1
|
Amoakon JP, Lee J, Liyanage P, Arora K, Karlstaedt A, Mylavarapu G, Amin R, Naren AP. Defective CFTR modulates mechanosensitive channels TRPV4 and PIEZO1 and drives endothelial barrier failure. iScience 2024; 27:110703. [PMID: 39252977 PMCID: PMC11382128 DOI: 10.1016/j.isci.2024.110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/25/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Despite reports of CFTR expression on endothelial cells, pulmonary vascular perturbations, and perfusion deficits in CF patients, the mechanism of pulmonary vascular disease in CF remains unclear. Here, our pilot study of 40 CF patients reveals a loss of small pulmonary blood vessels in patients with severe lung disease. Using a vessel-on-a-chip model, we establish a shear-stress-dependent mechanism of endothelial barrier failure in CF involving TRPV4, a mechanosensitive channel. Furthermore, we demonstrate that CFTR deficiency downregulates the function of PIEZO1, another mechanosensitive channel involved in angiogenesis and wound repair, and exacerbates loss of small pulmonary blood vessel. We also show that CFTR directly interacts with PIEZO1 and enhances its function. Our study identifies key cellular targets to mitigate loss of small pulmonary blood vessels in CF.
Collapse
Affiliation(s)
- Jean-Pierre Amoakon
- Department of Systems Biology and Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jesun Lee
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Pramodha Liyanage
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kavisha Arora
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Goutham Mylavarapu
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Raouf Amin
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anjaparavanda P Naren
- Department of Systems Biology and Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
2
|
Amoakon JP, Mylavarapu G, Amin RS, Naren AP. Pulmonary Vascular Dysfunctions in Cystic Fibrosis. Physiology (Bethesda) 2024; 39:0. [PMID: 38501963 PMCID: PMC11368519 DOI: 10.1152/physiol.00024.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024] Open
Abstract
Cystic fibrosis (CF) is an inherited disorder caused by a deleterious mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Given that the CFTR protein is a chloride channel expressed on a variety of cells throughout the human body, mutations in this gene impact several organs, particularly the lungs. For this very reason, research regarding CF disease and CFTR function has historically focused on the lung airway epithelium. Nevertheless, it was discovered more than two decades ago that CFTR is also expressed and functional on endothelial cells. Despite the great strides that have been made in understanding the role of CFTR in the airway epithelium, the role of CFTR in the endothelium remains unclear. Considering that the airway epithelium and endothelium work in tandem to allow gas exchange, it becomes very crucial to understand how a defective CFTR protein can impact the pulmonary vasculature and overall lung function. Fortunately, more recent research has been dedicated to elucidating the role of CFTR in the endothelium. As a result, several vascular dysfunctions associated with CF disease have come to light. Here, we summarize the current knowledge on pulmonary vascular dysfunctions in CF and discuss applicable therapies.
Collapse
Affiliation(s)
- Jean-Pierre Amoakon
- Department of Systems Biology and Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Goutham Mylavarapu
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Raouf S Amin
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Anjaparavanda P Naren
- Department of Systems Biology and Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
- Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| |
Collapse
|
3
|
Poore TS, Taylor-Cousar JL, Zemanick ET. Cardiovascular complications in cystic fibrosis: A review of the literature. J Cyst Fibros 2021; 21:18-25. [PMID: 34140249 DOI: 10.1016/j.jcf.2021.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022]
Abstract
Cystic fibrosis is a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, leading to dysfunction of the CFTR protein. CFTR dysfunction leads to disease in the respiratory and gastrointestinal systems. Disorders of the cardiovascular system in individuals with CF are usually attributed to secondary effects from progressive lung disease. However, CFTR has been localized to vascular endothelium and smooth muscle, suggesting that CFTR dysfunction may directly impact cardiovascular function. As treatments for CF improve and life-expectancy increases, the risk of vascular disease may increase in prevalence related to primary and secondary CFTR dysfunction, chronic systemic inflammation, nutritional health and hyperglycemia in individuals with CF related diabetes. Here we review the available literature on CF and the cardiovascular system, examining the secondary effects and evidence for direct CFTR dysfunction in the heart, aorta, pulmonary vessels, and vasculature, as well as future directions and treatment options.
Collapse
Affiliation(s)
- T Spencer Poore
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Edith T Zemanick
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
What Role Does CFTR Play in Development, Differentiation, Regeneration and Cancer? Int J Mol Sci 2020; 21:ijms21093133. [PMID: 32365523 PMCID: PMC7246864 DOI: 10.3390/ijms21093133] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023] Open
Abstract
One of the key features associated with the substantial increase in life expectancy for individuals with CF is an elevated predisposition to cancer, firmly established by recent studies involving large cohorts. With the recent advances in cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies and the increased long-term survival rate of individuals with cystic fibrosis (CF), this is a novel challenge emerging at the forefront of this disease. However, the mechanisms linking dysfunctional CFTR to carcinogenesis have yet to be unravelled. Clues to this challenging open question emerge from key findings in an increasing number of studies showing that CFTR plays a role in fundamental cellular processes such as foetal development, epithelial differentiation/polarization, and regeneration, as well as in epithelial–mesenchymal transition (EMT). Here, we provide state-of-the-art descriptions on the moonlight roles of CFTR in these processes, highlighting how they can contribute to novel therapeutic strategies. However, such roles are still largely unknown, so we need rapid progress in the elucidation of the underlying mechanisms to find the answers and thus tailor the most appropriate therapeutic approaches.
Collapse
|
5
|
The role of endothelial cells in cystic fibrosis. J Cyst Fibros 2019; 18:752-761. [DOI: 10.1016/j.jcf.2019.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/18/2019] [Accepted: 07/23/2019] [Indexed: 12/22/2022]
|
6
|
Eldridge L, Wagner EM. Angiogenesis in the lung. J Physiol 2018; 597:1023-1032. [PMID: 30022479 DOI: 10.1113/jp275860] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
Both systemic (tracheal and bronchial) and pulmonary circulations perfuse the lung. However, documentation of angiogenesis of either is complicated by the presence of the other. Well-documented angiogenesis of the systemic circulations have been identified in asthma, cystic fibrosis, chronic thromboembolism and primary carcinomas. Angiogenesis of the vasa vasorum, which are branches of bronchial arteries, is seen in the walls of large pulmonary vessels after a period of chronic hypoxia. Documentation of increased pulmonary capillaries has been shown in models of chronic hypoxia, after pneumonectomy and in some carcinomas. Although endothelial cell proliferation may occur as part of the repair process in several pulmonary diseases, it is separate from the unique establishment of new functional perfusing networks defined as angiogenesis. Identification of the mechanisms driving the expansion of new vascular beds in the adult needs further investigation. Yet the growth factors and molecular mechanisms of lung angiogenesis remain difficult to separate from underlying disease sequelae.
Collapse
Affiliation(s)
- Lindsey Eldridge
- Departments of Medicine and Environmental Health Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth M Wagner
- Departments of Medicine and Environmental Health Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
7
|
Valdivieso ÁG, Mori C, Clauzure M, Massip-Copiz M, Santa-Coloma TA. CFTR modulates RPS27 gene expression using chloride anion as signaling effector. Arch Biochem Biophys 2017; 633:103-109. [DOI: 10.1016/j.abb.2017.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/13/2017] [Accepted: 09/20/2017] [Indexed: 12/13/2022]
|
8
|
Town JA, Monroe EJ, Aitken ML. Deaths Related to Bronchial Arterial Embolization in Patients With Cystic Fibrosis: Three Cases and an Institutional Review. Chest 2017; 150:e93-e98. [PMID: 27719829 DOI: 10.1016/j.chest.2016.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/27/2016] [Accepted: 03/02/2016] [Indexed: 10/20/2022] Open
Abstract
Cystic fibrosis (CF) patients are at risk for life-threatening hemoptysis, sometimes necessitating bronchial arterial embolization (BAE). Spinal artery embolization and pulmonary infarction are commonly cited procedural risks, yet respiratory failure and death are underappreciated. We conducted a retrospective institutional review of our outcomes after BAE for hemoptysis in CF and present three cases highlighting this complication. From 2007 to 2015, 12 patients underwent 17 BAE procedures for hemoptysis at our institution. Three patients experienced respiratory failure and died within 3 months of BAE. Nonsurvivors had significantly lower baseline FEV1 values than survivors (21.8% vs 52.6%, P < .05). BAE as a treatment for life-threatening hemoptysis may precipitate respiratory failure in end-stage CF and should accelerate the evaluation for lung transplantation. Institutions should reevaluate their BAE practices to ensure preservation of the bronchial circulation, which contributes to gas exchange in these patients.
Collapse
Affiliation(s)
- James A Town
- Division of Pulmonary and Critical Care, Department of Medicine, University of Washington, Seattle, WA.
| | - Eric J Monroe
- Department of Radiology, Seattle Childrens, Seattle, WA
| | - Moira L Aitken
- Division of Pulmonary and Critical Care, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
9
|
Liu YZ, Roy-Engel AM, Baddoo MC, Flemington EK, Wang G, Wang H. The impact of oil spill to lung health--Insights from an RNA-seq study of human airway epithelial cells. Gene 2015; 578:38-51. [PMID: 26692141 DOI: 10.1016/j.gene.2015.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
The Deepwater Horizon oil spill (BP oil spill) in the Gulf of Mexico was a unique disaster event, where a huge amount of oil spilled from the sea bed and a large volume of dispersants were applied to clean the spill. The operation lasted for almost 3 months and involved >50,000 workers. The potential health hazards to these workers may be significant as previous research suggested an association of persistent respiratory symptoms with exposure to oil and oil dispersants. To reveal the potential effects of oil and oil dispersants on the respiratory system at the molecular level, we evaluated the transcriptomic profile of human airway epithelial cells grown under treatment of crude oil, the dispersants Corexit 9500 and Corexit 9527, and oil-dispersant mixtures. We identified a very strong effect of Corexit 9500 treatment, with 84 genes (response genes) differentially expressed in treatment vs. control samples. We discovered an interactive effect of oil-dispersant mixtures; while no response gene was found for Corexit 9527 treatment alone, cells treated with Corexit 9527+oil mixture showed an increased number of response genes (46 response genes), suggesting a synergic effect of 9527 with oil on airway epithelial cells. Through GO (gene ontology) functional term and pathway-based analysis, we identified upregulation of gene sets involved in angiogenesis and immune responses and downregulation of gene sets involved in cell junctions and steroid synthesis as the prevailing transcriptomic signatures in the cells treated with Corexit 9500, oil, or Corexit 9500+oil mixture. Interestingly, these key molecular signatures coincide with important pathological features observed in common lung diseases, such as asthma, cystic fibrosis and chronic obstructive pulmonary disease. Our study provides mechanistic insights into the detrimental effects of oil and oil dispersants to the respiratory system and suggests significant health impacts of the recent BP oil spill to those people involved in the cleaning operation.
Collapse
Affiliation(s)
- Yao-Zhong Liu
- Dept. of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.
| | - Astrid M Roy-Engel
- Dept. of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Tulane Cancer Center, Tulane University, New Orleans, LA, USA
| | - Melody C Baddoo
- Tulane Cancer Center, Tulane University, New Orleans, LA, USA; Dept. of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Erik K Flemington
- Tulane Cancer Center, Tulane University, New Orleans, LA, USA; Dept. of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Guangdi Wang
- Dept. of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - He Wang
- Dept. of Chronic Respiratory Diseases, School of Health Sciences, University of Newcastle, Callaghan, Australia.
| |
Collapse
|
10
|
Chauvet S, Traboulsi W, Thevenon L, Kouadri A, Feige JJ, Camara B, Alfaidy N, Benharouga M. EG-VEGF, BV8, and their receptor expression in human bronchi and their modification in cystic fibrosis: Impact of CFTR mutation (delF508). Am J Physiol Lung Cell Mol Physiol 2015; 309:L314-22. [PMID: 26047640 DOI: 10.1152/ajplung.00382.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/22/2015] [Indexed: 12/22/2022] Open
Abstract
Enhanced lung angiogenesis has been reported in cystic fibrosis (CF). Recently, two highly homologous ligands, endocrine gland vascular endothelial growth factor (EG-VEGF) and mammalian Bv8, have been described as new angiogenic factors. Both ligands bind and activate two closely related G protein-coupled receptors, the prokineticin receptor (PROKR) 1 and 2. Yet, the expression, regulation, and potential role of EG-VEGF, BV8, and their receptors in normal and CF lung are still unknown. The expression of the receptors and their ligands was examined using molecular, biochemical, and immunocytochemistry analyses in lungs obtained from CF patients vs. control and in normal and CF bronchial epithelial cells. Cystic fibrosis transmembrane conductance regulator (CFTR) activity was evaluated in relation to both ligands, and concentrations of EG-VEGF were measured by ELISA. At the mRNA level, EG-VEGF, BV8, and PROKR2 gene expression was, respectively, approximately five, four, and two times higher in CF lungs compared with the controls. At the cellular level, both the ligands and their receptors showed elevated expressions in the CF condition. Similar results were observed at the protein level. The EG-VEGF secretion was apical and was approximately two times higher in CF compared with the normal epithelial cells. This secretion was increased following the inhibition of CFTR chloride channel activity. More importantly, EG-VEGF and BV8 increased the intracellular concentration of Ca(2+) and cAMP and stimulated CFTR-chloride channel activity. Altogether, these data suggest local roles for epithelial BV8 and EG-VEGF in the CF airway peribronchial vascular remodeling and highlighted the role of CFTR activity in both ligand biosynthesis and secretion.
Collapse
Affiliation(s)
- Sylvain Chauvet
- Centre National de la Recherche Scientifique, LCBM-UMR 5249, Grenoble, France; Commissariat à l'Energie Atomique, DSV-iRTSV, Grenoble, France; Grenoble Alpes Université, Grenoble, France
| | - Wael Traboulsi
- Commissariat à l'Energie Atomique, DSV-iRTSV, Grenoble, France; Grenoble Alpes Université, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France; and
| | - Laura Thevenon
- Commissariat à l'Energie Atomique, DSV-iRTSV, Grenoble, France; Grenoble Alpes Université, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France; and
| | - Amal Kouadri
- Centre National de la Recherche Scientifique, LCBM-UMR 5249, Grenoble, France; Commissariat à l'Energie Atomique, DSV-iRTSV, Grenoble, France; Grenoble Alpes Université, Grenoble, France
| | - Jean-Jacques Feige
- Commissariat à l'Energie Atomique, DSV-iRTSV, Grenoble, France; Grenoble Alpes Université, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France; and
| | - Boubou Camara
- Centre de Ressources et de Compétences pour la Mucoviscidose, Clinique Universitaire de Pneumologie-Pole Thorax et Vaisseaux, CHU de Grenoble, France
| | - Nadia Alfaidy
- Commissariat à l'Energie Atomique, DSV-iRTSV, Grenoble, France; Grenoble Alpes Université, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France; and
| | - Mohamed Benharouga
- Centre National de la Recherche Scientifique, LCBM-UMR 5249, Grenoble, France; Commissariat à l'Energie Atomique, DSV-iRTSV, Grenoble, France; Grenoble Alpes Université, Grenoble, France;
| |
Collapse
|
11
|
Tan W, Tan Q, Wang T, Cheng Z. TGF-β1-Induced Pulmonary Fibroblasts Proliferation and Differentiation Are Inhibited by Antisense Oligodeoxynucleotide of Basic Fibroblast Growth Factor. CYTOLOGIA 2015. [DOI: 10.1508/cytologia.80.331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Weijun Tan
- Department of Respiratory Medicine, ZhongNan Hospital of WuHan University
| | - Qiuyue Tan
- Department of Respiratory Medicine, ZhongNan Hospital of WuHan University
| | - Ting Wang
- Department of Respiratory Medicine, ZhongNan Hospital of WuHan University
| | - Zhenshun Cheng
- Department of Respiratory Medicine, ZhongNan Hospital of WuHan University
| |
Collapse
|
12
|
Jackson AA, Daniels EF, Hammond JH, Willger SD, Hogan DA. Global regulator Anr represses PlcH phospholipase activity in Pseudomonas aeruginosa when oxygen is limiting. MICROBIOLOGY-SGM 2014; 160:2215-2225. [PMID: 25073853 DOI: 10.1099/mic.0.081158-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Haemolytic phospholipase C (PlcH) is a potent virulence and colonization factor that is expressed at high levels by Pseudomonas aeruginosa within the mammalian host. The phosphorylcholine liberated from phosphatidylcholine and sphingomyelin by PlcH is further catabolized into molecules that both support growth and further induce plcH expression. We have shown previously that the catabolism of PlcH-released choline leads to increased activity of Anr, a global transcriptional regulator that promotes biofilm formation and virulence. Here, we demonstrated the presence of a negative feedback loop in which Anr repressed plcH transcription and we proposed that this regulation allowed for PlcH levels to be maintained in a way that promotes productive host-pathogen interactions. Evidence for Anr-mediated regulation of PlcH came from data showing that growth at low oxygen (1%) repressed PlcH abundance and plcH transcription in the WT, and that plcH transcription was enhanced in an Δanr mutant. The plcH promoter featured an Anr consensus sequence that was conserved across all P. aeruginosa genomes and mutation of conserved nucleotides within the Anr consensus sequence increased plcH expression under hypoxic conditions. The Anr-regulated transcription factor Dnr was not required for this effect. The loss of Anr was not sufficient to completely derepress plcH transcription as GbdR, a positive regulator of plcH, was required for expression. Overexpression of Anr was sufficient to repress plcH transcription even at 21 % oxygen. Anr repressed plcH expression and phospholipase C activity in a cell culture model for P. aeruginosa-epithelial cell interactions.
Collapse
Affiliation(s)
- Angelyca A Jackson
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 208 Vail Building, Hanover, NH 03755, USA
| | - Emily F Daniels
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 208 Vail Building, Hanover, NH 03755, USA
| | - John H Hammond
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 208 Vail Building, Hanover, NH 03755, USA
| | - Sven D Willger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 208 Vail Building, Hanover, NH 03755, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 208 Vail Building, Hanover, NH 03755, USA
| |
Collapse
|
13
|
Harmel-Laws E, Mann EA, Cohen MB, Steinbrecher KA. Guanylate cyclase C deficiency causes severe inflammation in a murine model of spontaneous colitis. PLoS One 2013; 8:e79180. [PMID: 24244444 PMCID: PMC3823613 DOI: 10.1371/journal.pone.0079180] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/20/2013] [Indexed: 12/18/2022] Open
Abstract
Background Guanylate Cyclase C (GC-C; Gucy2c) is a transmembrane receptor expressed in intestinal epithelial cells. Activation of GC-C by its secreted ligand guanylin stimulates intestinal fluid secretion. Familial mutations in GC-C cause chronic diarrheal disease or constipation and are associated with intestinal inflammation and infection. Here, we investigated the impact of GC-C activity on mucosal immune responses. Methods We utilized intraperitoneal injection of lipopolysaccharide to elicit a systemic cytokine challenge and then measured pro-inflammatory gene expression in colonic mucosa. GC-C+/+ and GC-C−/− mice were bred with interleukin (IL)-10 deficient animals and colonic inflammation were assessed. Immune cell influx and cytokine/chemokine expression was measured in the colon of wildtype, IL-10−/−, GC-C+/+IL-10−/− and GC-C−/−IL-10−/− mice. GC-C and guanylin production were examined in the colon of these animals and in a cytokine-treated colon epithelial cell line. Results Relative to GC-C+/+ animals, intraperitoneal lipopolysaccharide injection into GC-C−/− mice increased proinflammatory gene expression in both whole colon tissue and in partially purified colonocyte isolations. Spontaneous colitis in GC-C−/−IL-10−/− animals was significantly more severe relative to GC-C+/+IL-10−/− mice. Unlike GC-C+/+IL-10−/− controls, colon pathology in GC-C−/−IL-10−/− animals was apparent at an early age and was characterized by severely altered mucosal architecture, crypt abscesses, and hyperplastic subepithelial lesions. F4/80 and myeloperoxidase positive cells as well as proinflammatory gene expression were elevated in GC-C−/−IL-10−/− mucosa relative to control animals. Guanylin was diminished early in colitis in vivo and tumor necrosis factor α suppressed guanylin mRNA and protein in intestinal goblet cell-like HT29-18-N2 cells. Conclusions The GC-C signaling pathway blunts colonic mucosal inflammation that is initiated by systemic cytokine burst or loss of mucosal immune cell immunosuppression. These data as well as the apparent intestinal inflammation in human GC-C mutant kindred underscore the importance of GC-C in regulating the response to injury and inflammation within the gut.
Collapse
Affiliation(s)
- Eleana Harmel-Laws
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Elizabeth A. Mann
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Mitchell B. Cohen
- Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati, Ohio, United States of America
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kris A. Steinbrecher
- Department of Pediatrics, University of Cincinnati College of Medicine Cincinnati, Ohio, United States of America
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
14
|
Aortopulmonary collateral flow in cystic fibrosis assessed with phase-contrast MRI. Pediatr Radiol 2013; 43:1279-86. [PMID: 23677424 PMCID: PMC3783548 DOI: 10.1007/s00247-013-2708-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/07/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) is a common genetic disease in Caucasians. Chronic pulmonary disease with progressive destruction of the pulmonary parenchyma is two of the major morbidities, but the relationship between clinical severity of CF and aortopulmonary collateral blood flow has not been assessed. OBJECTIVE The purpose of this study is to measure changes in aortopulmonary collateral blood flow by phase-contrast magnetic resonance imaging (MRI) in children with CF across the spectrum of disease severity as measured by the forced expiratory volume in one second as percent predicted value (FEV1% predicted). MATERIALS AND METHODS Sixteen patients with CF were prospectively evaluated. Eight were classified as having mild CF lung disease (FEV1 ≥80% predicted) and eight were classified as having moderate to severe CF lung disease (FEV1 <80% predicted). Seventeen age- and gender-matched non-CF subjects without cardiac or lung disease served as controls. Phase-contrast flow was measured at the ascending aorta, main pulmonary artery and both pulmonary arteries. Aortopulmonary collateral blood flow was calculated for each subject. The relationship between collateral flow and FEV1% predicted was modeled using nonparametric regression. Group differences were assessed by analysis of variance. RESULTS Aortopulmonary collateral blood flow began to increase as FEV1% predicted in subjects with CF fell below 101.5% with significant further increase in the aortopulmonary collateral blood flow in the subjects with CF with moderate to severe lung disease compared to controls (0.89 vs. 0.20 L/min, P < 0.0001). Aortopulmonary collateral blood flow correlated negatively with FEV1% predicted (r=0.70, P = 0.0050) confirming its relationship to this established marker of disease severity. There was no statistically significant difference in results obtained from two independent observers. CONCLUSION These preliminary findings suggest that phase-contrast MRI can be performed reliably with consistent results and without interobserver variability. While the aortopulmonary collateral blood flow is within the normal range in subjects with mild CF disease, it begins to increase even when lung function is still in the normal range. A significant increase in the aortopulmonary collateral blood flow compared to controls is measured in patients with moderate to severe CF lung disease. The studies support the notion that aortopulmonary collateral blood flow may serve as a novel and sensitive biomarker of early pulmonary disease in cystic fibrosis.
Collapse
|
15
|
Dewerchin M, Carmeliet P. PlGF: a multitasking cytokine with disease-restricted activity. Cold Spring Harb Perspect Med 2012; 2:cshperspect.a011056. [PMID: 22908198 DOI: 10.1101/cshperspect.a011056] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Placental growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family that also comprises VEGF-A (VEGF), VEGF-B, VEGF-C, and VEGF-D. Unlike VEGF, PlGF is dispensable for development and health but has diverse nonredundant roles in tissue ischemia, malignancy, inflammation, and multiple other diseases. Genetic and pharmacological gain-of-function and loss-of-function studies have identified molecular mechanisms of this multitasking cytokine and characterized the therapeutic potential of delivering or blocking PlGF for various disorders.
Collapse
Affiliation(s)
- Mieke Dewerchin
- Laboratory of Angiogenesis and Neurovascular Link, VIB Vesalius Research Center, K.U. Leuven, Leuven, Belgium
| | | |
Collapse
|
16
|
Watts KD, McColley SA. Elevated vascular endothelial growth factor is correlated with elevated erythropoietin in stable, young cystic fibrosis patients. Pediatr Pulmonol 2011; 46:683-7. [PMID: 21365780 DOI: 10.1002/ppul.21428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 11/02/2010] [Accepted: 11/11/2010] [Indexed: 11/06/2022]
Abstract
Angiogenesis is an important mechanism of airway remodeling in lung disease. We previously demonstrated that serum vascular endothelial growth factor (VEGF) is elevated in cystic fibrosis (CF) patients and declines with therapy for pulmonary exacerbation. We hypothesized that VEGF is elevated early in the course of CF and is associated with markers of tissue hypoxia. A prospective, single-visit evaluation of thirty stable infants and children with CF was performed. Serum was analyzed for VEGF and for other markers of tissue hypoxia (erythropoietin (EPO), insulin-like growth factor binding protein-1 (IGFBP-1)) and for inflammatory mediators (IL-1 beta, IL-6, IL-8, and tumor necrosis factor alpha (TNFα)) using Meso Scale multi-spot serum immunoassays. Measurements were correlated between assay groups; and with age in months and pulmonary function (FEV0.5 or FEV1). VEGF, EPO, TNFα and IL-8 were elevated compared to published normative values. VEGF levels were not significantly correlated with any inflammatory mediators. However, VEGF correlated with EPO (r=0.505; P<0.05). There was no correlation between lung function and markers of inflammation or tissue hypoxia. VEGF is elevated in young, stable infants and children suggesting angiogenesis as a contributing mechanism for early lung disease in CF. VEGF elevation does not show significant correlation with inflammatory mediators known to be increased in CF, but is significantly correlated with EPO levels. We propose that VEGF elevation and angiogenesis contribute to early lung disease and may result from a direct tissue hypoxia pathway in CF.
Collapse
Affiliation(s)
- Kimberly Danieli Watts
- The Division of Pulmonary Medicine, Children's Memorial Hospital, 2300 Children's Plaza, Chicago, IL 60614, USA.
| | | |
Collapse
|
17
|
Shaw JH, Xiang L, Shah A, Yin W, Lloyd PG. Placenta growth factor expression is regulated by hydrogen peroxide in vascular smooth muscle cells. Am J Physiol Cell Physiol 2010; 300:C349-55. [PMID: 21123739 DOI: 10.1152/ajpcell.00374.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When supply arteries become occluded, blood is diverted through preexisting collateral vessels. Shear stress arising from this increase in blood flow provides the initial physiological stimulus for expansion of the collateral circulation, a process termed arteriogenesis. Endothelial cells (EC) respond to increased shear stress by releasing a variety of mediators that can act on underlying smooth muscle cells (SMC). Placenta growth factor (PLGF) is known to mediate certain aspects of arteriogenesis, such as recruitment of monocytes to the vessel wall. Therefore, we tested whether SMC PLGF expression is influenced by mediators released by EC. We used A10 SMC cultured with medium that had been conditioned by EOMA EC for 4 days as a model. We found that EC-conditioned medium is able to upregulate PLGF gene expression in A10 SMC. Further experiments identified hydrogen peroxide (H(2)O(2)) as a key mediator of this response. We confirmed the physiological relevance of this mechanism in primary human coronary artery SMCs by demonstrating that exogenous H(2)O(2) specifically upregulates PLGF gene and protein expression. We also demonstrated that the physiological stimulus of shear stress raises endogenous H(2)O(2) levels in media into the range found to increase PLGF expression. In this study, we demonstrate that EC-released H(2)O(2) acts as a positive regulator of PLGF gene and protein expression in vascular SMC. To our knowledge, this is the first study to describe H(2)O(2) as a regulator of PLGF expression and therefore an upstream mediator of PLGF-driven arteriogenesis.
Collapse
Affiliation(s)
- Jennifer H Shaw
- Dept. of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
The lymphatic system is essential for the maintenance of tissue fluid balance, immune surveillance and the absorption of fatty acids in the gastrointestinal tract. The lymphatic circulation is also a key player in disease processes such as cancer metastasis, lymphedema and various inflammatory disorders. With the identification of specific growth factors for lymphatic endothelial cells and markers that distinguish blood and lymphatic vessels, as well as the development of in vivo imaging technologies that provide new tools to examine the lymphatic drainage function in real time, many advancements have been made in lymphatic vascular research during the past few years. Despite these significant achievements, our understanding of the role of lymphatics in disease processes other than cancer metastasis is still rather limited. The current review will focus on the recent progress made in studies of lymphatics in inflammatory disorders.
Collapse
Affiliation(s)
- Lianping Xing
- Department of Pathology and Laboratory Medicine, 601 Elmwood Avenue, Box 626, Rochester, NY 14642, USA.
| | | |
Collapse
|
19
|
Tabruyn SP, Mémet S, Avé P, Verhaeghe C, Mayo KH, Struman I, Martial JA, Griffioen AW. NF-kappaB activation in endothelial cells is critical for the activity of angiostatic agents. Mol Cancer Ther 2009; 8:2645-54. [PMID: 19706735 DOI: 10.1158/1535-7163.mct-09-0383] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In tumor cells, the transcription factor NF-kappaB has been described to be antiapoptotic and proproliferative and involved in the production of angiogenic factors such as vascular endothelial growth factor. From these data, a protumorigenic role of NF-kappaB has emerged. Here, we examined in endothelial cells whether NF-kappaB signaling pathway is involved in mediating the angiostatic properties of angiogenesis inhibitors. The current report describes that biochemically unrelated agents with direct angiostatic effect induced NF-kappaB activation in endothelial cells. Our data showed that endostatin, anginex, angiostatin, and the 16-kDa N-terminal fragment of human prolactin induced NF-kappaB activation in endothelial cells in both cultured human endothelial cells and in vivo in a mouse tumor model. It was also found that NF-kappaB activity was required for the angiostatic activity, because inhibition of NF-kappaB in endothelial cells impaired the ability of angiostatic agents to block sprouting of endothelial cells and to overcome endothelial cell anergy. Therefore, activation of NF-kappaB in endothelial cells can result in an unexpected antitumor outcome. Based on these data, the current approach of systemic treatment with NF-kappaB inhibitors may therefore be revisited because NF-kappaB activation specifically targeted to endothelial cells might represent an efficient strategy for the treatment of cancer.
Collapse
Affiliation(s)
- Sebastien P Tabruyn
- Angiogenesis Laboratory, Department of Pathology, Research, School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hilliard TN, Zhu J, Farley R, Escudero-Garcia S, Wainwright BJ, Jeffery PK, Griesenbach U, Bush A, Davies JC, Alton EWFW. Nasal abnormalities in cystic fibrosis mice independent of infection and inflammation. Am J Respir Cell Mol Biol 2008; 39:19-25. [PMID: 18239192 DOI: 10.1165/rcmb.2007-0284oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It is not known whether the progressive airway changes in cystic fibrosis (CF) are all secondary to infection and inflammation. The CF mouse nose shares electrophysiologic and cellular properties with human CF airway epithelium. In the present work, we tested the hypothesis that structural abnormalities in the nasal mucosa of CF mice develop independent of infection and inflammation. We performed nasal lavage and subsequent serial coronal section through the nasal tissue of adult CF (mutations Cftr(TgHm1G551D) and Cftr(tm1Unc)-TgN((FABPCFTR))) and wild-type mice raised under normal housing conditions. Nasal tissue was also obtained from Day 17 embryos and newborn pups. Detailed histologic examination of the respiratory and olfactory epithelium within the nasal cavity was performed. Bacterial culture, cell count, and macrophage inflammatory protein-2 (MIP-2) concentration were assessed in nasal lavage fluid. Significantly thickened respiratory epithelium and increased mucous cell density was found in adult CF mice of both mutations compared with wild-type animals. In contrast, the olfactory epithelium was thinner, with a decreased cell density. Areas of lymphoid aggregates were found in CF mice but not in non-CF mice. There were no differences in bacterial growth, cell count, or MIP-2 concentrations. No genotype differences were observed in the embryonic or newborn periods. There are significant histologic changes in the nasal mucosa of adult CF mice, not associated with increased lumenal inflammation or bacterial content, and which are not present perinatally. These may be novel therapeutic targets.
Collapse
Affiliation(s)
- Tom N Hilliard
- Department of Gene Therapy, Emmanuel Kaye Building, 1b Manresa Road, London SW3 6LR, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Simcock DE, Kanabar V, Clarke GW, O'Connor BJ, Lee TH, Hirst SJ. Proangiogenic activity in bronchoalveolar lavage fluid from patients with asthma. Am J Respir Crit Care Med 2007; 176:146-53. [PMID: 17463417 DOI: 10.1164/rccm.200701-042oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Asthmatic airways have an increased number and size of vascular structures, which contribute to airflow obstruction and hyperresponsiveness. OBJECTIVES We examined whether proangiogenic mediators are elevated in bronchoalveolar lavage fluid (BALF) from subjects with asthma and if this translated to induction of angiogenesis. METHODS Angiogenic activity in BALF from 12 healthy, nonatopic subjects and 10 atopic subjects with mild asthma was evaluated by examining tubule formation at 11 days in cocultures of human endothelial cells with dermal fibroblasts. Vascular structures were visualized by anti-CD31 labeling and quantified by image analysis. Angiogenic growth factors in BALF from healthy subjects and subjects with asthma were identified using antibody arrays and by ELISA. MEASUREMENTS AND MAIN RESULTS Angiogenic activity induced by BALF from healthy subjects was not different from basal tubule formation (p>0.05). However, induction of tubular structures by asthmatic BALF was 2.5-fold greater (p<0.001) compared with healthy samples. Similarly, levels of proangiogenic growth factors (angiogenin, vascular endothelial growth factor [VEGF], monocyte chemotactic protein-1) were increased approximately 2.5-fold (p<0.05) in BALF from subjects with asthma, whereas antiangiogenic factors (endostatin, Ang-2) were unchanged. A blocking anti-VEGF antibody abolished tubule formation induced by BALF from either healthy subjects or subjects with asthma (p<0.01). Immunodepletion of VEGF had no effect on basal tubule formation induced by healthy BALF but abrogated enhanced tubule formation by asthmatic BALF (p<0.01). CONCLUSIONS BALF collected from subjects with asthma but not healthy subjects is functionally active in promoting angiogenesis in vitro. The proangiogenic capacity of BALF from subjects with asthma resides in elevated VEGF derived from asthmatic airways. This observation supports VEGF as a key factor in vascular remodeling in asthma.
Collapse
Affiliation(s)
- David E Simcock
- King's College London, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, Allergy & Lung Biology, Thomas Guy House, Guy's Hospital Campus, London SE1 9RT, UK
| | | | | | | | | | | |
Collapse
|