1
|
Castillo-Quan JI, Steinbaugh MJ, Fernández-Cárdenas LP, Pohl NK, Wu Z, Zhu F, Moroz N, Teixeira V, Bland MS, Lehrbach NJ, Moronetti L, Teufl M, Blackwell TK. An antisteatosis response regulated by oleic acid through lipid droplet-mediated ERAD enhancement. SCIENCE ADVANCES 2023; 9:eadc8917. [PMID: 36598980 PMCID: PMC9812393 DOI: 10.1126/sciadv.adc8917] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/23/2022] [Indexed: 05/19/2023]
Abstract
Although excessive lipid accumulation is a hallmark of obesity-related pathologies, some lipids are beneficial. Oleic acid (OA), the most abundant monounsaturated fatty acid (FA), promotes health and longevity. Here, we show that OA benefits Caenorhabditis elegans by activating the endoplasmic reticulum (ER)-resident transcription factor SKN-1A (Nrf1/NFE2L1) in a lipid homeostasis response. SKN-1A/Nrf1 is cleared from the ER by the ER-associated degradation (ERAD) machinery and stabilized when proteasome activity is low and canonically maintains proteasome homeostasis. Unexpectedly, OA increases nuclear SKN-1A levels independently of proteasome activity, through lipid droplet-dependent enhancement of ERAD. In turn, SKN-1A reduces steatosis by reshaping the lipid metabolism transcriptome and mediates longevity from OA provided through endogenous accumulation, reduced H3K4 trimethylation, or dietary supplementation. Our findings reveal an unexpected mechanism of FA signal transduction, as well as a lipid homeostasis pathway that provides strategies for opposing steatosis and aging, and may mediate some benefits of the OA-rich Mediterranean diet.
Collapse
Affiliation(s)
- Jorge Iván Castillo-Quan
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Michael J. Steinbaugh
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Laura Paulette Fernández-Cárdenas
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Nancy K. Pohl
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Ziyun Wu
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Feimei Zhu
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Natalie Moroz
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Biology Department, Emmanuel College, Boston, MA, USA
| | - Veronica Teixeira
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Monet S. Bland
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Nicolas J. Lehrbach
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Lorenza Moronetti
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Magdalena Teufl
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - T. Keith Blackwell
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
- Corresponding author.
| |
Collapse
|
2
|
de Sosa I, Verdes A, Tilikj N, Marchán DF, Planelló R, Herrero Ó, Almodóvar A, Cosín DD, Novo M. How to thrive in unstable environments: Gene expression profile of a riparian earthworm under abiotic stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152749. [PMID: 34990683 DOI: 10.1016/j.scitotenv.2021.152749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Nowadays, extreme weather events caused by climate change are becoming more frequent. This leads to the occurrence of extreme habitats to which species must adapt. This challenge becomes crucial for species living in unstable environments, such as the riparian earthworm Eiseniella tetraedra. Its cosmopolitan distribution exposes it to various environmental changes, such as freezing in subarctic regions or droughts in Mediterranean areas. Transcriptional changes under cold and desiccation conditions could therefore shed light on the adaptive mechanisms of this species. An experiment was performed for each condition. In the cold experiment, the temperature was lowered to -14 °C ± 2 °C (compared to 8 °C for control samples), and in the desiccation treatment, humidity was lowered from 60% to 15%. Comparisons of gene expression levels between earthworms under freezing conditions and control earthworms revealed a total of 84 differentially expressed genes and comparisons between the desiccation experiment and the control yielded 163 differentially expressed genes. However, no common responses were found between the two treatments. The results suggest that E. tetraedra can acclimate to low temperatures due to the upregulation of genes involved in glucose accumulation. However, downregulation of the respiratory chain suggests that this earthworm does not tolerate freezing conditions. Under desiccation conditions, genes involved in cell protection from apoptosis and DNA repair were upregulated. In contrast, lipid metabolism was downregulated, presumably to conserve resources by reducing the rate at which they are consumed.
Collapse
Affiliation(s)
- Irene de Sosa
- Biodiversity, Ecology and Evolution Department, Faculty of Biology, Complutense University of Madrid, C/José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Aída Verdes
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, C/Jose Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Natasha Tilikj
- Biodiversity, Ecology and Evolution Department, Faculty of Biology, Complutense University of Madrid, C/José Antonio Nováis 12, 28040 Madrid, Spain
| | - Daniel F Marchán
- CEFE, UMR 5175, CNRS-Univ Montpellier-Univ Paul-Valéry-EPHE-SupAgro Montpellier-INRA-IRD, Montpellier, France
| | - Rosario Planelló
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), Campus UNED Las Rozas, Avda. Esparta s/n, 28232, Las Rozas de Madrid, Madrid, Spain
| | - Óscar Herrero
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), Campus UNED Las Rozas, Avda. Esparta s/n, 28232, Las Rozas de Madrid, Madrid, Spain
| | - Ana Almodóvar
- Biodiversity, Ecology and Evolution Department, Faculty of Biology, Complutense University of Madrid, C/José Antonio Nováis 12, 28040 Madrid, Spain
| | - Darío Díaz Cosín
- Biodiversity, Ecology and Evolution Department, Faculty of Biology, Complutense University of Madrid, C/José Antonio Nováis 12, 28040 Madrid, Spain
| | - Marta Novo
- Biodiversity, Ecology and Evolution Department, Faculty of Biology, Complutense University of Madrid, C/José Antonio Nováis 12, 28040 Madrid, Spain
| |
Collapse
|
3
|
Zhang M, Yu Q, Liu Z, Liang C, Zhang B, Li M. UBX domain-containing proteins are involved in lipid homeostasis and stress responses in Pichia pastoris. Int J Biochem Cell Biol 2017; 90:136-144. [PMID: 28807601 DOI: 10.1016/j.biocel.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022]
Abstract
Ubiquitin regulatory X (UBX) domain-containing proteins constitute a family of proteins and are substrate adaptors of AAA ATPase Cdc48. UBX proteins can bind to the N-terminal region of Cdc48 to perform endoplasmic reticulum associated protein degradation (ERAD). In this study, we identified two UBX domain-containing proteins, Ubx1 and Ubx2, in Pichia pastoris and found that the two proteins could recover the growth defect of Saccharomyces cerevisiae in ubx2Δ. Our results revealed that Ubx1 and Ubx2 play critical roles in synthesis of unsaturated fatty acids by affecting Spt23. In addition, the results demonstrated that both Ubx1 and Ubx2 are involved in lipid droplet formation and protein degradation. Deletion of UBX1 led to increased sensitivity to oxidative stress and disruption of UBX2 impaired cell viability under osmotic stress. The phenotypes of ubx1Δ+UBX2, ubx2Δ+UBX1 and ubx1Δubx2Δ and RNA-seq data suggested that Ubx1 and Ubx2 play different roles in cell functions, and the roles of Ubx1 may be more numerous than Ubx2. In summary, our findings provide new insights into the relationship between lipid homeostasis and cell functions in the oil-producing organism P. pastoris.
Collapse
Affiliation(s)
- Meng Zhang
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China.
| | - Qilin Yu
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China.
| | - Zhe Liu
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China.
| | - Chen Liang
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China.
| | - Biao Zhang
- Tianjin Traditional Chinese Medicine University, Tianjin, 300193, PR China.
| | - Mingchun Li
- Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
4
|
He ZB, Xie Y, Si FL, Chen B. Identification and characterization of a gene encoding a UBX domain-containing protein in the migratory locust, Locusta migratoria manilensis. INSECT SCIENCE 2013; 20:497-504. [PMID: 23955945 DOI: 10.1111/j.1744-7917.2012.01548.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/16/2012] [Indexed: 06/02/2023]
Abstract
Ubiquitin regulatory X (UBX) domain-containing proteins are believed to function as cofactors for p97/CDC48, an adenosine triphosphatase shown to be involved in multiple cellular processes. In the present study, a full-length complementary DNA (cDNA) of UBX domain-containing gene, termed LmUBX1, was cloned from Locusta migratoria manilensis and characterized, using random amplification of cDNA ends polymerase chain reaction (RACE PCR), sequence analysis and quantitative real-time PCR. LmUBX1, 1 600 bp in length, is predicted to encode a 446-amino acid protein with a predicted molecular weight of 51.18 kDa that contains a central PUB domain and a carboxy-terminal UBX domain. Homology analysis revealed that LmUBX1 has higher similarity to the known UBX domain-containing proteins from insects than from other species. Moreover, based on sequence characteristics and phylogenetic relationships, it is suggested that LmUBX1 can be classified into the UBXD1 subfamily. Expression analysis founded that LmUBX1 exhibited significant expression variations at different developmental stages and in different tissues, suggesting that the expression of LmUBX1 was highly regulated. Interestingly, its messenger RNA transcript was more abundant in ovary and testis than in other tissues examined, suggesting that it may have more important roles in the reproductive system. In addition, LmUBX1 was differentially expressed in gregarious and solitary locusts and was significantly up-regulated in third and fifth instars of gregarious locusts, implying that LmUBX1 was also likely involved in the phase polyphenisms in L. migratoria manilensis. To our knowledge, this is the first report of cloning of a full-length cDNA of UBX domain-containing gene from L. migratoria manilensis.
Collapse
Affiliation(s)
- Zheng-Bo He
- Institute of Entomology and Molecular Biology, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | | | | | | |
Collapse
|
5
|
Sasagawa Y, Yamanaka K, Saito-Sasagawa Y, Ogura T. Caenorhabditis elegans UBX cofactors for CDC-48/p97 control spermatogenesis. Genes Cells 2010; 15:1201-15. [PMID: 20977550 DOI: 10.1111/j.1365-2443.2010.01454.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UBX (ubiquitin regulatory X) domain-containing proteins act as cofactors for CDC-48/p97. CDC-48/p97 is essential for various cellular processes including retro-translocation in endoplasmic reticulum-associated degradation, homotypic membrane fusion, nuclear envelope assembly, degradation of ubiquitylated proteins, and cell cycle progression. CDC-48/p97-dependent processes are determined by differential binding of cofactors including UBX proteins, but the cellular functions of UBX proteins have not yet been elucidated, especially in multicellular organisms. Therefore, we investigated the functions of UBX family members using Caenorhabditis elegans, which expresses six UBX proteins, UBXN-1 to UBXN-6. All six UBXN proteins directly interacted with CDC-48.1 and CDC-48.2, and simultaneous knockdown of the expression of three genes, ubxn-1, ubxn-2 and ubxn-3, induced embryonic lethal and sterile phenotypes, but knockdown of either one or two did not. The sterile worms had a feminized germ-line phenotype, producing oocytes but no sperm. UBXN-1, UBXN-2 and UBXN-3 colocalized with CDC-48 in spermatocytes but not mature sperm. TRA-1A, which is a key factor in the sex determination pathway and inhibits spermatogenesis, accumulated in worms in which UBXN-1, UBXN-2 and UBXN-3 had been simultaneously knocked down. Taken together, these results suggest that UBXN-1, UBXN-2 and UBXN-3 are redundant cofactors for CDC-48/p97 and control spermatogenesis via the degradation of TRA-1A.
Collapse
Affiliation(s)
- Yohei Sasagawa
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | |
Collapse
|
6
|
Lim PJ, Danner R, Liang J, Doong H, Harman C, Srinivasan D, Rothenberg C, Wang H, Ye Y, Fang S, Monteiro MJ. Ubiquilin and p97/VCP bind erasin, forming a complex involved in ERAD. J Cell Biol 2009; 187:201-17. [PMID: 19822669 PMCID: PMC2768832 DOI: 10.1083/jcb.200903024] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 09/23/2009] [Indexed: 01/17/2023] Open
Abstract
Unwanted proteins in the endoplasmic reticulum (ER) are exported into the cytoplasm and degraded by the proteasome through the ER-associated protein degradation pathway (ERAD). Disturbances in ERAD are linked to ER stress, which has been implicated in the pathogenesis of several human diseases. However, the composition and organization of ERAD complexes in human cells is still poorly understood. In this paper, we describe a trimeric complex that we propose functions in ERAD. Knockdown of erasin, a platform for p97/VCP and ubiquilin binding, or knockdown of ubiquilin in human cells slowed degradation of two classical ERAD substrates. In Caenorhabditis elegans, ubiquilin and erasin are ER stress-response genes that are regulated by the ire-1 branch of the unfolded protein response pathway. Loss of ubiquilin or erasin resulted in activation of ER stress, increased accumulation of polyubiquitinated proteins, and shortened lifespan in worms. Our results strongly support a role for this complex in ERAD and in the regulation of ER stress.
Collapse
Affiliation(s)
- Precious J. Lim
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201
| | - Rebecca Danner
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201
| | - Jing Liang
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201
| | - Howard Doong
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201
| | - Christine Harman
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201
| | - Deepa Srinivasan
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201
| | - Cara Rothenberg
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201
| | - Hongmin Wang
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201
| | - Yihong Ye
- National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892
| | - Shengyun Fang
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201
| | - Mervyn J. Monteiro
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD 21201
| |
Collapse
|
7
|
Sasagawa Y, Otani M, Higashitani N, Higashitani A, Sato K, Ogura T, Yamanaka K. Caenorhabditis elegans p97 controls germline-specific sex determination by controlling the TRA-1 level in a CUL-2-dependent manner. J Cell Sci 2009; 122:3663-72. [PMID: 19773360 DOI: 10.1242/jcs.052415] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
p97 (CDC-48 in Caenorhabditis elegans) is a ubiquitin-selective AAA (ATPases associated with diverse cellular activities) chaperone and its key function is to disassemble protein complexes. p97 functions in diverse cellular processes including endoplasmic reticulum (ER)-associated degradation, membrane fusion, and meiotic and mitotic progression. However, its cellular functions in development have not yet been clarified. Here, we present data that p97 is involved in the switch from spermatogenesis to oogenesis in the germline of the C. elegans hermaphrodite. We found that the cdc-48.1 deletion mutant produced less sperm than the wild type and thus showed a decreased brood size. The cdc-48.1 mutation suppressed the sperm-overproducing phenotypes of fbf-1 and fem-3(gf) mutants. In addition, the p97/CDC-48-UFD-1-NPL-4 complex interacted with the E3 ubiquitin ligase CUL-2 complex via NPL-4 binding to Elongin C. Furthermore, TRA-1A, which is the terminal effector of the sex determination pathway and is regulated by CUL-2-mediated proteolysis, accumulated in the cdc-48.1 mutant. Proteasome activity was also required for the brood size determination and sperm-oocyte switch. Our results demonstrate that the C. elegans p97/CDC-48-UFD-1-NPL-4 complex controls the sperm-oocyte switch by regulating CUL-2-mediated TRA-1A proteasome degradation.
Collapse
Affiliation(s)
- Yohei Sasagawa
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Braun RJ, Zischka H. Mechanisms of Cdc48/VCP-mediated cell death — from yeast apoptosis to human disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1418-35. [DOI: 10.1016/j.bbamcr.2008.01.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
|