1
|
Suhaiman L, Altamirano KN, Morales A, Belmonte SA. Different Approaches to Record Human Sperm Exocytosis. Methods Mol Biol 2021; 2233:139-168. [PMID: 33222133 DOI: 10.1007/978-1-0716-1044-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Acrosome reaction is an exocytic process that enables a sperm to penetrate the zona pellucida and fertilize an egg. The process involves the fenestration and vesiculation of the sperm plasma membrane and outer acrosomal membrane, releasing the acrosomal content. Given the importance of the acrosome secretion in fertilization, many different methods have been developed to detect the acrosome reaction of sperm. In this chapter, we describe detailed practical procedures to assess the acrosomal status of human spermatozoa. To do this, we resorted to light optical and epifluorescence microscopy, flow cytometry, and transmission electron microscopy. We also itemize the protocol for real-time measurements of the acrosome reaction by confocal microscopy. Further, we discuss the level of complexity, costs, and the reasons why a researcher should choose each technique.This chapter is designed to provide the user with sufficient background to measure acrosomal exocytosis in human sperm.
Collapse
Affiliation(s)
- Laila Suhaiman
- Instituto Interdisciplinario de Ciencias Básicas (ICB) CONICET. Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Karina Noel Altamirano
- Instituto de Histología y Embriología de Mendoza (IHEM) "Dr. Mario H. Burgos". CONICET. Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Alfonsina Morales
- Instituto de Histología y Embriología de Mendoza (IHEM) "Dr. Mario H. Burgos". CONICET. Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Silvia Alejandra Belmonte
- Instituto de Histología y Embriología de Mendoza (IHEM) "Dr. Mario H. Burgos". CONICET. Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
2
|
Fleming AK, Storz P. Protein kinase C isoforms in the normal pancreas and in pancreatic disease. Cell Signal 2017; 40:1-9. [PMID: 28826907 DOI: 10.1016/j.cellsig.2017.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022]
Abstract
Protein Kinase C isoforms have been implicated in regulating multiple processes within the healthy pancreas. Moreover, their dysregulation contributes to all aspects of pancreatic disease. In this review, with a focus on acinar, ductal, and islet cells, we highlight the roles and contributions of the different PKC isoforms to normal pancreas function. We also discuss the contribution of PKC enzymes to pancreatic diseases, including insulin resistance and diabetes mellitus, as well as pancreatitis and the development and progression of pancreatic cancer.
Collapse
Affiliation(s)
- Alicia K Fleming
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
3
|
Satoh K, Narita T, Katsumata-Kato O, Sugiya H, Seo Y. Involvement of myristoylated alanine-rich C kinase substrate phosphorylation and translocation in cholecystokinin-induced amylase release in rat pancreatic acini. Am J Physiol Gastrointest Liver Physiol 2016; 310:G399-409. [PMID: 26744470 DOI: 10.1152/ajpgi.00198.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/05/2016] [Indexed: 01/31/2023]
Abstract
Cholecystokinin (CCK) is a gastrointestinal hormone that induces exocytotic amylase release in pancreatic acinar cells. The activation of protein kinase C (PKC) is involved in the CCK-induced pancreatic amylase release. Myristoylated alanine-rich C kinase substrate (MARCKS) is a ubiquitously expressed substrate of PKC. MARCKS has been implicated in membrane trafficking in several cell types. The phosphorylation of MARCKS by PKC results in the translocation of MARCKS from the membrane to the cytosol. Here, we studied the involvement of MARCKS in the CCK-induced amylase release in rat pancreatic acini. Employing Western blotting, we detected MARCKS protein in the rat pancreatic acini. CCK induced MARCKS phosphorylation. A PKC-δ inhibitor, rottlerin, inhibited the CCK-induced MARCKS phosphorylation and amylase release. In the translocation assay, we also observed CCK-induced PKC-δ activation. An immunohistochemistry study showed that CCK induced MARCKS translocation from the membrane to the cytosol. When acini were lysed by a detergent, Triton X-100, CCK partially induced displacement of the MARCKS from the GM1a-rich detergent-resistant membrane fractions (DRMs) in which Syntaxin2 is distributed. A MARCKS-related peptide inhibited the CCK-induced amylase release. These findings suggest that MARCKS phosphorylation by PKC-δ and then MARCKS translocation from the GM1a-rich DRMs to the cytosol are involved in the CCK-induced amylase release in pancreatic acinar cells.
Collapse
Affiliation(s)
- Keitaro Satoh
- Department of Regulatory Physiology, Dokkyo Medical University School of Medicine, Tochigi, Japan;
| | - Takanori Narita
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kanagawa, Japan
| | - Osamu Katsumata-Kato
- Department of Physiology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kanagawa, Japan
| | - Yoshiteru Seo
- Department of Regulatory Physiology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
4
|
Messenger SW, Falkowski MA, Thomas DDH, Jones EK, Hong W, Gaisano HY, Giasano HY, Boulis NM, Groblewski GE. Vesicle associated membrane protein 8 (VAMP8)-mediated zymogen granule exocytosis is dependent on endosomal trafficking via the constitutive-like secretory pathway. J Biol Chem 2014; 289:28040-53. [PMID: 25138214 DOI: 10.1074/jbc.m114.593913] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acinar cell zymogen granules (ZG) express 2 isoforms of the vesicle-associated membrane protein family (VAMP2 and -8) thought to regulate exocytosis. Expression of tetanus toxin to cleave VAMP2 in VAMP8 knock-out (-/-) acini confirmed that VAMP2 and -8 are the primary VAMPs for regulated exocytosis, each contributing ∼50% of the response. Analysis of VAMP8(-/-) acini indicated that although stimulated secretion was significantly reduced, a compensatory increase in constitutive secretion maintained total secretion equivalent to wild type (WT). Using a perifusion system to follow secretion over time revealed VAMP2 mediates an early rapid phase peaking and falling within 2-3 min, whereas VAMP8 controls a second prolonged phase that peaks at 4 min and slowly declines over 20 min to support the protracted secretory response. VAMP8(-/-) acini show increased expression of the endosomal proteins Ti-VAMP7 (2-fold) and Rab11a (4-fold) and their redistribution from endosomes to ZGs. Expression of GDP-trapped Rab11a-S25N inhibited secretion exclusively from the VAMP8 but not the VAMP2 pathway. VAMP8(-/-) acini also showed a >90% decrease in the early endosomal proteins Rab5/D52/EEA1, which control anterograde trafficking in the constitutive-like secretory pathway. In WT acini, short term (14-16 h) culture also results in a >90% decrease in Rab5/D52/EEA1 and a complete loss of the VAMP8 pathway, whereas VAMP2-secretion remains intact. Remarkably, rescue of Rab5/D52/EEA1 expression restored the VAMP8 pathway. Expressed D52 shows extensive colocalization with Rab11a and VAMP8 and partially copurifies with ZG fractions. These results indicate that robust trafficking within the constitutive-like secretory pathway is required for VAMP8- but not VAMP2-mediated ZG exocytosis.
Collapse
Affiliation(s)
- Scott W Messenger
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Michelle A Falkowski
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Diana D H Thomas
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Elaina K Jones
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Wanjin Hong
- Institute of Molecular and Cellular Biology, National University of Singapore, Singapore 138673
| | | | - Herbert Y Giasano
- Departments of Medicine and Physiology, University of Toronto, Ontario M5S 1A8, Canada, and
| | - Nicholas M Boulis
- Department of Neurosurgery, Georgia Institute of Technology, Atlanta, Georgia 30322
| | - Guy E Groblewski
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706,
| |
Collapse
|
5
|
Gómez-Lázaro M, Rinn C, Aroso M, Amado F, Schrader M. Proteomic analysis of zymogen granules. Expert Rev Proteomics 2014; 7:735-47. [DOI: 10.1586/epr.10.31] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
El Kasmi F, Krause C, Hiller U, Stierhof YD, Mayer U, Conner L, Kong L, Reichardt I, Sanderfoot AA, Jürgens G. SNARE complexes of different composition jointly mediate membrane fusion in Arabidopsis cytokinesis. Mol Biol Cell 2013; 24:1593-601. [PMID: 23515225 PMCID: PMC3655819 DOI: 10.1091/mbc.e13-02-0074] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Membrane fusion is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes. Although membrane fusion is required for separating daughter cells in eukaryotic cytokinesis, the SNARE complexes involved are not known. In plants, membrane vesicles targeted to the cell division plane fuse with one another to form the partitioning membrane, progressing from the center to the periphery of the cell. In Arabidopsis, the cytokinesis-specific Qa-SNARE KNOLLE interacts with two other Q-SNAREs, SNAP33 and novel plant-specific SNARE 11 (NPSN11), whose roles in cytokinesis are not clear. Here we show by coimmunoprecipitation that KNOLLE forms two SNARE complexes that differ in composition. One complex is modeled on the trimeric plasma membrane type of SNARE complex and includes, in addition to KNOLLE, the promiscuous Qb,c-SNARE SNAP33 and the R-SNARE vesicle-associated membrane protein (VAMP) 721,722, also involved in innate immunity. In contrast, the other KNOLLE-containing complex is tetrameric and includes Qb-SNARE NPSN11, Qc-SNARE SYP71, and VAMP721,722. Elimination of only one or the other type of KNOLLE complex by mutation, including the double mutant npsn11 syp71, causes a mild or no cytokinesis defect. In contrast, the two double mutants snap33 npsn11 and snap33 syp71 eliminate both types of KNOLLE complexes and display knolle-like cytokinesis defects. Thus the two distinct types of KNOLLE complexes appear to jointly mediate membrane fusion in Arabidopsis cytokinesis.
Collapse
Affiliation(s)
- Farid El Kasmi
- Developmental Genetics, Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Optimized protocols to analyze sphingosine-1-phosphate signal transduction pathways during acrosomal exocytosis in human sperm. Methods Mol Biol 2012; 874:99-128. [PMID: 22528443 DOI: 10.1007/978-1-61779-800-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Regulated secretion is a central issue for the specific function of many cells; for instance, mammalian sperm acrosomal exocytosis is essential for egg fertilization. Sphingosine 1-phosphate is a bioactive sphingolipid that regulates crucial physiological processes. We have recently reported that sphingosine 1-phosphate and sphingosine kinase are involved in a novel signaling pathway leading to acrosomal exocytosis (Suhaiman L et al., J Biol Chem 285:1630-16314, 2010). Acrosomal exocytosis in mammalian sperm is a regulated secretion with unusual characteristics. We therefore employed biochemical functional assays to assess the sphingolipid signaling in both permeabilized and nonpermeabilized sperm. The exocytosis of the acrosomal content is regulated by Ca(2+). During exocytosis, changes in [Ca(2+)]i occur induced by either Ca(2+)-influx or Ca(2+)-mobilization from intracellular stores. By using single cell [Ca(2+)] measurements, we detected intracellular Ca(2+) changes after sphingosine 1-phosphate treatment. Additionally, measuring sphingosine kinase activity, we determined that sphingosine 1-phosphate levels increase after an exocytotic stimulus.This chapter is designed to provide the user with sufficient background to analyze sphingosine 1--phosphate signal transduction pathways during acrosomal exocytosis in human sperm.
Collapse
|
8
|
Abstract
In Drosophila, anti-microbial peptides are activated and secreted in response to microbial challenge, but the intracellular route of anti-microbial peptide trafficking and the regulatory mechanism controlling their secretion are yet to be fully characterized. We have demonstrated that in Drosophila immune response cells (i.e., fat body cells and hemocytes) the anti-microbial peptide Drosomycin is localized within Rab4 and Rab11 intracellular vesicles. Moreover, both of these small GTPases were required for the delivery of this Drosomycin cargo to the plasma membrane. At the plasma membrane, exocytosis and Drosomycin secretion depend on the SNARE protein Syntaxin1A. Thus, the depletion of Syntaxin1A impaired the release of this antimicrobial peptide, and resulted in the accumulation of Drosomycin and Rab11 carrier vesicles near the plasma membrane. Intriguingly, a similar phenotype was generated by the loss of the adaptor protein 14-3-3ε; there was accumulation of Rab11 vesicles and Drosomycin containing vesicles near the plasma membrane, and a concomitant increase in the susceptibility of 14-3-3ε mutant Drosophila to acute bacterial infection. This suggested that 14-3-3ε, possibly via interaction with Syntaxin1A, is required to promote exocytosis of immune-mediators, thereby regulating innate immune secretion and organism survival under conditions of immune stress.
Collapse
|
9
|
Thorn P, Gaisano H. Molecular control of compound Exocytosis: A key role for VAMP8. Commun Integr Biol 2012; 5:61-3. [PMID: 22482012 DOI: 10.4161/cib.18058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Exocytosis is the process of fusion of a membrane-bound vesicle with the cell membrane and subsequent release of the vesicle content to the outside. It is now widely accepted that SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) proteins are key components in the molecular machinery of exocytosis. SNARE proteins on the vesicle membrane selectively form complexes with specific SNAREs on the cell membrane. In a variant of exocytosis, called compound exocytosis, secretory vesicles still fuse with the cell membrane but vesicle-to-vesicle fusion enhances secretory output. Two types of compound exocytosis occur, either vesicles fuse with each other and then fuse with the cell membrane, or a vesicle fuses with the cell membrane and then becomes a target for further vesicles to fuse with it. It is expected that SNAREs are important for vesicle-to-vesicle fusion but the mechanism(s) that control these processes is unknown. In our recent paper (Behrendorff et al. 2011) we provide evidence that VAMP8 (a Q-SNARE) is essential in regulating compound exocytosis. Here we discuss the implications of our findings with reference to a new model for the control of vesicle-to-vesicle fusion.
Collapse
|
10
|
Hammel I, Wang CC, Hong W, Amihai D. VAMP8/Endobrevin is a critical factor for the homotypic granule growth in pancreatic acinar cells. Cell Tissue Res 2012; 348:485-90. [DOI: 10.1007/s00441-012-1400-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 03/05/2012] [Indexed: 02/03/2023]
|
11
|
Mashima H, Sato T, Horie Y, Nakagawa Y, Kojima I, Ohteki T, Ohnishi H. Interferon regulatory factor-2 regulates exocytosis mechanisms mediated by SNAREs in pancreatic acinar cells. Gastroenterology 2011; 141:1102-1113.e1-8. [PMID: 21699790 DOI: 10.1053/j.gastro.2011.05.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 05/16/2011] [Accepted: 05/23/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Pancreatic acinar cells are used to study regulated exocytosis. We investigated the role of interferon regulatory factor-2 (IRF2) in exocytosis in pancreatic acinar cells. METHODS Pancreas tissues from Irf2⁺/⁺, Irf2⁺/⁻), and Irf2⁻/⁻ mice were examined by microscopy, immunohistochemical, and immunoblot analyses; amylase secretion was quantified. We also compared salivary glands and pancreatic islets of Irf2⁻/⁻ mice with those of Irf2⁺/⁻ mice. To examine the effects of increased signaling by type I interferons, we studied pancreatic acini from Irf2⁻/⁻Ifnar1⁻/⁻ mice. The effect of IRF2 on amylase secretion was studied using an acinar cell line and a retroviral system. We studied expression of IRF2 in wild-type mice with cerulein-induced pancreatitis and changes in pancreatic tissue of Irf2⁻/⁻ mice, compared with those of Irf2⁺/⁻ mice. RESULTS Irf2⁻/⁻ pancreas was white and opaque; numerous and wide-spread zymogen granules were observed throughout the cytoplasm, along with lack of fusion between zymogen granules and the apical membrane, lack of secretagogue-stimulated amylase secretion, and low serum levels of amylase and elastase-1, indicating altered regulation of exocytosis. The expression pattern of soluble N-ethylmaleimide-sensitive factor attachment protein receptors changed significantly, specifically in pancreatic acini, and was not rescued by disruption of type I interferon signaling. Down-regulation of IRF2 decreased amylase secretion in an acinar cell line. In mice with pancreatitis, levels of IRF2 were reduced. Irf2⁻/⁻ acini were partially resistant to induction of pancreatitis. CONCLUSIONS IRF2 regulates exocytosis in pancreatic acinar cells; defects in this process might be involved in the early phases of acute pancreatitis.
Collapse
Affiliation(s)
- Hirosato Mashima
- Department of Gastroenterology, Akita University Graduate School of Medicine, Akita, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Behrendorff N, Dolai S, Hong W, Gaisano HY, Thorn P. Vesicle-associated membrane protein 8 (VAMP8) is a SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) selectively required for sequential granule-to-granule fusion. J Biol Chem 2011; 286:29627-34. [PMID: 21733851 DOI: 10.1074/jbc.m111.265199] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Compound exocytosis is found in many cell types and is the major form of regulated secretion in acinar and mast cells. Its key characteristic is the homotypic fusion of secretory granules. These then secrete their combined output through a single fusion pore to the outside. The control of compound exocytosis remains poorly understood. Although soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) such as syntaxin 2, SNAP23 (synaptosome-associated protein of 23 kDa), and SNAP25 have been suggested to play a role, none has been proven. Vesicle-associated membrane protein 8 (VAMP8) is a SNARE first associated with endocytic processes but more recently has been suggested as an R-SNARE in regulated exocytosis. Secretion in acinar cells is reduced when VAMP8 function is inhibited and is less in VAMP8 knock-out mice. Based on electron microscopy experiments, it was suggested that VAMP8 may be involved in compound exocytosis. Here we have tested the hypothesis that VAMP8 controls homotypic granule-to-granule fusion during sequential compound exocytosis. We use a new assay to distinguish primary fusion events (fusion with the cell membrane) from secondary fusion events (granule-granule fusion). Our data show the pancreatic acinar cells from VAMP8 knock-out animals have a specific reduction in secondary granule fusion but that primary granule fusion is unaffected. Furthermore, immunoprecipitation experiments show syntaxin 2 association with VAMP2, whereas syntaxin 3 associates with VAMP8. Taken together our data indicate that granule-to-granule fusion is regulated by VAMP8 containing SNARE complexes distinct from those that regulate primary granule fusion.
Collapse
|
13
|
Turkish A, Husain SZ. Pancreatic Development. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2011:878-889.e5. [DOI: 10.1016/b978-1-4377-0774-8.10080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
14
|
Collaco A, Marathe J, Kohnke H, Kravstov D, Ameen N. Syntaxin 3 is necessary for cAMP- and cGMP-regulated exocytosis of CFTR: implications for enterotoxigenic diarrhea. Am J Physiol Cell Physiol 2010; 299:C1450-60. [PMID: 20844248 DOI: 10.1152/ajpcell.00029.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Enterotoxins elaborated by Vibrio cholerae and Escherichia coli cannot elicit fluid secretion in the absence of functional cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels. After enterotoxin exposure, CFTR channels are rapidly recruited from endosomes and undergo exocytic insertion into the apical plasma membrane of enterocytes to increase the number of channels on the cell surface by at least fourfold. However, the molecular machinery that orchestrates exocytic insertion of CFTR into the plasma membrane is largely unknown. The present study used immunofluorescence, immunoblotting, surface biotinylation, glutathione S-transferase (GST) pulldown assays, and immunoprecipitation to identify components of the exocytic soluble N-ethylmaleimide (NEM)-sensitive factor attachment receptor (SNARE) vesicle fusion machinery in cyclic nucleotide-activated exocytosis of CFTR in rat jejunum and polarized intestinal Caco-2(BB)e cells. Syntaxin 3, an intestine-specific SNARE, colocalized with CFTR on the apical domain of enterocytes in rat jejunum and polarized Caco-2(BB)e cells. Coimmunoprecipitation and GST binding studies confirmed that syntaxin 3 interacts with CFTR in vivo. Moreover, heat-stable enterotoxin (STa) activated exocytosis of both CFTR and syntaxin 3 to the surface of rat jejunum. Silencing of syntaxin 3 by short hairpin RNA (shRNA) interference abrogated cyclic nucleotide-stimulated exocytosis of CFTR in cells. These observations reveal a new and important role for syntaxin 3 in the pathophysiology of enterotoxin-elicited diarrhea.
Collapse
Affiliation(s)
- Anne Collaco
- Department of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
15
|
Falkowski MA, Thomas DDH, Groblewski GE. Complexin 2 modulates vesicle-associated membrane protein (VAMP) 2-regulated zymogen granule exocytosis in pancreatic acini. J Biol Chem 2010; 285:35558-66. [PMID: 20829354 DOI: 10.1074/jbc.m110.146597] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Complexins are soluble proteins that regulate the activity of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes necessary for vesicle fusion. Neuronal specific complexin 1 has inhibitory and stimulatory effects on exocytosis by clamping trans-SNARE complexes in a prefusion state and promoting conformational changes to facilitate membrane fusion following cell stimulation. Complexins are unable to bind to monomeric SNARE proteins but bind with high affinity to ternary SNARE complexes and with lower affinity to target SNARE complexes. Far less is understood about complexin function outside the nervous system. Pancreatic acini express the complexin 2 isoform by RT-PCR and immunoblotting. Immunofluorescence microscopy revealed complexin 2 localized along the apical plasma membrane consistent with a role in secretion. Accordingly, complexin 2 was found to interact with vesicle-associated membrane protein (VAMP) 2, syntaxins 3 and 4, but not with VAMP 8 or syntaxin 2. Introduction of recombinant complexin 2 into permeabilized acini inhibited Ca(2+)-stimulated secretion in a concentration-dependent manner with a maximal inhibition of nearly 50%. Mutations of the central α-helical domain reduced complexin 2 SNARE binding and concurrently abolished its inhibitory activity. Surprisingly, mutation of arginine 59 to histidine within the central α-helical domain did not alter SNARE binding and moreover, augmented Ca(2+)-stimulated secretion by 130% of control. Consistent with biochemical studies, complexin 2 colocalized with VAMP 2 along the apical plasma membrane following cholecystokinin-8 stimulation. These data demonstrate a functional role for complexin 2 outside the nervous system and indicate that it participates in the Ca(2+)-sensitive regulatory pathway for zymogen granule exocytosis.
Collapse
Affiliation(s)
- Michelle A Falkowski
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
16
|
Fletcher PL, Fletcher MD, Weninger K, Anderson TE, Martin BM. Vesicle-associated membrane protein (VAMP) cleavage by a new metalloprotease from the Brazilian scorpion Tityus serrulatus. J Biol Chem 2009; 285:7405-16. [PMID: 20026600 DOI: 10.1074/jbc.m109.028365] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We present evidence that venom from the Brazilian scorpion Tityus serrulatus and a purified fraction selectively cleave essential SNARE proteins within exocrine pancreatic tissue. Western blotting for vesicle-associated membrane protein type v-SNARE proteins (or synaptobrevins) reveals characteristic alterations to venom-treated excised pancreatic lobules in vitro. Immunocytochemistry by electron microscopy confirms both the SNARE identity as VAMP2 and the proteolysis of VAMP2 as a marked decrease in secondary antibody-conjugated colloidal gold particles that are predominantly associated with mature zymogen granules. Studies with recombinant SNARE proteins were used to determine the specific cleavage site in VAMP2 and the susceptibility of VAMP8 (endobrevin). The VAMP2 cleavage site is between the transmembrane anchor and the SNARE motif that assembles into the ternary SNARE complex. Inclusion of divalent chelating agents (EDTA) with fraction nu, an otherwise active purified component from venom, eliminates SNARE proteolysis, suggesting the active protein is a metalloprotease. The unique cleavages of VAMP2 and VAMP8 may be linked to pancreatitis that develops following scorpion envenomation as both of these v-SNARE proteins are associated with zymogen granule membranes in pancreatic acinar cells. We have isolated antarease, a metalloprotease from fraction nu that cleaves VAMP2, and report its amino acid sequence.
Collapse
Affiliation(s)
- Paul L Fletcher
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| | | | | | | | | |
Collapse
|
17
|
Kuo CL, Oyler G, Shoemaker CB. Lipid and cationic polymer based transduction of botulinum holotoxin, or toxin protease alone, extends the target cell range and improves the efficiency of intoxication. Toxicon 2009; 55:619-29. [PMID: 19852976 DOI: 10.1016/j.toxicon.2009.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 10/09/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
Abstract
Botulinum neurotoxin (BoNT) heavy chain (Hc) facilitates receptor-mediated endocytosis into neuronal cells and transport of the light chain (Lc) protease to the cytosol where neurotransmission is inhibited as a result of SNARE protein cleavage. Here we show that the role of BoNT Hc in cell intoxication can be replaced by commercial lipid-based and polycationic polymer DNA transfection reagents. BoNT "transduction" by these reagents permits efficient intoxication of neuronal cells as well as some non-neuronal cell lines normally refractory to BoNT. Surprisingly, the reagents facilitate delivery of recombinant BoNT Lc protease to the cytosol of both neuronal and non-neuronal cells in the absence of BoNT Hc, and with sensitivities approaching that of BoNT holotoxin. Transduction of BoNT, as with natural intoxication, is inhibited by bafilomycin A1, methylamine and ammonium chloride indicating that both pathways require endosome acidification. DNA transfection reagents facilitate intoxication by holotoxins, or isolated Lc proteases, of all three BoNT serotypes tested (A, B, E). These results suggest that lipid and cationic polymer transfection reagents facilitate cytosolic delivery of BoNT holotoxins and isolated Lc proteases by an endosomal uptake pathway.
Collapse
Affiliation(s)
- Chueh-Ling Kuo
- Tufts Cummings School of Veterinary Medicine, Department of Biomedical Sciences, 200 Westboro Road, North Grafton, MA 01536, USA
| | | | | |
Collapse
|
18
|
Receptor-mediated signal transduction pathways and the regulation of pancreatic acinar cell function. Curr Opin Gastroenterol 2008; 24:573-9. [PMID: 19122497 DOI: 10.1097/mog.0b013e32830b110c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Recent studies on pancreatic acinar cell function have led to a more detailed understanding of the signal transduction mechanisms regulating digestive enzyme synthesis and secretion as well as pancreatic growth. This review identifies and puts into context these recent studies, which further understanding in these areas. RECENT FINDINGS Receptors present on acinar cells, particularly those for cholecystokinin and secretin, have been better characterized as to the molecular nature of the ligand-receptor interaction. Other reports have described the receptors for natriuretic peptides and fibroblast growth factor on acini. Intracellular Ca(2+) signaling remains at the center of stimulus secretion coupling and its regulation by inositol 1,4,5-trisphosphate, nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose has been further defined. Work downstream of intracellular mediators has focused on molecular mechanisms of exocytosis particularly involving small G proteins, soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and cytoskeletal proteins. Considerable progress has been made defining the complex in acinar cells and its regulation. In addition to secretion, recent studies have further defined the regulation of pancreatic growth both in adaptive regulation to diet and hormones, particularly cholecystokinin, and in the regeneration that occurs after pancreatitis or partial pancreatectomy. This regulation involves calcineurin-nuclear factor of activated T cells, mammalian target of rapamycin, mitogen-activated protein kinase, Notch signaling pathways as well as various tyrosine kinases. SUMMARY Understanding the mechanisms that regulate pancreatic acinar cell function is contributing to our knowledge of normal pancreatic function and alterations in diseases such as pancreatitis and pancreatic cancer.
Collapse
|
19
|
Cosen-Binker LI, Morris GP, Vanner S, Gaisano HY. Munc18/SNARE proteins’ regulation of exocytosis in guinea pig duodenal Brunner’s gland acini. World J Gastroenterol 2008; 14:2314-22. [PMID: 18416456 PMCID: PMC2705084 DOI: 10.3748/wjg.14.2314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the molecular mechanism of exocytosis in the Brunner’s gland acinar cell.
METHODS: We used a submucosal preparation of guinea pig duodenal Brunner’s gland acini to visualize the dilation of the ductal lumen in response to cholinergic stimulus. We correlated this to electron microscopy to determine the extent of exocytosis of the mucin-filled vesicles. We then examined the behavior of SNARE and interacting Munc18 proteins by confocal microscopy.
RESULTS: One and 6 &mgr;mol/L carbachol evoked a dose-dependent dilation of Brunner’s gland acini lumen, which correlated to the massive exocytosis of mucin. Munc18c and its cognate SNARE proteins Syntaxin-4 and SNAP-23 were localized to the apical plasma membrane, and upon cholinergic stimulation, Munc18c was displaced into the cytosol leaving Syntaxin-4 and SNAP-23 intact.
CONCLUSION: Physiologic cholinergic stimulation induces Munc18c displacement from the Brunner’s gland acinar apical plasma membrane, which enables apical membrane Syntaxin-4 and SNAP-23 to form a SNARE complex with mucin-filled vesicle SNARE proteins to affect exocytosis.
Collapse
|
20
|
Affiliation(s)
- James A McNew
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street MS-140, Houston, Texas 77251-1892, USA.
| |
Collapse
|
21
|
Cohen R, Marom M, Atlas D. Depolarization-evoked secretion requires two vicinal transmembrane cysteines of syntaxin 1A. PLoS One 2007; 2:e1273. [PMID: 18060067 PMCID: PMC2094736 DOI: 10.1371/journal.pone.0001273] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Accepted: 11/14/2007] [Indexed: 11/24/2022] Open
Abstract
Background The interactions of the voltage-gated Ca2+ channel (VGCC) with syntaxin 1A (Sx 1A), Synaptosome-associated protein of 25 kD (SNAP-25), and synaptotagmin, couple electrical excitation to evoked secretion. Two vicinal Cys residues, Cys 271 and Cys 272 in the Sx 1A transmembrane domain, are highly conserved and participate in modulating channel kinetics. Each of the Sx1A Cys mutants, differently modify the kinetics of Cav1.2, and neuronal Cav2.2 calcium channel. Methodology/Principle Findings We examined the effects of various Sx1A Cys mutants and the syntaxin isoforms 2, 3, and 4 each of which lack vicinal Cys residues, on evoked secretion, monitoring capacitance transients in a functional release assay. Membrane capacitance in Xenopus oocytes co-expressing Cav1.2, Sx1A, SNAP-25 and synaptotagmin, which is Bot C- and Bot A-sensitive, was elicited by a double 500 ms depolarizing pulse to 0 mV. The evoked-release was obliterated when a single Cys Sx1A mutant or either one of the Sx isoforms were substituted for Sx 1A, demonstrating the essential role of vicinal Cys residues in the depolarization mediated process. Protein expression and confocal imaging established the level of the mutated proteins in the cell and their targeting to the plasma membrane. Conclusions/Significance We propose a model whereby the two adjacent transmembranal Cys residues of Sx 1A, lash two calcium channels. Consistent with the necessity of a minimal fusion complex termed the excitosome, each Sx1A is in a complex with SNAP-25, Syt1, and the Ca2+ channel. A Hill coefficient >2 imply that at least three excitosome complexes are required for generating a secreting hetero-oligomer protein complex. This working model suggests that a fusion pore that opens during membrane depolarization could be lined by alternating transmembrane segments of Sx1A and VGCC. The functional coupling of distinct amino acids of Sx 1A with VGCC appears to be essential for depolarization-evoked secretion.
Collapse
Affiliation(s)
- Roy Cohen
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Merav Marom
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daphne Atlas
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|