1
|
Shaw DK, Saraswathy VM, McAdow AR, Zhou L, Park D, Mote R, Johnson AN, Mokalled MH. Elevated phagocytic capacity directs innate spinal cord repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598515. [PMID: 38915507 PMCID: PMC11195157 DOI: 10.1101/2024.06.11.598515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Immune cells elicit a continuum of transcriptional and functional states after spinal cord injury (SCI). In mammals, inefficient debris clearance and chronic inflammation impede recovery and overshadow pro-regenerative immune functions. We found that, unlike mammals, zebrafish SCI elicits transient immune activation and efficient debris clearance, without causing chronic inflammation. Single-cell transcriptomics and inducible genetic ablation showed zebrafish macrophages are highly phagocytic and required for regeneration. Cross-species comparisons between zebrafish and mammalian macrophages identified transcription and immune response regulator ( tcim ) as a macrophage-enriched zebrafish gene. Genetic deletion of zebrafish tcim impairs phagocytosis and regeneration, causes aberrant and chronic immune activation, and can be rescued by transplanting wild-type immune precursors into tcim mutants. Conversely, genetic expression of human TCIM accelerates debris clearance and regeneration by reprogramming myeloid precursors into activated phagocytes. This study establishes a central requirement for elevated phagocytic capacity to achieve innate spinal cord repair.
Collapse
|
2
|
Visker JR, Brintz BJ, Kyriakopoulos CP, Hillas Y, Taleb I, Badolia R, Shankar TS, Amrute JM, Ling J, Hamouche R, Tseliou E, Navankasattusas S, Wever-Pinzon O, Ducker GS, Holland WL, Summers SA, Koenig SC, Hanff TC, Lavine KJ, Murali S, Bailey S, Alharethi R, Selzman CH, Shah P, Slaughter MS, Kanwar MK, Drakos SG. Integrating molecular and clinical variables to predict myocardial recovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589326. [PMID: 38659908 PMCID: PMC11042352 DOI: 10.1101/2024.04.16.589326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Mechanical unloading and circulatory support with left ventricular assist devices (LVADs) mediate significant myocardial improvement in a subset of advanced heart failure (HF) patients. The clinical and biological phenomena associated with cardiac recovery are under intensive investigation. Left ventricular (LV) apical tissue, alongside clinical data, were collected from HF patients at the time of LVAD implantation (n=208). RNA was isolated and mRNA transcripts were identified through RNA sequencing and confirmed with RT-qPCR. To our knowledge this is the first study to combine transcriptomic and clinical data to derive predictors of myocardial recovery. We used a bioinformatic approach to integrate 59 clinical variables and 22,373 mRNA transcripts at the time of LVAD implantation for the prediction of post-LVAD myocardial recovery defined as LV ejection fraction (LVEF) ≥40% and LV end-diastolic diameter (LVEDD) ≤5.9cm, as well as functional and structural LV improvement independently by using LVEF and LVEDD as continuous variables, respectively. To substantiate the predicted variables, we used a multi-model approach with logistic and linear regressions. Combining RNA and clinical data resulted in a gradient boosted model with 80 features achieving an AUC of 0.731±0.15 for predicting myocardial recovery. Variables associated with myocardial recovery from a clinical standpoint included HF duration, pre-LVAD LVEF, LVEDD, and HF pharmacologic therapy, and LRRN4CL (ligand binding and programmed cell death) from a biological standpoint. Our findings could have diagnostic, prognostic, and therapeutic implications for advanced HF patients, and inform the care of the broader HF population.
Collapse
|
3
|
Zhu M, Hu W, Lin L, Yang Q, Zhang L, Xu J, Xu Y, Liu J, Zhang M, Tong X, Zhu K, Feng K, Feng Y, Su J, Huang X, Li J. Single-cell RNA sequencing reveals new subtypes of lens superficial tissue in humans. Cell Prolif 2023; 56:e13477. [PMID: 37057399 PMCID: PMC10623935 DOI: 10.1111/cpr.13477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/15/2023] Open
Abstract
Although the cell atlas of the human ocular anterior segment of the human eye was revealed by single-nucleus RNA sequencing, whether subtypes of lens stem/progenitor cells exist among epithelial cells and the molecular characteristics of cell differentiation of the human lens remain unclear. Single-cell RNA sequencing is a powerful tool to analyse the heterogeneity of tissues at the single cell level, leading to a better understanding of the processes of cell differentiation. By profiling 18,596 cells in human lens superficial tissue through single-cell sequencing, we identified two subtypes of lens epithelial cells that specifically expressed C8orf4 and ADAMTSL4 with distinct spatial localization, a new type of fibre cells located directly adjacent to the epithelium, and a subpopulation of ADAMTSL4+ cells that might be lens epithelial stem/progenitor cells. We also found two trajectories of lens epithelial cell differentiation and changes of some important genes during differentiation.
Collapse
Affiliation(s)
- Meng‐Chao Zhu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Wei Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative MedicineFudan UniversityShanghaiChina
| | - Lei Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Qing‐Wen Yang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Lu Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Jia‐Lin Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Yi‐Tong Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Jia‐Sheng Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Meng‐Di Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Xiao‐Yu Tong
- Zhejiang Provincial Clinical Research Center for Pediatric DiseaseThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Kai‐Yi Zhu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Ke Feng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative MedicineFudan UniversityShanghaiChina
| | - Jian‐Zhong Su
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Xiu‐Feng Huang
- Zhejiang Provincial Clinical Research Center for Pediatric DiseaseThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Jin Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
4
|
Venkatesh K, Mishra C, Pradhan SK. First report on molecular characterization and in silico analysis of caprine TCIM gene. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Lan C, Huan DW, Nie XC, Niu JM, Sun JH, Huang WJ, Li ZH, Xu HT. Association of C8orf4 expression with its methylation status, aberrant β-catenin expression, and the development of cervical squamous cell carcinoma. Medicine (Baltimore) 2019; 98:e16715. [PMID: 31374065 PMCID: PMC6708959 DOI: 10.1097/md.0000000000016715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chromosome 8 open reading frame 4 (C8orf4) is an activator of Wnt signaling pathway, and participates in the tumorigenesis and progression of many tumors. The expression levels of C8orf4 and β-catenin were assessed via immunohistochemical staining in 100 cervical squamous cell carcinoma (CSCC) tissues, 50 high-grade squamous intraepithelial lesions (HSILs), 50 low-grade squamous intraepithelial lesions (LSILs), and 50 normal cervical tissues. Bisulfite sequencing polymerase chain reaction analysis was used to examine the methylation status of the C8orf4 locus in CSCC and normal cervical tissues. The expression rates of C8orf4 and β-catenin were significantly higher in CSCCs or HSILs than in LSILs or normal cervical tissues (P < .05). C8orf4 expression was positively correlated with the poor differentiation of CSCCs (P = .009), and with aberrant expression of β-catenin in CSCCs (P = .002) and squamous intraepithelial lesions (P < .001). The methylation rate of C8orf4 in CSCCs was significantly lower than that in normal cervical tissues (P = .001). The Cancer Genome Atlas genomics data also confirmed that the mRNA expression of C8orf4 was positively associated with the copy number alteration of C8orf4 (correlation coefficient = 0.213, P < .001), and negatively correlated with the methylation level of C8orf4 (correlation coefficient = -0.408, P < .001). In conclusion, the expressions of C8orf4 and β-catenin were synergistically increased in CSCCs and HSILs and higher than those in LSILs and normal cervical tissues. The methylation level of C8orf4 is decreased in CSCCs and is responsible for the increased expression of C8orf4.
Collapse
Affiliation(s)
| | - Da-Wei Huan
- Department of Pathology, Shenyang Women and Children's Hospital
| | | | | | | | - Wen-Jing Huang
- Department of Pathology, the First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Zhi-Han Li
- Department of Pathology, the First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Hong-Tao Xu
- Department of Pathology, the First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Zheng YW, Zhang L, Wang Y, Chen SY, Lei L, Tang N, Yang DL, Bai LL, Zhang XP, Jiang GY, Yang LH, Xu HT, Li QC, Qiu XS, Wang EH. Thyroid cancer 1 (C8orf4) shows high expression, no mutation and reduced methylation level in lung cancers, and its expression correlates with β-catenin and DNMT1 expression and poor prognosis. Oncotarget 2017; 8:62880-62890. [PMID: 28968956 PMCID: PMC5609888 DOI: 10.18632/oncotarget.16877] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/21/2017] [Indexed: 02/01/2023] Open
Abstract
Thyroid cancer 1 (TC1, C8orf4) plays important roles in tumors. The aim of this study was to examine the protein expression levels, methylation status, and mutational status of TC1 (C8orf4) in lung cancers, and investigate the correlation between TC1, other members of the Wnt signaling pathway, and lung cancer. TC1 expression levels were assessed via immunohistochemical staining in 179 cases of lung cancer. β-catenin, TCF4, Axin, Disabled-2, Chibby, and DNA methyltransferase-1 (DNMT1) expressions were also examined. Bisulfite sequencing PCR analysis was used to examine the methylation status of the C8orf4 locus, while PCR analysis and direct sequencing were used to determine its mutational status. We found high TC1 expression correlated with poor differentiation, advanced TNM stage, lymphatic metastasis, and poor prognosis in lung cancer patients. TC1 expression also correlated with β-catenin and DNMT1 expressions. No mutations in C8orf4 were detected. However, methylation levels of C8orf4 in lung cancers were lower than in corresponding normal lung tissues. In conclusion, high TC1 expression is implicated in lung cancer progression and correlates with poor prognosis in lung cancer. Reduced methylation levels might be responsible for the elevated TC1 expression levels. TC1, β-catenin, and DNMT1 can synergistically activate Wnt/β-catenin signaling in lung cancers.
Collapse
Affiliation(s)
- Yi-Wen Zheng
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Li Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Yuan Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Song-Yan Chen
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Lei Lei
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Na Tang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Da-Lei Yang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Lin-Lin Bai
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Xiu-Peng Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Gui-Yang Jiang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Lian-He Yang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Hong-Tao Xu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Qing-Chang Li
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Xue-Shan Qiu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - En-Hua Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| |
Collapse
|
7
|
Jang H, Kim M, Lee S, Kim J, Woo DC, Kim KW, Song K, Lee I. Adipose tissue hyperplasia with enhanced adipocyte-derived stem cell activity in Tc1(C8orf4)-deleted mice. Sci Rep 2016; 6:35884. [PMID: 27775060 PMCID: PMC5075883 DOI: 10.1038/srep35884] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/05/2016] [Indexed: 11/09/2022] Open
Abstract
Adipose tissue hyperplasia with increased number of adipocytes is implicated in a protective rather than deleterious effect on obesity-associated metabolic disorder. It is poorly understood how the adipose tissue cellularity is regulated. Tc1 is a gene of vertebrates that regulates diverse downstream genes. Young Tc1-deleted mice fed on standard chow diet show expanded adipose tissue with smaller adipocytes in size compared to wild type controls, representing adipose tissue hyperplasia. Tc1-/- mice show enhanced glucose tolerance and reduced serum lipids. Adipocyte-derived stem cells (ADSCs) from Tc1-/- mice show enhanced proliferative and adipogenic capacity compared to wild type controls, suggesting that the adipose hyperplasia is regulated at the stem cell level. PPARγ and CEBPα are up-regulated robustly in Tc1-/- ADSCs upon induction for adipogenesis. Wisp2 and Dlk1, inhibitors of adipogenesis, are down-regulated in Tc1-/- ADSCs compared to controls. Tc1-transfected NIH3T3 cells show higher β-catenin reporter signals than vector transfected controls, suggesting a role of canonical Wnt signaling in the Tc1-dependent adipose regulation. Our data support that Tc1 is a novel regulator for adipose stem cells. Adipose tissue hyperplasia may be implicated in the metabolic regulation of Tc1-/- mice.
Collapse
Affiliation(s)
- Hayoung Jang
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Minsung Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soyoung Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jungtae Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong-Cheol Woo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Inchul Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Keenan SW, Hill CA, Kandoth C, Buck LT, Warren DE. Transcriptomic Responses of the Heart and Brain to Anoxia in the Western Painted Turtle. PLoS One 2015; 10:e0131669. [PMID: 26147940 PMCID: PMC4493013 DOI: 10.1371/journal.pone.0131669] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/05/2015] [Indexed: 12/23/2022] Open
Abstract
Painted turtles are the most anoxia-tolerant tetrapods known, capable of surviving without oxygen for more than four months at 3°C and 30 hours at 20°C. To investigate the transcriptomic basis of this ability, we used RNA-seq to quantify mRNA expression in the painted turtle ventricle and telencephalon after 24 hours of anoxia at 19°C. Reads were obtained from 22,174 different genes, 13,236 of which were compared statistically between treatments for each tissue. Total tissue RNA contents decreased by 16% in telencephalon and 53% in ventricle. The telencephalon and ventricle showed ≥ 2x expression (increased expression) in 19 and 23 genes, respectively, while only four genes in ventricle showed ≤ 0.5x changes (decreased expression). When treatment effects were compared between anoxic and normoxic conditions in the two tissue types, 31 genes were increased (≥ 2x change) and 2 were decreased (≤ 0.5x change). Most of the effected genes were immediate early genes and transcription factors that regulate cellular growth and development; changes that would seem to promote transcriptional, translational, and metabolic arrest. No genes related to ion channels, synaptic transmission, cardiac contractility or excitation-contraction coupling changed. The generalized expression pattern in telencephalon and across tissues, but not in ventricle, correlated with the predicted metabolic cost of transcription, with the shortest genes and those with the fewest exons showing the largest increases in expression.
Collapse
Affiliation(s)
- Sarah W. Keenan
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Craig A. Hill
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
| | - Cyriac Kandoth
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Leslie T. Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Daniel E. Warren
- Department of Biology, Saint Louis University, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
9
|
Jones NK, Arab NT, Eid R, Gharib N, Sheibani S, Vali H, Khoury C, Murray A, Boucher E, Mandato CA, Young PG, Greenwood MT. Human Thyroid Cancer-1 (TC-1) is a vertebrate specific oncogenic protein that protects against copper and pro-apoptotic genes in yeast. MICROBIAL CELL 2015; 2:247-255. [PMID: 28357300 PMCID: PMC5349172 DOI: 10.15698/mic2015.07.213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The human Thyroid Cancer-1 (hTC-1) protein, also known as C8orf4 was initially identified as a gene that was up-regulated in human thyroid cancer. Here we show that hTC-1 is a peptide that prevents the effects of over-expressing Bax in yeast. Analysis of the 106 residues of hTC-1 in available protein databases revealed direct orthologues in jawed-vertebrates, including mammals, frogs, fish and sharks. No TC-1 orthologue was detected in lower organisms, including yeast. Here we show that TC-1 is a general pro-survival peptide since it prevents the growth- and cell death-inducing effects of copper in yeast. Human TC-1 also prevented the deleterious effects that occur due to the over-expression of a number of key pro-apoptotic peptides, including YCA1, YBH3, NUC1, and AIF1. Even though the protective effects were more pronounced with the over-expression of YBH3 and YCA1, hTC-1 could still protect yeast mutants lacking YBH3 and YCA1 from the effects of copper sulfate. This suggests that the protective effects of TC-1 are not limited to specific pathways or processes. Taken together, our results indicate that hTC-1 is a pro-survival protein that retains its function when heterologously expressed in yeast. Thus yeast is a useful model to characterize the potential roles in cell death and survival of cancer related genes.
Collapse
Affiliation(s)
- Natalie K Jones
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada. ; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada. ; Present address: Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Nagla T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada. ; Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada. ; Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Nada Gharib
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada. ; Present address: Department of Biomedical Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sara Sheibani
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada. ; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada. ; Present address: Defence Research and Development Canada, Alberta, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Chamel Khoury
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Alistair Murray
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada. ; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Eric Boucher
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Paul G Young
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| |
Collapse
|
10
|
Jung Y, Kim M, Soh H, Lee S, Kim J, Park S, Song K, Lee I. TC1(C8orf4) regulates hematopoietic stem/progenitor cells and hematopoiesis. PLoS One 2014; 9:e100311. [PMID: 24937306 PMCID: PMC4061086 DOI: 10.1371/journal.pone.0100311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 05/23/2014] [Indexed: 11/18/2022] Open
Abstract
Hematopoiesis is a complex process requiring multiple regulators for hematopoietic stem/progenitor cells (HSPC) and differentiation to multi-lineage blood cells. TC1(C8orf4) is implicated in cancers, hematological malignancies and inflammatory activation. Here, we report that Tc1 regulates hematopoiesis in mice. Myeloid and lymphoid cells are increased markedly in peripheral blood of Tc1–deleted mice compared to wild type controls. Red blood cells are small-sized but increased in number. The bone marrow of Tc1−/− mice is normocellular histologically. However, Lin−Sca-1+c-Kit+ (LSK) cells are expanded in Tc1−/− mice compared to wild type controls. The expanded population mostly consists of CD150−CD48+ cells, suggesting the expansion of lineage-restricted hematopoietic progenitor cells. Colony forming units (CFU) are increased in Tc1−/− mice bone marrow cells compared to controls. In wild type mice bone marrow, Tc1 is expressed in a limited population of HSPC but not in differentiated cells. Major myeloid transcriptional regulators such as Pu.1 and Cebpα are not up-regulated in Tc1−/− mice bone marrow. Our findings indicate that TC1 is a novel hematopoietic regulator. The mechanisms of TC1-dependent HSPC regulation and lineage determination are unknown.
Collapse
Affiliation(s)
- Yusun Jung
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Minsung Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyunsu Soh
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soyoung Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jungtae Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Surim Park
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Inchul Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
11
|
Leikam C, Hufnagel A, Walz S, Kneitz S, Fekete A, Müller MJ, Eilers M, Schartl M, Meierjohann S. Cystathionase mediates senescence evasion in melanocytes and melanoma cells. Oncogene 2014; 33:771-82. [PMID: 23353821 DOI: 10.1038/onc.2012.641] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 11/28/2012] [Accepted: 12/07/2012] [Indexed: 01/05/2023]
Abstract
The development of malignant melanoma is a highly complex process, which is still poorly understood. A majority of human melanomas are found to express a few oncogenic proteins, such as mutant RAS and BRAF variants. However, these oncogenes are also found in nevi, and it is now a well-accepted fact that their expression alone leads to senescence. This renders the understanding of senescence escape mechanisms an important point to understand tumor development. Here, we approached the question of senescence evasion by expressing the transcription factor v-myc myelocytomatosis viral oncogene homolog (c-MYC), which is known to act synergistically with many oncogenes, in melanocytes. We observed that MYC drives the evasion of reactive-oxygen stress-induced melanocyte senescence, caused by activated receptor tyrosine kinase signaling. Conversely, MIZ1, the growth suppressing interaction partner of MYC, is involved in mediating melanocyte senescence. Both, MYC overexpression and Miz1 knockdown led to a strong reduction of endogenous reactive-oxygen species (ROS), DNA damage and senescence. We identified the cystathionase (CTH) gene product as mediator of the ROS-related MYC and MIZ1 effects. Blocking CTH enzymatic activity in MYC-overexpressing and Miz1 knockdown cells increased intracellular stress and senescence. Importantly, pharmacological inhibition of CTH in human melanoma cells also reconstituted senescence in the majority of cell lines, and CTH knockdown reduced tumorigenic effects such as proliferation, H2O2 resistance and soft agar growth. Thus, we identified CTH as new MYC target gene with an important function in senescence evasion.
Collapse
Affiliation(s)
- C Leikam
- Department of Physiological Chemistry I, Biocenter, University of Wurzburg, Wurzburg, Germany
| | - A Hufnagel
- Department of Physiological Chemistry I, Biocenter, University of Wurzburg, Wurzburg, Germany
| | - S Walz
- Department of Biochemistry and Molecular Biology, Biocenter, University of Wurzburg, Wurzburg, Germany
| | - S Kneitz
- Department of Physiological Chemistry I, Biocenter, University of Wurzburg, Wurzburg, Germany
| | - A Fekete
- Department of Pharmaceutical Biology, Julius-von-Sachs Institute for Biological Sciences, University of Wurzburg, Wurzburg, Germany
| | - M J Müller
- Department of Pharmaceutical Biology, Julius-von-Sachs Institute for Biological Sciences, University of Wurzburg, Wurzburg, Germany
| | - M Eilers
- Department of Biochemistry and Molecular Biology, Biocenter, University of Wurzburg, Wurzburg, Germany
| | - M Schartl
- Department of Physiological Chemistry I, Biocenter, University of Wurzburg, Wurzburg, Germany
| | - S Meierjohann
- Department of Physiological Chemistry I, Biocenter, University of Wurzburg, Wurzburg, Germany
| |
Collapse
|
12
|
Xu HT, Liu Y, Liu SL, Miao Y, Li QC, Wang EH. TC-1 (C8orf4) expression is correlated with differentiation in ovarian carcinomas and might distinguish metastatic ovarian from metastatic colorectal carcinomas. Virchows Arch 2013; 462:281-7. [PMID: 23377761 DOI: 10.1007/s00428-013-1375-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/04/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
Thyroid cancer 1 (TC-1, C8orf4) is involved in the development of many cancers. In this study, we investigated the correlation between the expression of TC-1 and the clinicopathological characteristics of ovarian and colorectal adenocarcinomas. We also explored the possible use of TC-1 as a marker to distinguish between metastatic tumors of the ovary and colorectum. We used immunohistochemistry to examine the expression level of TC-1 in 100 ovarian and 100 colorectal adenocarcinomas and 25 metastatic carcinomas with the ovary or colorectum as primary site. TC-1 was expressed in all ovarian carcinoma samples. The high expression rate of TC-1 was 84 % in ovarian carcinomas, which was much higher than that observed in colorectal adenocarcinomas (35 %, P < 0.001). High expression of TC-1 significantly correlated with poor differentiation of ovarian carcinomas (P = 0.013). To explore the value of TC-1 in distinguishing metastatic ovarian cancers from colorectal cancers, we found the area under the receiver operator characteristic curve of TC-1 to be 0.819 (95 % confidence interval, 0.760-0.878; P < 0.001). Furthermore, TC-1 was highly expressed in 100 % of nine metastatic ovarian cancers, but only in 31 % of 16 metastatic colorectal cancers. The higher expression of TC-1 in ovarian compared to colorectal adenocarcinomas suggests its potential use as a marker, to distinguish between metastatic ovarian and colorectal adenocarcinomas.
Collapse
Affiliation(s)
- Hong-Tao Xu
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China.
| | | | | | | | | | | |
Collapse
|
13
|
Implication of heat shock factors in tumorigenesis: therapeutical potential. Cancers (Basel) 2011; 3:1158-81. [PMID: 24212658 PMCID: PMC3756408 DOI: 10.3390/cancers3011158] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 02/23/2011] [Indexed: 12/17/2022] Open
Abstract
Heat Shock Factors (HSF) form a family of transcription factors (four in mammals) which were named according to the discovery of their activation by a heat shock. HSFs trigger the expression of genes encoding Heat Shock Proteins (HSPs) that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stresses and in pathological conditions. Increasing evidence indicates that this ancient transcriptional protective program acts genome-widely and performs unexpected functions in the absence of experimentally defined stress. Indeed, HSFs are able to re-shape cellular pathways controlling longevity, growth, metabolism and development. The most well studied HSF, HSF1, has been found at elevated levels in tumors with high metastatic potential and is associated with poor prognosis. This is partly explained by the above-mentioned cytoprotective (HSP-dependent) function that may enable cancer cells to adapt to the initial oncogenic stress and to support malignant transformation. Nevertheless, HSF1 operates as major multifaceted enhancers of tumorigenesis through, not only the induction of classical heat shock genes, but also of “non-classical” targets. Indeed, in cancer cells, HSF1 regulates genes involved in core cellular functions including proliferation, survival, migration, protein synthesis, signal transduction, and glucose metabolism, making HSF1 a very attractive target in cancer therapy. In this review, we describe the different physiological roles of HSFs as well as the recent discoveries in term of non-cogenic potential of these HSFs, more specifically associated to the activation of “non-classical” HSF target genes. We also present an update on the compounds with potent HSF1-modulating activity of potential interest as anti-cancer therapeutic agents.
Collapse
|
14
|
Du Q, Geller DA. Cross-Regulation Between Wnt and NF-κB Signaling Pathways. ACTA ACUST UNITED AC 2010; 1:155-181. [PMID: 21686046 DOI: 10.1615/forumimmundisther.v1.i3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cross-regulation between the Wnt and nuclear factor (NF)-κB signaling pathways has emerged as an important area for the regulation of a diverse array of genes and pathways active in chronic inflammation, immunity, development, and tumorigenesis. The ligands, kinases, transcription factors, and products of their target gene expression are involved in cross-regulation of these two signaling pathways. Both β-catenin and NF-κB activate inducible nitric oxide synthase (iNOS) gene expression; however, β-catenin also exerts an inhibitory effect on NF-κB-mediated transcriptional activation, including iNOS. The recent discovery of functional cross-regulation between these two pathways has shown complex roles for Wnt/β-catenin and NF-κB signaling in the pathogenesis of certain cancers and other diseases. This review focuses on the molecular mechanisms of cross-regulation between Wnt/β-catenin and NF-κB signaling pathways in cancer cells.
Collapse
Affiliation(s)
- Qiang Du
- Department of Surgery, T.E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | | |
Collapse
|
15
|
Kim J, Kim Y, Kim HT, Kim DW, Ha Y, Kim J, Kim CH, Lee I, Song K. TC1(C8orf4) Is a Novel Endothelial Inflammatory Regulator Enhancing NF-κB Activity. THE JOURNAL OF IMMUNOLOGY 2009; 183:3996-4002. [DOI: 10.4049/jimmunol.0900956] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|