1
|
Novel Atraumatic End-to-Side Repair Model Exhibits Robust Collateral Sprouting Independent of Donor Fiber Injury. Plast Reconstr Surg 2016; 137:523-533. [PMID: 26818287 DOI: 10.1097/01.prs.0000475764.76278.eb] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND A central issue underlying end-to-side neurorrhaphy technique is whether injury to the donor nerve fibers is necessary for successful reinnervation of the recipient nerve. To address this question, the authors developed a novel atraumatic end-to-side neurorrhaphy model that uses the preexisting anatomical structure of the median nerve as the Y-chamber to study the mechanism of collateral sprouting. METHODS In this rat forelimb model, the authors transected the musculocutaneous nerve and the lateral head of the median nerve, and coapted their distal stumps together. In this model, the authors use the medial head of the median nerve as the donor nerve, and the lateral head of the median nerve (distal stump) as a Y-shaped chamber, which provided structural connection to the recipient musculocutaneous nerve in end-to-side fashion. RESULTS Three months after surgery, converging histologic, electrophysiologic, and behavioral observations confirmed the successful reinnervation of the recipient nerve. Retrograde labeling indicated that sensory fibers exhibited greater collateral sprouting than observed for motor fibers. Interestingly, fluorescence of these collateral sprouting fibers was present only when the median nerve lateral head was attached to the musculocutaneous nerve of the biceps, indicating that factors derived from the denervated tissue likely induced the collateral sprouting in this model. CONCLUSIONS The authors' findings provide strong evidence that collateral sprouting can be robustly initiated independent of donor nerve fiber injury. The authors' model can accelerate the understanding of the mechanism underlying end-to-side neurorrhaphy and the optimization of its clinical use.
Collapse
|
2
|
Kita S, Yasuchika K, Ishii T, Katayama H, Yoshitoshi EY, Ogiso S, Kawai T, Yasuda K, Fukumitsu K, Mizumoto M, Uemoto S. The Protective Effect of Transplanting Liver Cells Into the Mesentery on the Rescue of Acute Liver Failure After Massive Hepatectomy. Cell Transplant 2016; 25:1547-59. [PMID: 26883767 DOI: 10.3727/096368916x690999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Postoperative liver failure is one of the most critical complications following extensive hepatectomy. Although transplantation of allogeneic hepatocytes is an attractive therapy for posthepatectomy liver failure, transplanting cells via the portal veins typically causes portal vein embolization. The embolization by transplanted cells would be lethal in patients who have undergone massive hepatectomy. Thus, transplant surgeons need to select extrahepatic sites as transplant sites to prevent portal vein embolization. We aimed to investigate the mechanism of how liver cells transplanted into the mesentery protect recipient rats from acute liver failure after massive hepatectomy. We induced posthepatectomy liver failure by 90% hepatectomy in rats. Liver cells harvested from rat livers were transplanted into the mesenteries of hepatectomized rats. Twenty percent of the harvested cells, which consisted of hepatocytes and nonparenchymal cells, were transplanted into each recipient. The survival rate improved significantly in the liver cell transplantation group compared to the control group 7 days after hepatectomy (69 vs. 7%). Histological findings of the transplantation site, in vivo imaging system study findings, quantitative polymerase chain reaction assays of the transplanted cells, and serum albumin measurements of transplanted Nagase analbuminemic rats showed rapid deterioration of viable transplanted cells. Although viable transplanted cells deteriorated in the transplanted site, histological findings and an adenosine-5'-triphosphate (ATP) assay showed that the transplanted cells had a protective effect on the remaining livers. These results indicated that the paracrine effects of transplanted liver cells had therapeutic effects. The same protective effects were observed in the hepatocyte transplantation group, but not in the liver nonparenchymal cell transplantation group. Therefore, this effect on the remnant liver was mainly due to the hepatocytes among the transplanted liver cells. We demonstrated that transplanted liver cells protect the remnant liver from severe damage after massive hepatectomy.
Collapse
Affiliation(s)
- Sadahiko Kita
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Ikutomi M, Sahara M, Nakajima T, Minami Y, Morita T, Hirata Y, Komuro I, Nakamura F, Sata M. Diverse contribution of bone marrow-derived late-outgrowth endothelial progenitor cells to vascular repair under pulmonary arterial hypertension and arterial neointimal formation. J Mol Cell Cardiol 2015; 86:121-35. [DOI: 10.1016/j.yjmcc.2015.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/10/2015] [Accepted: 07/24/2015] [Indexed: 01/29/2023]
|
4
|
Maeda H, Shigoka M, Wang Y, Fu Y, Wesson RN, Lin Q, Montgomery RA, Enzan H, Sun Z. Disappearance of GFP-positive hepatocytes transplanted into the liver of syngeneic wild-type rats pretreated with retrorsine. PLoS One 2014; 9:e95880. [PMID: 24796859 PMCID: PMC4010421 DOI: 10.1371/journal.pone.0095880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/01/2014] [Indexed: 11/19/2022] Open
Abstract
Background and Aim Green fluorescent protein (GFP) is a widely used molecular tag to trace transplanted cells in rodent liver injury models. The differing results from various previously reported studies using GFP could be attributed to the immunogenicity of GFP. Methods Hepatocytes were obtained from GFP-expressing transgenic (Tg) Lewis rats and were transplanted into the livers of wild-type Lewis rats after they had undergone a partial hepatectomy. The proliferation of endogenous hepatocytes in recipient rats was inhibited by pretreatment with retrorsine to enhance the proliferation of the transplanted hepatocytes. Transplantation of wild-type hepatocytes into GFP-Tg rat liver was also performed for comparison. Results All biopsy specimens taken seven days after transplantation showed engraftment of transplanted hepatocytes, with the numbers of transplanted hepatocytes increasing until day 14. GFP-positive hepatocytes in wild-type rat livers were decreased by day 28 and could not be detected on day 42, whereas the number of wild-type hepatocytes steadily increased in GFP-Tg rat liver. Histological examination showed degenerative change of GFP-positive hepatocytes and the accumulation of infiltrating cells on day 28. PCR analysis for the GFP transgene suggested that transplanted hepatocytes were eliminated rather than being retained along with the loss of GFP expression. Both modification of the immunological response using tacrolimus and bone marrow transplantation prolonged the survival of GFP-positive hepatocytes. In contrast, host immunization with GFP-positive hepatocytes led to complete loss of GFP-positive hepatocytes by day 14. Conclusion GFP-positive hepatocytes isolated from GFP-Tg Lewis rats did not survive long term in the livers of retrorsine-pretreated wild-type Lewis rats. The mechanism underlying this phenomenon most likely involves an immunological reaction against GFP. The influence of GFP immunogenicity on cell transplantation models should be considered in planning in vivo experiments using GFP and in interpreting their results.
Collapse
Affiliation(s)
- Hiromichi Maeda
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Surgery, Kochi Medical School, Nankoku, Kochi, Japan
- Cancer Treatment Center, Kochi Medical School, Nankoku, Kochi, Japan
- * E-mail: (HM); (ZS)
| | - Masatoshi Shigoka
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yongchun Wang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yingxin Fu
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Russell N. Wesson
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Qing Lin
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert A. Montgomery
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Hideaki Enzan
- Diagnostic Pathology, Chikamori Hospital, Kochi, Kochi, Japan
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (HM); (ZS)
| |
Collapse
|
5
|
Liu C, Zhu P, Saito T, Isaka Y, Nagahara Y, Zhuang J, Li XK. Non-myeloablative conditioning is sufficient to induce mixed chimerism and subsequent acceptance of donor specific cardiac and skin grafts. Int Immunopharmacol 2013; 16:392-8. [PMID: 23428909 DOI: 10.1016/j.intimp.2013.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/01/2013] [Indexed: 01/31/2023]
Abstract
Organ transplant recipients have elevated cancer and viral infection risks due to immunosuppression and long-term results of organ transplantation remain unsatisfactory, mainly because of chronic rejection. The purpose of the current study is to establish a nonmyeloablative perioperative regimen, able to induce mixed chimerism and tolerance of allografts. To establish a nonmyeloablative perioperative regimen, we used Busulfan, an important component of many bone marrow transplantation preparative regimens for a variety of non-neoplastic diseases as an alternative to total body irradiation (TBI), and FTY720, a unique immunosuppression agent, inhibition lymphocyte homing. We found that creating a lymphohematopoietic chimera in which donor and recipient hematopoiesis coexist resulted in prolongation of the donor specific heart and skin allografts. Consistent with graft survival, pathological analysis indicated that the allografts from tolerant recipients were free of myocardial injury and had only a few interstitial infiltrates, and obliterative vasculopathy was not observed. Furthermore, we found that Treg cells were increased in the long-term graft acceptance recipients. Our data revealed that the therapeutic potential for using hematopoietic chimerism in non-myeloablated recipients hope the advances in rodent models described above in the development of minimal, nontoxic host conditioning regimens for mixed chimerism induction and subsequent acceptance of donor specific grafts.
Collapse
Affiliation(s)
- Chi Liu
- National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Liu Z, Hatayama N, Xie L, Kato K, Zhu P, Ochiya T, Nagahara Y, Hu X, Li XK. Eicosapentenoic Acid Attenuates Allograft Rejection in an HLA-B27/EGFP Transgenic Rat Cardiac Transplantation Model. CELL MEDICINE 2012; 3:63-74. [PMID: 28058182 DOI: 10.3727/215517912x639379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The development of an animal model bearing definite antigens is important to facilitate the evaluation and modulation of specific allo-antigen responses after transplantation. In the present study, heterotopic cardiac transplantation was performed from F344/EGFPTg and F344/HLA-B27Tg rats to F344 rats. The F344 recipients accepted the F344/EGFPTg transplants, whereas they rejected the cardiac tissue from the F344/HLA-B27Tg rats by 39.4 ± 6.5 days, due to high production of anti-HLA-B27 IgM- and IgG-specific antibodies. In addition, immunization of F344 rats with skin grafts from F344/HLA-B27Tg rats resulted in robust production of anti- HLA-B27 IgM and IgG antibodies and accelerated the rejection of a secondary cardiac allograft (7.4 ± 1.9 days). Of interest, the F344 recipients rejected cardiac grafts from double transgenic F344/HLA-B27&EGFPTg rats within 9.0 ± 3.2 days, and this was associated with a significant increase in the infiltration of lymphocytes by day 7, suggesting a role for cellular immune rejection. Eicosapentenoic acid (EPA), one of the ω-3 polyunsaturated fatty acids in fish oil, could attenuate the production of anti-HLA IgG antibodies and B-cell proliferation, significantly prolonging double transgenic F344HLA-B27&EGFPTg to F344 rat cardiac allograft survival (36.1 ± 13.6 days). Moreover, the mRNA expression in the grafts was assessed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), revealing an increase in the expression of the HO-1, IL-10, TGF-β, IDO, and Foxp3 genes in the EPA-treated group. Hence, our data indicate that HLA-B27 and/or GFP transgenic proteins are useful for establishing a unique animal transplantation model to clarify the mechanism underlying the allogeneic cellular and humoral immune response, in which the transplant antigens are specifically presented. Furthermore, we also demonstrated that EPA was effective in the treatment of rat cardiac allograft rejection and may allow the development of novel immunomodulatory strategies for organ transplantation.
Collapse
Affiliation(s)
- Zhong Liu
- Division of Radiation Safety and Immune Tolerance, National Research Institute for Child Health and Development, Tokyo, Japan; §Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Naoyuki Hatayama
- Division of Radiation Safety and Immune Tolerance, National Research Institute for Child Health and Development , Tokyo , Japan
| | - Lin Xie
- Division of Radiation Safety and Immune Tolerance, National Research Institute for Child Health and Development , Tokyo , Japan
| | - Ken Kato
- Division of Radiation Safety and Immune Tolerance, National Research Institute for Child Health and Development, Tokyo, Japan; †Department of Biomedical Sciences, Tokyo Denki University, Saitama, Japan
| | - Ping Zhu
- Division of Radiation Safety and Immune Tolerance, National Research Institute for Child Health and Development , Tokyo , Japan
| | - Takahiro Ochiya
- ‡ Section for Studies on Metastasis, National Cancer Center Research Institute , Tokyo , Japan
| | - Yukitoshi Nagahara
- † Department of Biomedical Sciences, Tokyo Denki University , Saitama , Japan
| | - Xiang Hu
- § Department of General Surgery, First Affiliated Hospital of Dalian Medical University , Dalian , China
| | - Xiao-Kang Li
- Division of Radiation Safety and Immune Tolerance, National Research Institute for Child Health and Development , Tokyo , Japan
| |
Collapse
|
7
|
Gu SH, Xu WD, Xu L, Li XK, Ochiya T, Wang Y, Li JF, Gu YD, Xu JG. Regenerated host axons form synapses with neurons derived from neural stem cells transplanted into peripheral nerves. J Int Med Res 2011; 38:1721-9. [PMID: 21309486 DOI: 10.1177/147323001003800517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It is reported that neural stem cells (NSC) can arrest denervated muscle atrophy and promote nerve regeneration when transplanted into injured peripheral nerves, and that regenerated host axons can form synapses with transplanted and differentiated NSC. In this study, F344 rat nerve segments and F344 rat NSC were transplanted into host green fluorescence protein (GFP) transgenic F344 rats. This allowed transplanted F344 rat tissue to be used as a nonluminous background for the clear visualization of regenerated host GFP axons. Regenerated host axons grew into the transplanted F344 nerve segment 2 weeks after nerve anastomosis. Immunohistochemical staining and confocal microscope analysis revealed that regenerated host axons formed synapses with NSC-derived neurons. The findings confirmed that regenerated peripheral axons form synapses with neurons in peripheral nerves, possibly forming the basis for clinical application in peripheral nerve injury.
Collapse
Affiliation(s)
- S H Gu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li TZ, Kim JH, Cho HH, Lee HS, Kim KS, Lee SW, Suh H. Therapeutic potential of bone-marrow-derived mesenchymal stem cells differentiated with growth-factor-free coculture method in liver-injured rats. Tissue Eng Part A 2011; 16:2649-59. [PMID: 20367252 DOI: 10.1089/ten.tea.2009.0814] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cell (MSC) differentiation by growth factors may be improper due to possibility of clinical risk. We have previously developed a growth-factor-free coculture method and observed rat MSCs differentiated into hepatic progenitor cells. This study was aimed to validate hepatic differentiation potential in vivo. MSCs from bone marrow of green fluorescent protein-transgenic Sprague-Dawley rats were cocultured with hepatocytes from normal Sprague-Dawley rats, sharing growth-factor-free media. After 14 days, cells were implanted into the spleen of carbon tetrachloride (CCl4)-injured rats and kept for 4 weeks. Fibrosis remarkably decreased in CCl4/cocultured MSC at weeks 1, 3, and 4. Immunohistochemistry revealed that albumin, alpha-fetoprotein, and cytokeratin 19 (CK19) expression was high in CCl4/cocultured MSC only at week 1. Reverse transcription-polymerase chain reaction and Western blot revealed that CCl4/cocultured MSC had reduced alpha-fetoprotein expression at week 4, whereas CK18 and CK19 exhibited stronger expression. Albumin in CCl4/cocultured MSC increased at week 4 only in protein level. We assume that cocultured MSCs had stayed at hepatic progenitor stage until week 3, and differentiated into hepatocytes or bile-ductal epithelial cells afterward. Hepatic progenitor cells from MSC differentiation in the growth-factor-free coculture system may contribute to the therapeutic effect for liver disease in vivo.
Collapse
Affiliation(s)
- Tian Zhu Li
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
9
|
Kim JH, Kong WH, Kim JG, Kim HJ, Seo SW. Possibility of skin epithelial cell transdifferentiation in tracheal reconstruction. Artif Organs 2010; 35:122-30. [PMID: 20946312 DOI: 10.1111/j.1525-1594.2010.01047.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In tissue engineering, injured tissue is normally reconstructed with cells obtained from that tissue itself. However, it is difficult to obtain cells for reconstruction of the trachea because of its shape and limited accessibility. Therefore, other cell sources having similar form and function or stem cells are used for tracheal reconstruction. In a previous study, we used autologous skin epithelial cells and successfully reconstructed canine tracheas. We found that the tracheal epithelial layer was completely covered with ciliated cells, which is a remarkable finding because skin and tracheal epithelial cells originate from different germinal layers and have very different forms. In this study, to elucidate the origin of the ciliated cells, we identified the stem cell contents of skin epithelial cells on primary culture, marked the skin epithelial cells with PKH26 dye, and transplanted them onto canine tracheas. After 5 months, we identified PKH26 fluorescence on the tracheal epithelial layers, especially over the tracheal cartilages. Consequently, we demonstrated that transplanted autologous skin epithelial stem cells can remain viable on the trachea for a few months and can transdifferentiate into tracheal epithelial cells and chondrocytes.
Collapse
Affiliation(s)
- Jin Hoon Kim
- SungKyunKwan University, School of Medicine, Biomedical Engineering Interdisciplinary Course, Samsung Biomedical Research Institute, Seoul, Korea
| | | | | | | | | |
Collapse
|
10
|
Watanabe H. Intestinal metaplasia -the effect of Acid on the gastric mucosa and gastric carcinogenesis-. J Toxicol Pathol 2010; 23:115-23. [PMID: 22272022 PMCID: PMC3234614 DOI: 10.1293/tox.23.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 06/02/2010] [Indexed: 12/25/2022] Open
Abstract
This review concerns stem cells and their relation to intestinal metaplasia. When
gastric regions of mice, Mongolian gerbils or several strains of rats were
irradiated with a total dose of 20 Gy of X-rays given in two fractions,
intestinal metaplasia was only induced in rats. In addition, it was greatly
influenced by rat strain and sex. Alkaline phosphatase (ALP) positive
metaplastic foci were increased by administration of ranitidine (H2
receptor antagonist), crude stomach antigens or subtotal resection of the fundus
and decreased by cysteamine (gastric acid secretion stimulator), histamine or
removal of the submandibular glands. Recent studies have shown that
Cdx2 transgenic mice with gastric achlorhydria develop
intestinal metaplasia and that in men and animals, Helicobacterpylori (H. pyrlori) infection can cause intestinal metaplasias
that are reversible on eradication. Our results combined with findings for
H. pylori infection or eradication and transgenic mice
suggest that an elevation in the pH of the gastric juice due to disappearance of
parietal cells is one of the principal factors for development of reversible
intestinal metaplasia. When different organs were transplanted into the stomach
or duodenum, they were found to transdifferentiate into gastric or duodenal
mucosae, respectively. Organ-specific stem cells in normal non-liver tissues
(heart, kidney, brain and skin) also differentiate into hepatocytes when
transplanted into an injured liver. Therefore, stem cells have a multipotential
ability, transdifferentiating into different organs when transplanted into
different environments. Finally, intestinal metaplasia has been found to
possibly increase sensitivity to the induction of tumors by colon carcinogens of
the 1,2-dimethylhydrazine (DMH), azoxymethane (AOM) or
2-amino-1-methyl-6-phenylimidazo[4.5-b]pyridine (PhIP) type. This carcinogenic
process, however, may be relatively minor compared with the main gastric
carcinogenesis process induced by N-methy1-N’-nitro-N-nitrosoguanidine (MMNG) or
N-methylnitrosourea (MNU), which is not affected by the presence of intestinal
metaplasia. The protocol used in these experiments may provide a new approach to
help distinguish between developmental events associated with intestinal
metaplasia and gastric tumors.
Collapse
Affiliation(s)
- Hiromitsu Watanabe
- Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
11
|
Pan XC, Deng YB, Sugawara Y, Makuuchi M, Okabe M, Ochiya T, Sugiura W, Kitazawa Y, Fuji N, Li XK, Miyamoto M, Kimura H. Immunological behavior of enhanced green fluorescent protein (EGFP) as a minor histocompatibility antigen with a special reference to skin isograft and specific regulation of local graft-versus-host reaction (GvHR). Immunol Lett 2009; 123:103-13. [PMID: 19428557 DOI: 10.1016/j.imlet.2009.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 01/22/2009] [Accepted: 02/05/2009] [Indexed: 10/21/2022]
Abstract
Although enhanced green fluorescent protein (EGFP) is widely used as a molecular tag in cell biology, it has become evident that immunogenicity of transgenic or transduced EGFP is important when it applies to transplantation model. Indeed, it appears that applications of EGFP-expressing cells, tissues and organ transplantation are limited in vivo due to the ultimate rejection of the graft. Nevertheless, the immunological behavior of transduced EGFP, in particular, as a minor histocompatibility antigen is not fully understood. Thus employing two strains of EGFP transgenic (Tg) rats generated by the same vector construct, e.g., EGFP-F344 Tg (RT11) and EGFP-DA Tg (RT1a), and its F(1) hybrid with a non-transgenic rat, behavior of EGFP-transgenic antigen(s) was examined by in vivo assays, such as EGFP-transgenic test skin grafts or regulation of EGFP-transgenic lymphocytes. In the latter system, EGFP-specific, T-cell-mediated immune regulation of local graft-versus-host reaction (GvHR) was further investigated with a special reference of in vivo cytotoxic assay, i.e., elimination of colored lymphocytes with either EGFP-incompatible or CFSE-labeled sex-mismatched lymphocytes. We provide evidence that differential immunological behavior of EGFP-transgenic minor histocompatibility antigen was observed in vivo. Thus, immune responses to EGFP-minor histocompatibility antigen(s) were not always accompanied with the rejection of test skin isograft. It only becomes apparent for EGFP-specific elimination and suppression of both systemic and local GvHR induced by EGFP-transgenic T lymphocytes after EGFP-specific sensitization. However, this was not the case where test skin isografting was applied even under extensive sensitization protocols. These findings demonstrate that minor histocompatibility antigen specific immune elimination of EGFP-transgenic T lymphocytes or regulation of local GvHR provides more sensitive and better immune assay systems in vivo than classical test skin isograft systems.
Collapse
Affiliation(s)
- Xuan-Chao Pan
- Department of Artificial Organ and Transplantation Surgery, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyou-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Growth factor-free cultured rat bone marrow derived mesenchymal stem cells towards hepatic progenitor cell differentiation. BIOTECHNOL BIOPROC E 2009. [DOI: 10.1007/s12257-008-0080-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Mimeault M, Hauke R, Batra SK. Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 2007; 82:252-64. [PMID: 17671448 DOI: 10.1038/sj.clpt.6100301] [Citation(s) in RCA: 286] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Basic and clinical research accomplished during the last few years on embryonic, fetal, amniotic, umbilical cord blood, and adult stem cells has constituted a revolution in regenerative medicine and cancer therapies by providing the possibility of generating multiple therapeutically useful cell types. These new cells could be used for treating numerous genetic and degenerative disorders. Among them, age-related functional defects, hematopoietic and immune system disorders, heart failures, chronic liver injuries, diabetes, Parkinson's and Alzheimer's diseases, arthritis, and muscular, skin, lung, eye, and digestive disorders as well as aggressive and recurrent cancers could be successfully treated by stem cell-based therapies. This review focuses on the recent advancements in adult stem cell biology in normal and pathological conditions. We describe how these results have improved our understanding on critical and unique functions of these rare sub-populations of multipotent and undifferentiated cells with an unlimited self-renewal capacity and high plasticity. Finally, we discuss some major advances to translate the experimental models on ex vivo and in vivo expanded and/or differentiated stem cells into clinical applications for the development of novel cellular therapies aimed at repairing genetically altered or damaged tissues/organs in humans. A particular emphasis is made on the therapeutic potential of different tissue-resident adult stem cell types and their in vivo modulation for treating and curing specific pathological disorders.
Collapse
Affiliation(s)
- M Mimeault
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | | | | |
Collapse
|