2
|
Cruz VAR, Oliveira HR, Brito LF, Fleming A, Larmer S, Miglior F, Schenkel FS. Genome-Wide Association Study for Milk Fatty Acids in Holstein Cattle Accounting for the DGAT1 Gene Effect. Animals (Basel) 2019; 9:E997. [PMID: 31752271 PMCID: PMC6912218 DOI: 10.3390/ani9110997] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022] Open
Abstract
The identification of genomic regions and candidate genes associated with milk fatty acids contributes to better understand the underlying biology of these traits and enables breeders to modify milk fat composition through genetic selection. The main objectives of this study were: (1) to perform genome-wide association analyses for five groups of milk fatty acids in Holstein cattle using a high-density (777K) SNP panel; and (2) to compare the results of GWAS accounting (or not) for the DGAT1 gene effect as a covariate in the statistical model. The five groups of milk fatty acids analyzed were: (1) saturated (SFA); (2) unsaturated (UFA); (3) short-chain (SCFA); (4) medium-chain (MCFA); and (5) long-chain (LCFA) fatty acids. When DGAT1 was not fitted as a covariate in the model, significant SNPs and candidate genes were identified on BTA5, BTA6, BTA14, BTA16, and BTA19. When fitting the DGAT1 gene in the model, only the MGST1 and PLBD1 genes were identified. Thus, this study suggests that the DGAT1 gene accounts for most of the variability in milk fatty acid composition and the PLBD1 and MGST1 genes are important additional candidate genes in Holstein cattle.
Collapse
Affiliation(s)
- Valdecy A. R. Cruz
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, ON N1G 2W1, Canada; (V.A.R.C.); (H.R.O.); (L.F.B.); (A.F.); (S.L.); (F.M.)
| | - Hinayah R. Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, ON N1G 2W1, Canada; (V.A.R.C.); (H.R.O.); (L.F.B.); (A.F.); (S.L.); (F.M.)
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Luiz F. Brito
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, ON N1G 2W1, Canada; (V.A.R.C.); (H.R.O.); (L.F.B.); (A.F.); (S.L.); (F.M.)
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Allison Fleming
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, ON N1G 2W1, Canada; (V.A.R.C.); (H.R.O.); (L.F.B.); (A.F.); (S.L.); (F.M.)
- Lactanet Canada, Guelph, Ontario, ON N1K 1E5, Canada
| | - Steven Larmer
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, ON N1G 2W1, Canada; (V.A.R.C.); (H.R.O.); (L.F.B.); (A.F.); (S.L.); (F.M.)
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, ON N1G 2W1, Canada; (V.A.R.C.); (H.R.O.); (L.F.B.); (A.F.); (S.L.); (F.M.)
- Ontario Genomics, Toronto, Ontario, ON M5G 1M1, Canada
| | - Flavio S. Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, ON N1G 2W1, Canada; (V.A.R.C.); (H.R.O.); (L.F.B.); (A.F.); (S.L.); (F.M.)
| |
Collapse
|
3
|
Chen Q, Butler D, Querbes W, Pandey RK, Ge P, Maier MA, Zhang L, Rajeev KG, Nechev L, Kotelianski V, Manoharan M, Sah DWY. Lipophilic siRNAs mediate efficient gene silencing in oligodendrocytes with direct CNS delivery. J Control Release 2010; 144:227-32. [PMID: 20170694 DOI: 10.1016/j.jconrel.2010.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 01/29/2010] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
Abstract
Conjugation of small interfering RNA (siRNA) with lipophilic molecules has been demonstrated to enhance cellular uptake in cell culture and to produce efficient endogenous gene silencing in the liver after systemic administration and in neurons after direct local injection. Here, we evaluated the in vivo delivery of siRNAs conjugated with different linkers to cholesterol by targeting CNPase (2'-3'-cyclic nucleotide 3'-phosphodiesterase) in oligodendrocytes. Cholesterol-conjugated siRNAs administered to the rat corpus callosum by intraparenchymal central nervous system (CNS) infusion show improved silencing ability compared with unconjugated siRNA. Furthermore, conjugation of siRNA to cholesterol with a cleavable disulfide linker appears to be beneficial for improving the potency of silencing of CNPase mRNA in oligodendrocytes in vivo. Taken together, these findings indicate that cholesterol-conjugated siRNAs are effective for direct CNS delivery to oligodendrocytes, and that the biocleavable disulfide linker appears to be beneficial for improving the potency of silencing of target mRNA in vivo.
Collapse
Affiliation(s)
- Qingmin Chen
- Alnylam Pharmaceuticals Inc., 300 Third Street, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Kaneto H, Matsuoka TA, Kawashima S, Yamamoto K, Kato K, Miyatsuka T, Katakami N, Matsuhisa M. Role of MafA in pancreatic beta-cells. Adv Drug Deliv Rev 2009; 61:489-96. [PMID: 19393272 DOI: 10.1016/j.addr.2008.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 12/15/2008] [Indexed: 01/01/2023]
Abstract
Pancreatic beta-cell-specific insulin gene expression is regulated by a variety of pancreatic transcription factors and the conserved A3, C1 and E1 elements in the insulin gene enhancer region are very important for activation of insulin gene. Indeed, PDX-1 binding to the A3 element and NeuroD binding to the E1 element are crucial for insulin gene transcription. Recently, C1 element-binding transcription factor was identified as MafA, which is a basic-leucine zipper transcription factor and functions as a potent transactivator for the insulin gene. Under diabetic conditions, chronic hyperglycemia gradually deteriorates pancreatic beta-cell function, which is accompanied by decreased expression and/or DNA binding activities of MafA and PDX-1. Furthermore, MafA overexpression, together with PDX-1 and NeuroD, markedly induces insulin biosynthesis in various non-beta-cells and thereby is a useful tool to efficiently induce insulin-producing surrogate beta-cells. These results suggest that MafA plays a crucial role in pancreatic beta-cells and could be a novel therapeutic target for diabetes.
Collapse
|
5
|
Vanderford NL, Cantrell JEL, Popa GJ, Ozcan S. Multiple kinases regulate mafA expression in the pancreatic beta cell line MIN6. Arch Biochem Biophys 2008; 480:138-42. [PMID: 18948074 DOI: 10.1016/j.abb.2008.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 10/03/2008] [Accepted: 10/04/2008] [Indexed: 01/13/2023]
Abstract
MafA is a basic leucine zipper transcription factor expressed within the beta cells of the pancreas and is required to maintain normal glucose homeostasis as it is involved in various aspects of beta cell biology. MafA protein levels are known to increase in response to high glucose through mechanisms that have yet to be fully characterized. We investigated whether discrete intracellular signaling events control mafA expression. We found that the general kinase inhibitor staurosporine induces mafA expression without altering the stability of the protein. Inhibition of the MAP-kinase JNK mimics the effects of staurosporine on the expression of mafA. Calmodulin kinase and calcium signaling are also important in stimulating mafA expression by high glucose. However, staurosporine, JNK, and calmodulin kinase have different effects on the induction of insulin expression. These data reveal that MafA levels are tightly controlled by the coordinated action of multiple kinase pathways.
Collapse
Affiliation(s)
- Nathan L Vanderford
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, 741 South Limestone Street, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
6
|
Abstract
Production and secretion of insulin from the β-cells of the pancreas is very crucial in maintaining normoglycaemia. This is achieved by tight regulation of insulin synthesis and exocytosis from the β-cells in response to changes in blood glucose levels. The synthesis of insulin is regulated by blood glucose levels at the transcriptional and post-transcriptional levels. Although many transcription factors have been implicated in the regulation of insulin gene transcription, three β-cell-specific transcriptional regulators, Pdx-1 (pancreatic and duodenal homeobox-1), NeuroD1 (neurogenic differentiation 1) and MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A), have been demonstrated to play a crucial role in glucose induction of insulin gene transcription and pancreatic β-cell function. These three transcription factors activate insulin gene expression in a co-ordinated and synergistic manner in response to increasing glucose levels. It has been shown that changes in glucose concentrations modulate the function of these β-cell transcription factors at multiple levels. These include changes in expression levels, subcellular localization, DNA-binding activity, transactivation capability and interaction with other proteins. Furthermore, all three transcription factors are able to induce insulin gene expression when expressed in non-β-cells, including liver and intestinal cells. The present review summarizes the recent findings on how glucose modulates the function of the β-cell transcription factors Pdx-1, NeuroD1 and MafA, and thereby tightly regulates insulin synthesis in accordance with blood glucose levels.
Collapse
|
7
|
Dieckhoff B, Petersen B, Kues WA, Kurth R, Niemann H, Denner J. Knockdown of porcine endogenous retrovirus (PERV) expression by PERV-specific shRNA in transgenic pigs. Xenotransplantation 2008; 15:36-45. [DOI: 10.1111/j.1399-3089.2008.00442.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|