Health Sciences, University of Alberta, Edmonton, Alberta, Canada; Provincial Laboratory for Public Health, Edmonton, Alberta, Canada
| | - Luke M Price
- Department of Public Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Shannon L Braithwaite
- Department of Public Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Miodrag Belosevic
- Department of Public Health Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Silva CJ. Using small molecule reagents to selectively modify epitopes based on their conformation. Prion 2012; 6:163-73. [PMID: 22436143 PMCID: PMC3366355 DOI: 10.4161/pri.18795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
PrP(Sc) is an infectious protein. The only experimentally verified difference between PrP(Sc) and its normal cellular isoform (PrP(C)) is conformational. This work describes an approach to determining the presence of surface exposed or sequestered amino acids present in the PrP(Sc) isoform. The N-hydroxysuccinimide esters of acetic acid and 4-trimethylammoniumbutyric acid were synthesized and reacted with detergent-solubilized brain extracts from Me7-infected mice, uninfected mice, 263K-infected hamsters or uninfected hamsters. These reaction mixtures were analyzed by western blots probed with the antibodies 3F4, 6D11, 7D9, AG4, AH6, GE8 or MAB5424. The 3F4, 6D11, AH6, and GE8 antibodies recognize an epitope that is encrypted in the PrP(Sc) isoform, but exposed in the PrP(C) isoform. These reagents permit the detection of prion infected brain extracts without the need for proteinase K digestion. In addition they can be used, with an appropriate antibody, to determine which amino acids of PrP(Sc) are exposed on the surface and which are encrypted, thus providing useful structural information. This approach was used to distinguish between the 263K and drowsy strains of hamster-adapted scrapie without the use of proteinase K.
Collapse
Affiliation(s)
- Christopher J Silva
- Western Regional Research Center, United States Department of Agriculture, Albany, CA, USA.
| |
Collapse
|
4
|
Inactivation of template-directed misfolding of infectious prion protein by ozone. Appl Environ Microbiol 2011; 78:613-20. [PMID: 22138993 DOI: 10.1128/aem.06791-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Misfolded prions (PrP(Sc)) are well known for their resistance to conventional decontamination processes. The potential risk of contamination of the water environment, as a result of disposal of specified risk materials (SRM), has raised public concerns. Ozone is commonly utilized in the water industry for inactivation of microbial contaminants and was tested in this study for its ability to inactivate prions (263K hamster scrapie = PrP(Sc)). Treatment variables included initial ozone dose (7.6 to 25.7 mg/liter), contact time (5 s and 5 min), temperature (4°C and 20°C), and pH (pH 4.4, 6.0, and 8.0). Exposure of dilute suspensions of the infected 263K hamster brain homogenates (IBH) (0.01%) to ozone resulted in the in vitro destruction of the templating properties of PrP(Sc), as measured by the protein misfolding cyclic amplification (PMCA) assay. The highest levels of prion inactivation (≥4 log(10)) were observed with ozone doses of 13.0 mg/liter, at pH 4.4 and 20°C, resulting in a CT (the product of residual ozone concentration and contact time) value as low as 0.59 mg · liter(-1) min. A comparison of ozone CT requirements among various pathogens suggests that prions are more susceptible to ozone degradation than some model bacteria and protozoa and that ozone treatment may be an effective solution for inactivating prions in water and wastewater.
Collapse
|
5
|
Dagdanova A, Ilchenko S, Notari S, Yang Q, Obrenovich ME, Hatcher K, McAnulty P, Huang L, Zou W, Kong Q, Gambetti P, Chen SG. Characterization of the prion protein in human urine. J Biol Chem 2010; 285:30489-95. [PMID: 20670940 DOI: 10.1074/jbc.m110.161794] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The presence of the prion protein (PrP) in normal human urine is controversial and currently inconclusive. This issue has taken a special relevance because prion infectivity has been demonstrated in urine of animals carrying experimental or naturally occurring prion diseases, but the actual presence and tissue origin of the infectious prion have not been determined. We used immunoprecipitation, one- and two-dimensional electrophoresis, and mass spectrometry to prove definitely the presence of PrP in human urine and its post-translational modifications. We show that urinary PrP (uPrP) is truncated mainly at residue 112 but also at other residues up to 122. This truncation makes uPrP undetectable with some commonly used antibodies to PrP. uPrP is glycosylated and carries an anchor which, at variance with that of cellular PrP, lacks the inositol-associated phospholipid moiety, indicating that uPrP is probably shed from the cell surface. The detailed characterization of uPrP reported here definitely proves the presence of PrP in human urine and will help determine the origin of prion infectivity in urine.
Collapse
Affiliation(s)
- Ayuna Dagdanova
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Rees HC, Maddison BC, Owen JP, Whitelam GC, Gough KC. Concentration of disease-associated prion protein with silicon dioxide. Mol Biotechnol 2008; 41:254-62. [PMID: 19058035 DOI: 10.1007/s12033-008-9129-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 11/15/2008] [Indexed: 11/24/2022]
Abstract
Reagents that can precipitate the disease-associated prion protein (PrP(Sc)) are vital for the development of high sensitivity tests to detect low levels of this disease marker in biological material. Here, a range of minerals are shown to precipitate both ovine cellular prion protein (PrP(C)) and ovine scrapie PrP(Sc). The precipitation of prion protein with silicon dioxide is unaffected by PrP(Sc) strain or host species and the method can be used to precipitate bovine BSE. This method can reliably concentrate protease-resistant ovine PrP(Sc) (PrP(res)) derived from 1.69 microg of brain protein from a clinically infected animal diluted into either 50 ml of buffer or 15 ml of plasma. The introduction of a SiO(2) precipitation step into the immunological detection of PrP(res) increased detection sensitivity by over 1,500-fold. Minerals such as SiO(2) are readily available, low cost reagents with generic application to the concentration of diseases-associated prion proteins.
Collapse
Affiliation(s)
- Helen C Rees
- Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | | | | | | | |
Collapse
|
7
|
Andrievskaia O, Algire J, Balachandran A, Nielsen K. Prion protein in sheep urine. J Vet Diagn Invest 2008; 20:141-6. [PMID: 18319425 DOI: 10.1177/104063870802000201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The misfolded form of cellular prion protein (PrP(C)) is the main component of the infectious agent of transmissible spongiform encephalopathies and the validated biomarker for these diseases. The expression of PrP(C) is highest in the central nervous system and has been found in peripheral tissues. Soluble PrP(C) has been detected in cerebrospinal fluid, urine, serum, milk, and seminal plasma. In this study, attempts were made to characterize prion protein in urine samples from normal and scrapie-infected sheep. Urine samples from scrapie-infected sheep and age-matched healthy sheep were collected and analyzed by Western blot following concentration. A protease K-sensitive protein band with a molecular weight of approximately 27-30 kDa was visualized after immunoblotting with anti-PrP monoclonal antibodies to a C-terminal part of PrP(C), but not after immunoblotting with monoclonal antibodies to an N-terminal epitope of PrP(C) or with secondary antibodies only. The amount of PrP(C) in the urine of 49 animals (control group: n = 16; naturally scrapie-infected group: n = 33) was estimated by comparison with known amounts of ovine recombinant PrP in the immunoblot. Background concentration of PrP(C) in urine was found to be 0-0.16 ng/ml (adjusted to the initial nonconcentrated volume of the urine samples). Seven out of 33 naturally scrapie-infected animals had an elevated level (0.3-4.7 ng/ml) of PrP(C) in urine. The origin of PrP(C) in urine and the reason for the increased level of PrP(C) in scrapie-infected sheep urine has yet to be explored.
Collapse
Affiliation(s)
- Olga Andrievskaia
- Canadian Food Inspection Agency, Ottawa Laboratory Fallowfield, 3851 Fallowfield Road, Ottawa, Ontario K2H 8P9, Canada.
| | | | | | | |
Collapse
|
8
|
Didier A, Gebert R, Dietrich R, Schweiger M, Gareis M, Märtlbauer E, Amselgruber WM. Cellular prion protein in mammary gland and milk fractions of domestic ruminants. Biochem Biophys Res Commun 2008; 369:841-4. [PMID: 18325321 DOI: 10.1016/j.bbrc.2008.02.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 02/21/2008] [Indexed: 01/27/2023]
Abstract
The present study shows that PrP(c) is expressed in the mammary gland and milk fractions of domestic ruminants in a species-specific manner. By applying immunohistochemistry, Western blot and ELISA, clear expression differences between bovine, ovine and caprine mammary gland, skimmed milk, acid whey and cream could be demonstrated, the highest relative PrP(c) levels being associated with the cream fraction. In the bovine gland PrP(c) was preferentially detectable at the basolateral surface of mammary gland epithelial cells, whereas in ovine and caprine samples the prion protein was more homogeneously distributed. Moreover, in ovine and caprine bovine mammary gland epithelial cells, apocrine secretory vesicles were strongly stained. Ovine and caprine milk proved to contain PrP(c) in all fractions with an additional truncated form at 12kDa in Western blot. This truncated isoform is the predominate one in caprine acid whey. These results support the hypothesis that the apocrine secretion mode of milk fat globules is a major way of PrP(c) transport into the milk.
Collapse
Affiliation(s)
- A Didier
- Chair for Hygiene and Technology of Milk, Ludwig Maximilians University, Schoenleutnerstrasse 8, 85764 Oberschleissheim, Germany
| | | | | | | | | | | | | |
Collapse
|