1
|
Sampei C, Kato K, Arasaki Y, Kimura Y, Konno T, Otsuka K, Kohara Y, Noda M, Ezura Y, Hayata T. Gprc5a is a novel parathyroid hormone-inducible gene and negatively regulates osteoblast proliferation and differentiation. J Cell Physiol 2024; 239:e31297. [PMID: 38769895 DOI: 10.1002/jcp.31297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Teriparatide is a peptide derived from a parathyroid hormone (PTH) and an osteoporosis therapeutic drug with potent bone formation-promoting activity. To identify novel druggable genes that act downstream of PTH signaling and are potentially involved in bone formation, we screened PTH target genes in mouse osteoblast-like MC3T3-E1 cells. Here we show that Gprc5a, encoding an orphan G protein-coupled receptor, is a novel PTH-inducible gene and negatively regulates osteoblast proliferation and differentiation. PTH treatment induced Gprc5a expression in MC3T3-E1 cells, rat osteosarcoma ROS17/2.8 cells, and mouse femurs. Induction of Gprc5a expression by PTH occurred in the absence of protein synthesis and was mediated primarily via the cAMP pathway, suggesting that Gprc5a is a direct target of PTH signaling. Interestingly, Gprc5a expression was induced additively by co-treatment with PTH and 1α, 25-dihydroxyvitamin D3 (calcitriol), or retinoic acid in MC3T3-E1 cells. Reporter analysis of a 1 kb fragment of human GPRC5A promoter revealed that the promoter fragment showed responsiveness to PTH via the cAMP response element, suggesting that GPRC5A is also a PTH-inducible gene in humans. Gprc5a knockdown promoted cell viability and proliferation, as demonstrated by MTT and BrdU assays. Gprc5a knockdown also promoted osteoblast differentiation, as indicated by gene expression analysis and mineralization assay. Mechanistic studies showed that Gprc5a interacted with BMPR1A and suppressed BMP signaling induced by BMP-2 and constitutively active BMP receptors, ALK2 (ACVR1) Q207D and ALK3 (BMPR1A) Q233D. Thus, our results suggest that Gprc5a is a novel gene induced by PTH that acts in an inhibitory manner on both cell proliferation and osteoblast differentiation and is a candidate for drug targets for osteoporosis.
Collapse
Affiliation(s)
- Chisato Sampei
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Kosuke Kato
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Yasuhiro Arasaki
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Yuta Kimura
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Takuto Konno
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Kanon Otsuka
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Yukihiro Kohara
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Masaki Noda
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Department of Occupational Therapy, Faculty of Health and Medical Science, Teikyo Heisei University, Toshima-ku, Japan
| | - Tadayoshi Hayata
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences and Faculty of Pharmaceutical Science, Tokyo University of Science, Noda, Chiba, Japan
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Shakya R, Amonruttanapun P, Limboonreung T, Chongthammakun S. 17β-estradiol mitigates the inhibition of SH-SY5Y cell differentiation through WNT1 expression. Cells Dev 2023; 176:203881. [PMID: 37914154 DOI: 10.1016/j.cdev.2023.203881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/01/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
17β-estradiol (E2) and canonical WNT-signaling represent crucial regulatory pathways for microtubule dynamics and synaptic formation. However, it is unclear yet whether E2-induced canonical WNT ligands have significant impact on neurogenic repair under inflammatory condition. In this study, first, we prepared the chronic activated-microglial-conditioned media, known to be comprised of neuro-inflammatory components. Long term exposure of microglial conditioned media to SH-SY5Y cells showed a negative impact on differentiation markers, microtubule associated protein-2 (MAP2) and synaptophysin (SYP), which was successfully rescued by pre and co-treatment of 10 nM 17β-estradiol. The inhibition of estrogen receptors, ERα and ERβ significantly blocked the E2-mediated recovery in the expression of differentiation marker, SYP. Furthermore, the inflammatory inhibition of canonical signaling ligand, WNT1 was also found to be rescued by E2. To our surprise, E2 was unable to replicate this success with β-catenin, which is considered to be the intracellular transducer of canonical WNT signaling. However, WNT antagonist - Dkk1 blocked the E2-mediated recovery in the expression of the differentiation marker, MAP2. Therefore, our data suggests that E2-mediated recovery in SH-SY5Y differentiation follows a divergent pathway from the conventional canonical WNT signaling pathway, which seems to regulate microtubule stability without the involvement of β-catenin. This mechanism provides fresh insight into how estradiol contributes to the restoration of differentiation marker proteins in the context of chronic neuroinflammation.
Collapse
Affiliation(s)
- Rubina Shakya
- Department of Anatomy and Center for Neuroscience Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Anatomy, Kathmandu University, School of Medical Sciences, Dhulikhel, Kavre 11008, Nepal.
| | - Prateep Amonruttanapun
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani 12121, Thailand.
| | - Tanapol Limboonreung
- Department of Oral Biology, Faculty of Dentistry, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand.
| | - Sukumal Chongthammakun
- Department of Anatomy and Center for Neuroscience Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
3
|
Isu UH, Badiee SA, Khodadadi E, Moradi M. Cholesterol in Class C GPCRs: Role, Relevance, and Localization. MEMBRANES 2023; 13:301. [PMID: 36984688 PMCID: PMC10056374 DOI: 10.3390/membranes13030301] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
G-protein coupled receptors (GPCRs), one of the largest superfamilies of cell-surface receptors, are heptahelical integral membrane proteins that play critical roles in virtually every organ system. G-protein-coupled receptors operate in membranes rich in cholesterol, with an imbalance in cholesterol level within the vicinity of GPCR transmembrane domains affecting the structure and/or function of many GPCRs, a phenomenon that has been linked to several diseases. These effects of cholesterol could result in indirect changes by altering the mechanical properties of the lipid environment or direct changes by binding to specific sites on the protein. There are a number of studies and reviews on how cholesterol modulates class A GPCRs; however, this area of study is yet to be explored for class C GPCRs, which are characterized by a large extracellular region and often form constitutive dimers. This review highlights specific sites of interaction, functions, and structural dynamics involved in the cholesterol recognition of the class C GPCRs. We summarize recent data from some typical family members to explain the effects of membrane cholesterol on the structural features and functions of class C GPCRs and speculate on their corresponding therapeutic potential.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
4
|
Gur M, Edri T, Moody SA, Fainsod A. Retinoic Acid is Required for Normal Morphogenetic Movements During Gastrulation. Front Cell Dev Biol 2022; 10:857230. [PMID: 35531100 PMCID: PMC9068879 DOI: 10.3389/fcell.2022.857230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
Retinoic acid (RA) is a central regulatory signal that controls numerous developmental processes in vertebrate embryos. Although activation of Hox expression is considered one of the earliest functions of RA signaling in the embryo, there is evidence that embryos are poised to initiate RA signaling just before gastrulation begins, and manipulations of the RA pathway have been reported to show gastrulation defects. However, which aspects of gastrulation are affected have not been explored in detail. We previously showed that partial inhibition of RA biosynthesis causes a delay in the rostral migration of some of the earliest involuting cells, the leading edge mesendoderm (LEM) and the prechordal mesoderm (PCM). Here we identify several detrimental gastrulation defects resulting from inhibiting RA biosynthesis by three different treatments. RA reduction causes a delay in the progression through gastrulation as well as the rostral migration of the goosecoid-positive PCM cells. RA inhibition also hampered the elongation of explanted dorsal marginal zones, the compaction of the blastocoel, and the length of Brachet’s cleft, all of which indicate an effect on LEM/PCM migration. The cellular mechanisms underlying this deficit were shown to include a reduced deposition of fibronectin along Brachet’s cleft, the substrate for their migration, as well as impaired separation of the blastocoel roof and involuting mesoderm, which is important for the formation of Brachet’s cleft and successful LEM/PCM migration. We further show reduced non-canonical Wnt signaling activity and altered expression of genes in the Ephrin and PDGF signaling pathways, both of which are required for the rostral migration of the LEM/PCM, following RA reduction. Together, these experiments demonstrate that RA signaling performs a very early function critical for the progression of gastrulation morphogenetic movements.
Collapse
Affiliation(s)
- Michal Gur
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamir Edri
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
- *Correspondence: Sally A. Moody, ; Abraham Fainsod,
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Sally A. Moody, ; Abraham Fainsod,
| |
Collapse
|
5
|
Multi-species transcriptome meta-analysis of the response to retinoic acid in vertebrates and comparative analysis of the effects of retinol and retinoic acid on gene expression in LMH cells. BMC Genomics 2021; 22:146. [PMID: 33653267 PMCID: PMC7923837 DOI: 10.1186/s12864-021-07451-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background Retinol (RO) and its active metabolite retinoic acid (RA) are major regulators of gene expression in vertebrates and influence various processes like organ development, cell differentiation, and immune response. To characterize a general transcriptomic response to RA-exposure in vertebrates, independent of species- and tissue-specific effects, four publicly available RNA-Seq datasets from Homo sapiens, Mus musculus, and Xenopus laevis were analyzed. To increase species and cell-type diversity we generated RNA-seq data with chicken hepatocellular carcinoma (LMH) cells. Additionally, we compared the response of LMH cells to RA and RO at different time points. Results By conducting a transcriptome meta-analysis, we identified three retinoic acid response core clusters (RARCCs) consisting of 27 interacting proteins, seven of which have not been associated with retinoids yet. Comparison of the transcriptional response of LMH cells to RO and RA exposure at different time points led to the identification of non-coding RNAs (ncRNAs) that are only differentially expressed (DE) during the early response. Conclusions We propose that these RARCCs stand on top of a common regulatory RA hierarchy among vertebrates. Based on the protein sets included in these clusters we were able to identify an RA-response cluster, a control center type cluster, and a cluster that directs cell proliferation. Concerning the comparison of the cellular response to RA and RO we conclude that ncRNAs play an underestimated role in retinoid-mediated gene regulation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07451-2.
Collapse
|
6
|
Jin M, Gu S, Ye D, Li Y, Jing F, Li Q, Chen K. Association between genetic variants in the promoter region of a novel antisense long noncoding RNA RP11-392P7.6 and colorectal cancer risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:434-442. [PMID: 28612367 DOI: 10.1002/em.22100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
There is a widespread occurrence of antisense transcripts' regulation on cancer-related genes in cancer biology. RP11-392P7.6 is antisense to the coding region of cancer-related gene GPRC5D, which has been found recently. The aim of this study was to investigate the associations of tagSNPs in the promoter region of RP11-392P7.6 with the risk of colorectal cancer. We conducted a two-stage case-control study, with a discovery set (320 cases and 319 controls) and a validation set (501 cases and 538 controls). Four tagSNPs (rs1531970, rs1642199, rs4763903, and rs10845671) were selected based on 1000 Genomes Project data and genotyped by using the Sequenom MassARRAY genotyping platform. In the discovery set, three tagSNPs (rs1642199, rs4763903, and rs10845671) were revealed promising associations with the risk of colorectal cancer, among which the rs10845671 variants were further replicated in the validation set (OR = 1.47, 95% CI = 1.10-1.20 in heterozygote codominant model; OR = 1.38, 95% CI = 1.04-1.83 in dominant model). When combined the two sets, the above positive associations remained unchanged. Rs10845671 was found to be associated with an increased risk of colorectal cancer (OR = 1.43, 95% CI = 1.14-1.81 in heterozygote codominant model; OR = 1.35, 95% CI = 1.08-1.69 in dominant model). These findings indicate that rs10845671 may contribute to the susceptibility to colorectal cancer and be a candidate biomarker for colorectal cancer risk prediction. Environ. Mol. Mutagen. 58:434-442, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mingjuan Jin
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, Zhejiang, China
| | - Simeng Gu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, Zhejiang, China
| | - Ding Ye
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, Zhejiang, China
| | - Yingjun Li
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, Zhejiang, China
| | - Fangyuan Jing
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, Zhejiang, China
| | - Qilong Li
- Institute for Cancer Prevention of Jiashan County, Zhejiang, China
| | - Kun Chen
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, Zhejiang, China
| |
Collapse
|
7
|
Chung HJ, Kim JD, Kim KH, Jeong NY. G protein-coupled receptor, family C, group 5 (GPRC5B) downregulation in spinal cord neurons is involved in neuropathic pain. Korean J Anesthesiol 2014; 66:230-6. [PMID: 24729846 PMCID: PMC3983420 DOI: 10.4097/kjae.2014.66.3.230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 10/02/2013] [Accepted: 10/22/2013] [Indexed: 01/10/2023] Open
Abstract
Background G protein-coupled receptor, family C, group 5 (GPRC5B), a retinoic acid-inducible orphan G-protein-coupled receptor (GPCR), is a member of the group C metabotropic glutamate receptor family proteins presumably related in non-canonical Wnt signaling. In this study, we investigated altered GPRC5B expression in the dorsal horn of the spinal cord after spinal nerve injury and its involvement in the development of neuropathic pain. Methods After induction of anesthesia by intraperitoneal injection of pentobarbital (35 mg /kg), the left L5 spinal nerve at the level of 2 mm distal to the L5 DRG was tightly ligated with silk and cut just distal to the ligature. Seven days after nerve injury, animals were perfused with 4% paraformaldehyde, and the spinal cords were extracted and post-fixed at 4℃ overnight. To identify the expression of GPRC5B and analyze the involvement of GPRC5B in neuropathic pain, immunofluorescence was performed using several markers for neurons and glial cells in spinal cord tissue. Results After L5 spinal nerve ligation (SNL), the expression of GPRC5B was decreased in the ipsilateral part, as compared to the contralateral part, of the spinal dorsal horn. SNL induced the downregulation of GPRC5B in NeuN-positive neurons in the spinal dorsal horn. However, CNPase-positive oligodendrocytes, OX42-positive microglia, and GFAP-positive astrocytes were not immunolabeled with GPRC5B antibody in the spinal dorsal horn. Conclusions These results imply that L5 SNL-induced GPRC5B downregulation may affect microglial activation in the spinal dorsal horn and be involved in neuropathic pain.
Collapse
Affiliation(s)
- Hyung-Joo Chung
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Ju Deok Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Kyung Han Kim
- Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology and Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan, Korea
| |
Collapse
|
8
|
Fève M, Saliou JM, Zeniou M, Lennon S, Carapito C, Dong J, Van Dorsselaer A, Junier MP, Chneiweiss H, Cianférani S, Haiech J, Kilhoffer MC. Comparative expression study of the endo-G protein coupled receptor (GPCR) repertoire in human glioblastoma cancer stem-like cells, U87-MG cells and non malignant cells of neural origin unveils new potential therapeutic targets. PLoS One 2014; 9:e91519. [PMID: 24662753 PMCID: PMC3963860 DOI: 10.1371/journal.pone.0091519] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 02/10/2014] [Indexed: 12/22/2022] Open
Abstract
Glioblastomas (GBMs) are highly aggressive, invasive brain tumors with bad prognosis and unmet medical need. These tumors are heterogeneous being constituted by a variety of cells in different states of differentiation. Among these, cells endowed with stem properties, tumor initiating/propagating properties and particularly resistant to chemo- and radiotherapies are designed as the real culprits for tumor maintenance and relapse after treatment. These cells, termed cancer stem-like cells, have been designed as prominent targets for new and more efficient cancer therapies. G-protein coupled receptors (GPCRs), a family of membrane receptors, play a prominent role in cell signaling, cell communication and crosstalk with the microenvironment. Their role in cancer has been highlighted but remains largely unexplored. Here, we report a descriptive study of the differential expression of the endo-GPCR repertoire in human glioblastoma cancer stem-like cells (GSCs), U-87 MG cells, human astrocytes and fetal neural stem cells (f-NSCs). The endo-GPCR transcriptome has been studied using Taqman Low Density Arrays. Of the 356 GPCRs investigated, 138 were retained for comparative studies between the different cell types. At the transcriptomic level, eight GPCRs were specifically expressed/overexpressed in GSCs. Seventeen GPCRs appeared specifically expressed in cells with stem properties (GSCs and f-NSCs). Results of GPCR expression at the protein level using mass spectrometry and proteomic analysis are also presented. The comparative GPCR expression study presented here gives clues for new pathways specifically used by GSCs and unveils novel potential therapeutic targets.
Collapse
Affiliation(s)
- Marie Fève
- Laboratoire d'Innovation Thérapeutique, UMR7200, Laboratoire d'Excellence Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Jean-Michel Saliou
- Laboratoire de Spectrométrie de Masse BioOrganique, UMR7178, CNRS, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Maria Zeniou
- Laboratoire d'Innovation Thérapeutique, UMR7200, Laboratoire d'Excellence Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Sarah Lennon
- Laboratoire de Spectrométrie de Masse BioOrganique, UMR7178, CNRS, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, UMR7178, CNRS, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Jihu Dong
- Laboratoire d'Innovation Thérapeutique, UMR7200, Laboratoire d'Excellence Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse BioOrganique, UMR7178, CNRS, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Marie-Pierre Junier
- Neuroscience Paris Seine, UMR8246, Inserm U1130, Institut de Biologie Paris Seine, CNRS, Université Pierre et Marie Curie, Paris, France
| | - Hervé Chneiweiss
- Neuroscience Paris Seine, UMR8246, Inserm U1130, Institut de Biologie Paris Seine, CNRS, Université Pierre et Marie Curie, Paris, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, UMR7178, CNRS, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Jacques Haiech
- Laboratoire d'Innovation Thérapeutique, UMR7200, Laboratoire d'Excellence Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Marie-Claude Kilhoffer
- Laboratoire d'Innovation Thérapeutique, UMR7200, Laboratoire d'Excellence Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| |
Collapse
|
9
|
Kurabayashi N, Nguyen MD, Sanada K. The G protein-coupled receptor GPRC5B contributes to neurogenesis in the developing mouse neocortex. Development 2013; 140:4335-46. [PMID: 24089469 DOI: 10.1242/dev.099754] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural progenitor cells in the developing brain give rise to neurons and glia. Multiple extrinsic signalling molecules and their cognate membrane receptors have been identified to control neural progenitor fate. However, a role for G protein-coupled receptors in cell fate decisions in the brain remains largely putative. Here we show that GPRC5B, which encodes an orphan G protein-coupled receptor, is present in the ventricular surface of cortical progenitors in the mouse developing neocortex and is required for their neuronal differentiation. GPRC5B-depleted progenitors fail to adopt a neuronal fate and ultimately become astrocytes. Furthermore, GPRC5B-mediated signalling is associated with the proper regulation of β-catenin signalling, a pathway crucial for progenitor fate decision. Our study uncovers G protein-coupled receptor signalling in the neuronal fate determination of cortical progenitors.
Collapse
Affiliation(s)
- Nobuhiro Kurabayashi
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
10
|
Kam RKT, Shi W, Chan SO, Chen Y, Xu G, Lau CBS, Fung KP, Chan WY, Zhao H. Dhrs3 protein attenuates retinoic acid signaling and is required for early embryonic patterning. J Biol Chem 2013; 288:31477-87. [PMID: 24045938 DOI: 10.1074/jbc.m113.514984] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All-trans-retinoic acid (atRA) is an important morphogen involved in many developmental processes, including neural differentiation, body axis formation, and organogenesis. During early embryonic development, atRA is synthesized from all-trans-retinal (atRAL) in an irreversible reaction mainly catalyzed by retinal dehydrogenase 2 (aldh1a2), whereas atRAL is converted from all-trans-retinol via reversible oxidation by retinol dehydrogenases, members of the short-chain dehydrogenase/reductase family. atRA is degraded by cytochrome P450, family 26 (cyp26). We have previously identified a short-chain dehydrogenase/reductase 3 (dhrs3), which showed differential expression patterns in Xenopus embryos. We show here that the expression of dhrs3 was induced by atRA treatment and overexpression of Xenopus nodal related 1 (xnr1) in animal cap assay. Overexpression of dhrs3 enhanced the phenotype of excessive cyp26a1. In embryos overexpressing aldh1a2 or retinol dehydrogenase 10 (rdh10) in the presence of their respective substrates, Dhrs3 counteracted the action of Aldh1a2 or Rdh10, indicating that retinoic acid signaling is attenuated. Knockdown of Dhrs3 by antisense morpholino oligonucleotides resulted in a phenotype of shortened anteroposterior axis, reduced head structure, and perturbed somitogenesis, which were also found in embryos treated with an excess of atRA. Examination of the expression of brachyury, not, goosecoid, and papc indicated that convergent extension movement was defective in Dhrs3 morphants. Taken together, these studies suggest that dhrs3 participates in atRA metabolism by reducing atRAL levels and is required for proper anteroposterior axis formation, neuroectoderm patterning, and somitogenesis.
Collapse
|
11
|
Onouchi S, Ichii O, Otsuka S, Hashimoto Y, Kon Y. Analysis of duodenojejunal flexure formation in mice: implications for understanding the genetic basis for gastrointestinal morphology in mammals. J Anat 2013; 223:385-98. [PMID: 23961897 DOI: 10.1111/joa.12093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2013] [Indexed: 12/18/2022] Open
Abstract
The mammalian gut undergoes morphological changes during development. We studied the developing mouse duodenojejunal flexure (DJF) to elucidate the mechanism of formation. During embryonic days 10.75-13.75, DJF formation was morphologically classified into three stages: the expansion stage, flexure formation stage, and flexure elongation stage. From the expansion to the flexure formation stages, the DJF wall showed asymmetric morphology and proliferation along the left-right intestinal axis. From the flexure formation to the flexure elongation stage, the DJF started to bend dorsally with counterclockwise rotation along the antero-caudal intestinal axis, indicating that the original right side of the duodenum was rotated towards the dorsal body wall during development of the DJF. The direction of attachment of the dorsal mesentery to the DJF did not correspond to the bending direction of the DJF during flexure formation, and this finding indicated that the dorsal mesentery contributed very little to DJF formation. During DJF formation, Aldh1a2 and hedgehog mRNAs were detected at the DJF, and their expression levels differed along the bending axis. In conclusion, DJF formation might be triggered by asymmetric morphology and proliferation along the left-right intestinal axis under the control of retinoic acid and hedgehog signaling.
Collapse
Affiliation(s)
- Sawa Onouchi
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
12
|
Kurtenbach S, Mayer C, Pelz T, Hatt H, Leese F, Neuhaus EM. Molecular evolution of a chordate specific family of G protein-coupled receptors. BMC Evol Biol 2011; 11:234. [PMID: 21827690 PMCID: PMC3238225 DOI: 10.1186/1471-2148-11-234] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 08/09/2011] [Indexed: 11/23/2022] Open
Abstract
Background Chordate evolution is a history of innovations that is marked by physical and behavioral specializations, which led to the development of a variety of forms from a single ancestral group. Among other important characteristics, vertebrates obtained a well developed brain, anterior sensory structures, a closed circulatory system and gills or lungs as blood oxygenation systems. The duplication of pre-existing genes had profound evolutionary implications for the developmental complexity in vertebrates, since mutations modifying the function of a duplicated protein can lead to novel functions, improving the evolutionary success. Results We analyzed here the evolution of the GPRC5 family of G protein-coupled receptors by comprehensive similarity searches and found that the receptors are only present in chordates and that the size of the receptor family expanded, likely due to genome duplication events in the early history of vertebrate evolution. We propose that a single GPRC5 receptor coding gene originated in a stem chordate ancestor and gave rise by duplication events to a gene family comprising three receptor types (GPRC5A-C) in vertebrates, and a fourth homologue present only in mammals (GPRC5D). Additional duplications of GPRC5B and GPRC5C sequences occurred in teleost fishes. The finding that the expression patterns of the receptors are evolutionarily conserved indicates an important biological function of these receptors. Moreover, we found that expression of GPRC5B is regulated by vitamin A in vivo, confirming previous findings that linked receptor expression to retinoic acid levels in tumor cell lines and strengthening the link between the receptor expression and the development of a complex nervous system in chordates, known to be dependent on retinoic acid signaling. Conclusions GPRC5 receptors, a class of G protein-coupled receptors with unique sequence characteristics, may represent a molecular novelty that helped non-chordates to become chordates.
Collapse
Affiliation(s)
- Stefan Kurtenbach
- 1Department of Cell Physiology, Ruhr University Bochum, Universitaetsstrasse150, 44801 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
13
|
A flanking gene problem leads to the discovery of a Gprc5b splice variant predominantly expressed in C57Bl/6J mouse brain and in maturing neurons. PLoS One 2010; 5:e10351. [PMID: 20436672 PMCID: PMC2859937 DOI: 10.1371/journal.pone.0010351] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 03/22/2010] [Indexed: 01/19/2023] Open
Abstract
Background Gprc5b, a retinoic acid-inducible orphan G protein–coupled receptor (GPCR), is a member of the group C metabotropic glutamate receptor family proteins possibly involved in non-canonical Wnt signaling. Many GPCR transcripts are alternatively spliced, which diversifies this class of proteins in their cell- and tissue-specific signaling, regulatory and/or pharmacological properties. We previously generated p97FE65 isoform-specific knockout mice that showed learning/memory deficits. In this study, we further characterized the 97FE65 null mice using cDNA microarray and RT-PCR analyses. Methodology/Principal Findings We discovered a novel brain-specific C-terminal splice variant of Gprc5b, Gprc5b_v2, which was differentially expressed in p97FE65 wild type and null mouse brains. The null mice were generated in 129/Sv ES cells, and backcrossed to C57Bl/6J for ten generations. We found that expression of Gprc5b_v2 mRNA in the brains of p97FE65 null mice was dramatically down-regulated (more than 20 fold) compared to their wild type littermates. However, expression profiles of Gprc5b variants and SNP analysis surrounding the FE65 locus suggest that the down-regulation is unlikely due to the altered FE65 function, but rather is caused by gene retention from the 129/Sv ES cells. Consistently, in contrast to ubiquitously expressed Gprc5b_v1, Gprc5b_v2 was predominantly expressed in the brain tissues of C57Bl/6J mice. The alternative splicing of the 3′ terminal exon also altered the protein coding sequences, giving rise to the characteristic C-termini. Levels of Gprc5b_v2 mRNA were increased during neuronal maturation, paralleling the expression of synaptic proteins. Overexpression of both Gprc5b variants stimulated neurite-like outgrowth in a neuroblastoma cell line. Conclusions/Significance Our results suggest that Gprc5b-v2 may play a role during brain maturation and in matured brain, possibly through the regulation of neuronal morphology and protein-protein interaction. This study also highlights the fact that unexpected gene retention following repeated backcrosses can lead to important biological consequences.
Collapse
|
14
|
Tao Q, Fujimoto J, Men T, Ye X, Deng J, Lacroix L, Clifford JL, Mao L, Van Pelt CS, Lee JJ, Lotan D, Lotan R. Identification of the retinoic acid-inducible Gprc5a as a new lung tumor suppressor gene. J Natl Cancer Inst 2007; 99:1668-82. [PMID: 18000218 DOI: 10.1093/jnci/djm208] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Lung cancers develop via multiple genetic and epigenetic changes, including inactivation of tumor suppressor genes. We previously cloned human G protein-coupled receptor family C type 5A (GPRC5A), whose expression is suppressed in some human lung carcinoma cells, and its mouse homolog Gprc5a. METHODS We generated Gprc5a knockout mice by homologous recombination and studied their phenotype by macroscopic observation and microscopic histologic analysis of embryos and lungs of 1- to 2-year-old mice. GPRC5A mRNA expression was analyzed by reverse transcription-polymerase chain reaction in surgical specimens of 18 human lung tumors and adjacent normal tissues and by analyzing previously published data from 186 lung tumor tissues of a variety of histologic types and 17 normal lung samples. Human embryonic kidney, human non-small-cell lung cancer, and mouse lung adenocarcinoma cells were transfected with a GPRC5A expression vector or a control vector, and colony formation in semisolid medium was assayed. Statistical tests were two-sided. RESULTS Homozygous knockout mice developed many more lung tumors at 1-2 years of age (incidence: 76% adenomas and 17% adenocarcinomas) than heterozygous (11% adenomas) or wild-type (10% adenomas) mice. Human GPRC5A mRNA levels were lower in most (11 of 18 [61%]) human lung tumors than in adjacent normal tissues. The mean GPRC5A mRNA level in adenocarcinoma (n = 139), squamous cell carcinoma (n = 21), small-cell lung cancer (n = 6), and carcinoid (n = 20) tissues was 46.2% (P = .014), 7.5% (P<.001), 5.3% (P<.001), and 1.8% (P<.001), respectively, that in normal lung tissues (n = 17) GPRC5A transfection suppressed colony formation in semisolid medium of immortalized human embryonic kidney, human non-small-cell lung cancer, and mouse lung adenocarcinoma cells by 91%, 91%, and 68%, respectively, compared with vector controls (all P<.001). CONCLUSIONS Gprc5a functions as a tumor suppressor in mouse lung, and human GPRC5A may share this property. The Gprc5a-deficient mouse is a novel model to study lung carcinogenesis and chemoprevention.
Collapse
Affiliation(s)
- Qingguo Tao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2007. [DOI: 10.1089/zeb.2007.9987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|