1
|
Santos JR, Park J. MATR3's Role beyond the Nuclear Matrix: From Gene Regulation to Its Implications in Amyotrophic Lateral Sclerosis and Other Diseases. Cells 2024; 13:980. [PMID: 38891112 PMCID: PMC11171696 DOI: 10.3390/cells13110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Matrin-3 (MATR3) was initially discovered as a component of the nuclear matrix about thirty years ago. Since then, accumulating studies have provided evidence that MATR3 not only plays a structural role in the nucleus, but that it is also an active protein involved in regulating gene expression at multiple levels, including chromatin organization, DNA transcription, RNA metabolism, and protein translation in the nucleus and cytoplasm. Furthermore, MATR3 may play a critical role in various cellular processes, including DNA damage response, cell proliferation, differentiation, and survival. In addition to the revelation of its biological role, recent studies have reported MATR3's involvement in the context of various diseases, including neurodegenerative and neurodevelopmental diseases, as well as cancer. Moreover, sequencing studies of patients revealed a handful of disease-associated mutations in MATR3 linked to amyotrophic lateral sclerosis (ALS), which further elevated the gene's importance as a topic of study. In this review, we synthesize the current knowledge regarding the diverse functions of MATR3 in DNA- and RNA-related processes, as well as its involvement in various diseases, with a particular emphasis on ALS.
Collapse
Affiliation(s)
- Jhune Rizsan Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jeehye Park
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
2
|
He H, Jamal M, Zeng X, Lei Y, Xiao D, Wei Z, Zhang C, Zhang X, Pan S, Ding Q, Tan H, Xie S, Zhang Q. Matrin-3 acts as a potential biomarker and promotes hepatocellular carcinoma progression by interacting with cell cycle-regulating genes. Cell Cycle 2024; 23:15-35. [PMID: 38252499 PMCID: PMC11005806 DOI: 10.1080/15384101.2024.2305535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. The oncogenic role of Matrin-3 (MATR3), an a nuclear matrix protein, in HCC remains largely unknown. Here, we document the biological function of MATR3 in HCC based on integrated bioinformatics analysis and functional studies. According to the TCGA database, MATR3 expression was found to be positively correlated with clinicopathological characteristics in HCC. The receiver operating characteristic (ROC) curve and Kaplan-Meier (KM) curve displayed the diagnostic and prognostic potentials of MATR3 in HCC patients, respectively. Pathway enrichment analysis represented the enrichment of MATR3 in various molecular pathways, including the regulation of the cell cycle. Functional assays in HCC cell lines showed reduced proliferation of cells with stable silencing of MATR3. At the same time, the suppressive effects of MATR3 depletion on HCC development were verified by xenograft tumor experiments. Moreover, MATR3 repression also resulted in cell cycle arrest by modulating the expression of cell cycle-associated genes. In addition, the interaction of MATR3 with cell cycle-regulating factors in HCC cells was further corroborated with co-immunoprecipitation and mass spectrometry (Co-IP/MS). Furthermore, CIBERSORT and TIMER analyses showed an association between MATR3 and immune infiltration in HCC. In general, this study highlights the novel oncogenic function of MATR3 in HCC, which could comprehensively address how aberrant changes in the cell cycle promote HCC development. MATR3 might serve as a prognostic predictor and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Hengjing He
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xingruo Zeng
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yufei Lei
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Di Xiao
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zimeng Wei
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Chengjie Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiaoyu Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Shan Pan
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qianshan Ding
- School of Medicine, Northwest University, Xian, China
| | - Haiyan Tan
- Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Songping Xie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
De Marco G, Lomartire A, Manera U, Canosa A, Grassano M, Casale F, Fuda G, Salamone P, Rinaudo MT, Colombatto S, Moglia C, Chiò A, Calvo A. Effects of intracellular calcium accumulation on proteins encoded by the major genes underlying amyotrophic lateral sclerosis. Sci Rep 2022; 12:395. [PMID: 35013445 PMCID: PMC8748718 DOI: 10.1038/s41598-021-04267-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
The aetiology of Amyotrophic Lateral Sclerosis (ALS) is still poorly understood. The discovery of genetic forms of ALS pointed out the mechanisms underlying this pathology, but also showed how complex these mechanisms are. Excitotoxicity is strongly suspected to play a role in ALS pathogenesis. Excitotoxicity is defined as neuron damage due to excessive intake of calcium ions (Ca2+) by the cell. This study aims to find a relationship between the proteins coded by the most relevant genes associated with ALS and intracellular Ca2+ accumulation. In detail, the profile of eight proteins (TDP-43, C9orf72, p62/sequestosome-1, matrin-3, VCP, FUS, SOD1 and profilin-1), was analysed in three different cell types induced to raise their cytoplasmic amount of Ca2+. Intracellular Ca2+ accumulation causes a decrease in the levels of TDP-43, C9orf72, matrin3, VCP, FUS, SOD1 and profilin-1 and an increase in those of p62/sequestosome-1. These events are associated with the proteolytic action of two proteases, calpains and caspases, as well as with the activation of autophagy. Interestingly, Ca2+ appears to both favour and hinder autophagy. Understanding how and why calpain-mediated proteolysis and autophagy, which are physiological processes, become pathological may elucidate the mechanisms responsible for ALS and help discover new therapeutic targets.
Collapse
Affiliation(s)
- Giovanni De Marco
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy. .,Neurology Unit 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Via Cherasco 15, 10126, Turin, Italy.
| | - Annarosa Lomartire
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Umberto Manera
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Antonio Canosa
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy.,Neurology Unit 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Maurizio Grassano
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Federico Casale
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Giuseppe Fuda
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Paolina Salamone
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy.,Neurology Unit 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Maria Teresa Rinaudo
- Department of Oncology, University of Turin, via Michelangelo 27/b, 10126, Turin, Italy
| | - Sebastiano Colombatto
- Department of Oncology, University of Turin, via Michelangelo 27/b, 10126, Turin, Italy
| | - Cristina Moglia
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy.,Neurology Unit 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Via Cherasco 15, 10126, Turin, Italy
| | - Adriano Chiò
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy.,Neurology Unit 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Via Cherasco 15, 10126, Turin, Italy.,Neuroscience Institute of Turin (NIT), Via Verdi, 8, 10124, Turin, Italy.,Institute of Cognitive Sciences and Technologies, C.N.R., Via S. Martino della Battaglia, 44, 00185, Rome, Italy
| | - Andrea Calvo
- Department of Neuroscience, ALS Centre, "Rita Levi Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy.,Neurology Unit 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Via Cherasco 15, 10126, Turin, Italy.,Neuroscience Institute of Turin (NIT), Via Verdi, 8, 10124, Turin, Italy
| |
Collapse
|
4
|
Abstract
RNA-binding proteins (RBPs) are essential factors required for the physiological function of neurons, muscle, and other tissue types. In keeping with this, a growing body of genetic, clinical, and pathological evidence indicates that RBP dysfunction and/or gene mutation leads to neurodegeneration and myopathy. Here, we summarize the current understanding of matrin 3 (MATR3), a poorly understood RBP implicated not only in ALS and frontotemporal dementia but also in distal myopathy. We begin by reviewing MATR3's functions, its regulation, and how it may be involved in both sporadic and familial neuromuscular disease. We also discuss insights gleaned from cellular and animal models of MATR3 pathogenesis, the links between MATR3 and other disease-associated RBPs, and the mechanisms underlying RBP-mediated disorders.
Collapse
Affiliation(s)
- Ahmed M. Malik
- Medical Scientist Training Program
- Neuroscience Graduate Program, and
| | - Sami J. Barmada
- Neuroscience Graduate Program, and
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Yang J, Lee SJ, Kwon Y, Ma L, Kim J. Tumor suppressive function of Matrin 3 in the basal-like breast cancer. Biol Res 2020; 53:42. [PMID: 32977861 PMCID: PMC7519516 DOI: 10.1186/s40659-020-00310-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Basal-like breast cancer (BLBC) or triple-negative breast cancer (TNBC) is an aggressive and highly metastatic subtype of human breast cancer. The present study aimed to elucidate the potential tumor-suppressive function of MATR3, an abundant nuclear protein, in BLBC/TNBC, whose cancer-relevance has not been characterized. METHODS We analyzed in vitro tumorigenecity by cell proliferation and soft agar colony formation assays, apoptotic cell death by flow cytometry and Poly (ADP-ribose) polymerase (PARP) cleavage, epithelial-mesenchymal transition (EMT) by checking specific EMT markers with real-time quantitative PCR and in vitro migration and invasion by Boyden Chamber assays. To elucidate the underlying mechanism by which MATR3 functions as a tumor suppressor, we performed Tandem affinity purification followed by mass spectrometry (TAP-MS) and pathway analysis. We also scrutinized MATR3 expression levels in the different subtypes of human breast cancer and the correlation between MATR3 expression and patient survival by bioinformatic analyses of publicly available transcriptome datasets. RESULTS MATR3 suppressed in vitro tumorigenecity, promoted apoptotic cell death and inhibited EMT, migration, and invasion in BLBC/TNBC cells. Various proteins regulating apoptosis were identified as MATR3-binding proteins, and YAP/TAZ pathway was suppressed by MATR3. MATR3 expression was inversely correlated with the aggressive and metastatic nature of breast cancer. Moreover, high expression levels of MATR3 were associated with a good prognosis of breast cancer patients. CONCLUSIONS Our data demonstrate that MATR3 functions as a putative tumor suppressor in BLBC/TNBC cells. Also, MATR3 potentially plays a role as a biomarker in predicting chemotherapy-sensitivity and patient survival in breast cancer patients.
Collapse
Affiliation(s)
- Jaehyuk Yang
- Department of Life Sciences, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
| | - Seung Jun Lee
- Department of Life Sciences, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
| | - Yongseok Kwon
- Department of Chemistry, Sogang University, Seoul, Republic of Korea
| | - Li Ma
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jongchan Kim
- Department of Life Sciences, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Almami IS, Aldubayan MA, Felemban SG, Alyamani N, Howden R, Robinson AJ, Pearson TDZ, Boocock D, Algarni AS, Garner AC, Griffin M, Bonner PLR, Hargreaves AJ. Neurite outgrowth inhibitory levels of organophosphates induce tissue transglutaminase activity in differentiating N2a cells: evidence for covalent adduct formation. Arch Toxicol 2020; 94:3861-3875. [PMID: 32749514 PMCID: PMC7603472 DOI: 10.1007/s00204-020-02852-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Organophosphate compounds (OPs) induce both acute and delayed neurotoxic effects, the latter of which is believed to involve their interaction with proteins other than acetylcholinesterase. However, few OP-binding proteins have been identified that may have a direct role in OP-induced delayed neurotoxicity. Given their ability to disrupt Ca2+ homeostasis, a key aim of the current work was to investigate the effects of sub-lethal neurite outgrowth inhibitory levels of OPs on the Ca2+-dependent enzyme tissue transglutaminase (TG2). At 1-10 µM, the OPs phenyl saligenin phosphate (PSP) and chlorpyrifos oxon (CPO) had no effect cell viability but induced concentration-dependent decreases in neurite outgrowth in differentiating N2a neuroblastoma cells. The activity of TG2 increased in cell lysates of differentiating cells exposed for 24 h to PSP and chlorpyrifos oxon CPO (10 µM), as determined by biotin-cadaverine incorporation assays. Exposure to both OPs (3 and/or 10 µM) also enhanced in situ incorporation of the membrane permeable substrate biotin-X-cadaverine, as indicated by Western blot analysis of treated cell lysates probed with ExtrAvidin peroxidase and fluorescence microscopy of cell monolayers incubated with FITC-streptavidin. Both OPs (10 µM) stimulated the activity of human and mouse recombinant TG2 and covalent labelling of TG2 with dansylamine-labelled PSP was demonstrated by fluorescence imaging following SDS-PAGE. A number of TG2 substrates were tentatively identified by mass spectrometry, including cytoskeletal proteins, chaperones and proteins involved protein synthesis and gene regulation. We propose that the elevated TG2 activity observed is due to the formation of a novel covalent adduct between TG2 and OPs.
Collapse
Affiliation(s)
- Ibtesam S Almami
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Biology, College of Science, Qassim University, Al-Qassim, Saudi Arabia
| | - Maha A Aldubayan
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al-Qassim, Saudi Arabia
| | - Shatha G Felemban
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Medical Laboratory Science, Fakeeh College for Medical Science, Jeddah, Saudi Arabia
| | - Najiah Alyamani
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Biology, Faculty of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Richard Howden
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Alexander J Robinson
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Life Sciences, School of Health Sciences, Birmingham City University, City South Campus, Edgbaston, B15 3TN, UK
| | - Tom D Z Pearson
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - David Boocock
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Alanood S Algarni
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Mekkah, Saudi Arabia
| | - A Christopher Garner
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Martin Griffin
- Department of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Philip L R Bonner
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Alan J Hargreaves
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
7
|
Nho SH, Yoon G, Seo JH, Oh HN, Cho SS, Kim H, Choi HW, Shim JH, Chae JI. Licochalcone H induces the apoptosis of human oral squamous cell carcinoma cells via regulation of matrin 3. Oncol Rep 2018; 41:333-340. [PMID: 30320347 PMCID: PMC6278573 DOI: 10.3892/or.2018.6784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Licochalcone H (LCH) is a chemical compound that is a positional isomer of licochalcone C (LCC), a chalconoid isolated from the root of Glycyrrhiza inflata, which has various pharmacological properties including anti-inflammatory, antioxidant, antitumor, and anticancer effects. However, the efficacy of LCH on cancer cells has not been investigated. The present study examined the effects of LCH on cell proliferation, induction of apoptosis, and the regulation of matrin 3 (Matr3) protein in oral squamous cell carcinoma (OSCC) cells by Annexin V/propidium iodide (PI) staining and western blot analysis. LCH reduced cell viability and colony forming ability, and induced cell cycle arrest and apoptosis in HSC2 and HSC3 cells through the suppression of Matr3. It was also found that LCH directly bound to Matr3 in a Sepharose 4B pull-down assay. Consequently, the results of the present study suggest that LCH may be used as an anticancer drug in combination with conventional chemotherapy for the treatment of OSCC, and that Matr3 may be a potential effective therapeutic target.
Collapse
Affiliation(s)
- Su-Hyun Nho
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam 58554, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Ha-Na Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam 58554, Republic of Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam 57922, Republic of Korea
| | - Hyun Woo Choi
- Department of Animal Science, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam 58554, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| |
Collapse
|
8
|
Kong W, Mou X, Deng J, Di B, Zhong R, Wang S, Yang Y, Zeng W. Differences of immune disorders between Alzheimer's disease and breast cancer based on transcriptional regulation. PLoS One 2017; 12:e0180337. [PMID: 28719625 PMCID: PMC5515412 DOI: 10.1371/journal.pone.0180337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 06/14/2017] [Indexed: 01/01/2023] Open
Abstract
Although chronic inflammation and immune disorders are of great importance to the pathogenesis of both dementia and cancer, the pathophysiological mechanisms are not clearly understood. In recent years, growing epidemiological evidence and meta-analysis data suggest an inverse association between Alzheimer’s disease (AD), which is the most common form of dementia, and cancer. It has been revealed that some common genes and biological processes play opposite roles in AD and cancer; however, the biological immune mechanism for the inverse association is not clearly defined. An unsupervised matrix decomposition two-stage bioinformatics procedure was adopted to investigate the opposite behaviors of the immune response in AD and breast cancer (BC) and to discover the underlying transcriptional regulatory mechanisms. Fast independent component analysis (FastICA) was applied to extract significant genes from AD and BC microarray gene expression data. Based on the extracted data, the shared transcription factors (TFs) from AD and BC were captured. Second, the network component analysis (NCA) algorithm in this study was presented to quantitatively deduce the TF activities and regulatory influences because quantitative dynamic regulatory information for TFs is not available via microarray techniques. Based on the NCA results and reconstructed transcriptional regulatory networks, inverse regulatory processes and some known innate immune responses were described in detail. Many of the shared TFs and their regulatory processes were found to be closely related to the adaptive immune response from dramatically different directions and to play crucial roles in both AD and BC pathogenesis. From the above findings, the opposing cellular behaviors demonstrate an invaluable opportunity to gain insights into the pathogenesis of these two types of diseases and to aid in developing new treatments.
Collapse
Affiliation(s)
- Wei Kong
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
- * E-mail:
| | - Xiaoyang Mou
- Department of Biochemistry, Rowan University and Guava Medicine, Glassboro, New Jersey, United States of America
| | - Jin Deng
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| | - Benteng Di
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| | - Ruxing Zhong
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| | - Shuaiqun Wang
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| | - Yang Yang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Weiming Zeng
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| |
Collapse
|
9
|
Lee J, Ahn E, Park WK, Park S. Phosphoproteome Profiling of SH-SY5y Neuroblastoma Cells Treated with Anesthetics: Sevoflurane and Isoflurane Affect the Phosphorylation of Proteins Involved in Cytoskeletal Regulation. PLoS One 2016; 11:e0162214. [PMID: 27611435 PMCID: PMC5017685 DOI: 10.1371/journal.pone.0162214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022] Open
Abstract
Inhalation anesthetics are used to decrease the spinal cord transmission of painful stimuli. However, the molecular or biochemical processes within cells that regulate anesthetic-induced responses at the cellular level are largely unknown. Here, we report the phosphoproteome profile of SH-SY5y human neuroblastoma cells treated with sevoflurane, a clinically used anesthetic. Phosphoproteins were isolated from cell lysates and analyzed using two-dimensional gel electrophoresis. The phosphorylation of putative anesthetic-responsive marker proteins was validated using western blot analysis in cells treated with both sevoflurane and isoflurane. A total of 25 phosphoproteins were identified as differentially phosphorylated proteins. These included key regulators that signal cytoskeletal remodeling steps in pathways related to vesicle trafficking, axonal growth, and cell migration. These proteins included the Rho GTPase, Ras-GAP SH3 binding protein, Rho GTPase activating protein, actin-related protein, and actin. Sevoflurane and isoflurane also resulted in the dissolution of F-actin fibers in SH-SY5y cells. Our results show that anesthetics affect the phosphorylation of proteins involved in cytoskeletal remodeling pathways.
Collapse
Affiliation(s)
- Joomin Lee
- Department of Food and Nutrition, Chosun University, Gwangju 61452, Korea
| | - Eunsook Ahn
- Department of Applied Chemistry, Dongduk Women’s University, Seoul 02748, Korea
| | - Wyun Kon Park
- Department of Anesthesia and Pain, College of Medicine, Department of Anesthesia and Pain, Yonsei University, Seoul 03722, Korea
| | - Seyeon Park
- Department of Applied Chemistry, Dongduk Women’s University, Seoul 02748, Korea
- * E-mail:
| |
Collapse
|
10
|
Coelho MB, Attig J, Ule J, Smith CWJ. Matrin3: connecting gene expression with the nuclear matrix. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:303-15. [PMID: 26813864 DOI: 10.1002/wrna.1336] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 01/06/2023]
Abstract
As indicated by its name, Matrin3 was discovered as a component of the nuclear matrix, an insoluble fibrogranular network that structurally organizes the nucleus. Matrin3 possesses both DNA- and RNA-binding domains and, consistent with this, has been shown to function at a number of stages in the life cycle of messenger RNAs. These numerous activities indicate that Matrin3, and indeed the nuclear matrix, do not just provide a structural framework for nuclear activities but also play direct functional roles in these activities. Here, we review the structure, functions, and molecular interactions of Matrin3 and of Matrin3-related proteins, and the pathologies that can arise upon mutation of Matrin3. WIREs RNA 2016, 7:303-315. doi: 10.1002/wrna.1336 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Miguel B Coelho
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jan Attig
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Jernej Ule
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | |
Collapse
|
11
|
Leal SS, Gomes CM. Calcium dysregulation links ALS defective proteins and motor neuron selective vulnerability. Front Cell Neurosci 2015; 9:225. [PMID: 26136661 PMCID: PMC4468822 DOI: 10.3389/fncel.2015.00225] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/28/2015] [Indexed: 12/12/2022] Open
Abstract
More than 20 distinct gene loci have so far been implicated in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder characterized by progressive neurodegeneration of motor neurons (MN) and death. Most of this distinct set of ALS-related proteins undergoes toxic deposition specifically in MN for reasons which remain unclear. Here we overview a recent body of evidence indicative that mutations in ALS-related proteins can disrupt fundamental Ca2+ signalling pathways in MN, and that Ca2+ itself impacts both directly or indirectly in many ALS critical proteins and cellular processes that result in MN neurodegeneration. We argue that the inherent vulnerability of MN to dysregulation of intracellular Ca2+ is deeply associated with discriminating pathogenicity and aberrant crosstalk of most of the critical proteins involved in ALS. Overall, Ca2+ deregulation in MN is at the cornerstone of different ALS processes and is likely one of the factors contributing to the selective susceptibility of these cells to this particular neurodegenerative disease.
Collapse
Affiliation(s)
- Sónia S Leal
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute and Department of Chemistry and Biochemistry, Universidade de Lisboa Campo Grande, Lisboa, Portugal ; Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| | - Cláudio M Gomes
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute and Department of Chemistry and Biochemistry, Universidade de Lisboa Campo Grande, Lisboa, Portugal ; Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| |
Collapse
|
12
|
Osman AM, van Loveren H. Matrin 3 co-immunoprecipitates with the heat shock proteins glucose-regulated protein 78 (GRP78), GRP75 and glutathione S-transferase π isoform 2 (GSTπ2) in thymoma cells. Biochimie 2014; 101:208-14. [PMID: 24491357 DOI: 10.1016/j.biochi.2014.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/23/2014] [Indexed: 01/30/2023]
Abstract
Here, we report evidence that matrin 3 (MATR3), a highly conserved inner nuclear matrix phosphoprotein, whose function is largely unknown, interacts specifically with the heat shock proteins glucose-regulated protein 78 (GRP78), GRP75 and glutathione S-transferase π isoform 2 (GSTπ2). Using immunoprecipitation experiments of lysates obtained from control and tributyltin oxide (TBTO)-treated thymoma cell line (EL4), we identified MATR3 and its partners by MS/MS analysis and confirmed by immunoblot. We also show that MATR3 undergoes degradation as reported before and that this cleavage process, which is inhibited by the broad-spectrum caspase inhibitor, z-VAD-FMK, is more marked in TBTO-treated cells. Further, we found that the heat shock protein glucose-regulated protein 78 was downregulated in the TBTO-treated cells. The GRP78 protein is known to protect cells from apoptosis by complexing with procaspase 7 thereby preventing caspase activation cascade. By immunoblot analysis, we found that the levels of procaspases-3 and -7 were lower in TBTO-treated cells; in contrast, the level of p20, the active form of caspase 3, was relatively higher in the treated cells compared to that of control cells. We propose that the TBTO-mediated downregulation of GRP78 triggers the caspase cascade pathway leading to MATR3 degradation.
Collapse
Affiliation(s)
- Ahmed M Osman
- National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Henk van Loveren
- National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands; Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
13
|
Mendonça DMF, Pizzati L, Mostacada K, de S Martins SC, Higashi R, Ayres Sá L, Moura Neto V, Chimelli L, Martinez AMB. Neuroproteomics: an insight into ALS. Neurol Res 2013; 34:937-43. [PMID: 23146297 DOI: 10.1179/1743132812y.0000000092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown aetiology. Diagnosis is made through physical examination, electrophysiological findings, and by excluding other conditions. There is not a single biomarker that concludes the diagnosis. The aim of this study was to investigate differentially expressed proteins in cerebrospinal fluid (CSF) of ALS patients compared to control subjects, with the purpose to identify a panel of possible biomarkers for the disease. The differentially expressed spots/proteins were submitted to two-dimensional (2D) electrophoresis and recognized with matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. Parkin-like and many iron and zinc binding were some of the proteins found in ALS CSF. Parkin is a ligase involved in ubiquitin-proteasome pathway and mutations in the parkin gene are the most common cause of recessive familial Parkinson's disease. Iron and zinc are involved with many important metabolic processes and are related to neurodegenerative disease. Common features of ALS comprise failure of the ubiquitin-proteasome system and increased levels of metal ions in the brain. Therefore, the identification of these proteins can be a significant step in ALS research. These and other identified proteins are discussed in this study.
Collapse
Affiliation(s)
- D M F Mendonça
- Departamento de Biociências, Universidade Federal de Sergipe, Sergipe, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Butterfield DA, Perluigi M, Reed T, Muharib T, Hughes CP, Robinson RAS, Sultana R. Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid Redox Signal 2012; 17:1610-55. [PMID: 22115501 PMCID: PMC3448942 DOI: 10.1089/ars.2011.4109] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 12/12/2022]
Abstract
Several studies demonstrated that oxidative damage is a characteristic feature of many neurodegenerative diseases. The accumulation of oxidatively modified proteins may disrupt cellular functions by affecting protein expression, protein turnover, cell signaling, and induction of apoptosis and necrosis, suggesting that protein oxidation could have both physiological and pathological significance. For nearly two decades, our laboratory focused particular attention on studying oxidative damage of proteins and how their chemical modifications induced by reactive oxygen species/reactive nitrogen species correlate with pathology, biochemical alterations, and clinical presentations of Alzheimer's disease. This comprehensive article outlines basic knowledge of oxidative modification of proteins and lipids, followed by the principles of redox proteomics analysis, which also involve recent advances of mass spectrometry technology, and its application to selected age-related neurodegenerative diseases. Redox proteomics results obtained in different diseases and animal models thereof may provide new insights into the main mechanisms involved in the pathogenesis and progression of oxidative-stress-related neurodegenerative disorders. Redox proteomics can be considered a multifaceted approach that has the potential to provide insights into the molecular mechanisms of a disease, to find disease markers, as well as to identify potential targets for drug therapy. Considering the importance of a better understanding of the cause/effect of protein dysfunction in the pathogenesis and progression of neurodegenerative disorders, this article provides an overview of the intrinsic power of the redox proteomics approach together with the most significant results obtained by our laboratory and others during almost 10 years of research on neurodegenerative disorders since we initiated the field of redox proteomics.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Valencia CA, Zou J, Liu R. In vitro selection of proteins with desired characteristics using mRNA-display. Methods 2012. [PMID: 23201412 DOI: 10.1016/j.ymeth.2012.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
mRNA-display is an amplification-based, iterative rounds of in vitro protein selection technique that circumvents a number of difficulties associated with yeast two-hybrid and phage display. Because of the covalent linkage between the genotype and the phenotype, mRNA-display provides a powerful means for reading and amplifying a peptide or protein sequence after it has been selected from a library with very high diversity. The purpose of this article is to provide a summary of the field and practical framework of mRNA-display-based selections. We summarize the advantages and limitations of selections using mRNA-display as well as the recent applications, namely, the identification of novel affinity reagents, target-binding partners, and enzyme substrates from synthetic peptide or natural proteome libraries. Practically, we provide a detailed procedure for performing mRNA-display-based selections with the aim of identifying protease substrates and binding partners of a target protein. Furthermore, we describe how to confirm the function of the selected protein sequences by biochemical assays and bioinformatic tools.
Collapse
Affiliation(s)
- C Alexander Valencia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | |
Collapse
|
16
|
García-Palmero I, Villalobo A. Calmodulin regulates the translocation of Grb7 into the nucleus. FEBS Lett 2012; 586:1533-9. [PMID: 22673522 DOI: 10.1016/j.febslet.2012.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/30/2012] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
Abstract
We describe in this report the presence of a nuclear localization signal (NLS) overlapping the calmodulin-binding domain (CaM-BD) of the growth factor receptor bound protein 7 (Grb7). We show that deletion of the CaM-BD of Grb7 prevents its nuclear localization, and that its Src homology 2 (SH2) domain might participate as well in the translocation process. Also, treating cells with the CaM antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) enhances the presence of Grb7 in the nucleus. We propose that CaM inhibits the translocation of Grb7 to the nucleus after binding to its CaM-BD and therefore occluding its overlapping NLS.
Collapse
Affiliation(s)
- Irene García-Palmero
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Department of Cancer Biology, Madrid, Spain
| | | |
Collapse
|
17
|
González-Fernández R, Morales M, Avila J, Martín-Vasallo P. Changes in leukocyte gene expression profiles induced by antineoplastic chemotherapy. Oncol Lett 2012; 3:1341-1349. [PMID: 22783446 DOI: 10.3892/ol.2012.669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/28/2012] [Indexed: 11/06/2022] Open
Abstract
In the present study, we studied changes in gene expression induced by chemotherapy (CT) on normal peripheral blood leukocytes (PBLs), at baseline and following three CT cycles, in order to identify which genes were specifically affected and were potentially useful as biomarkers for a personalised prognosis and follow-up. A PBL subtraction cDNA library was constructed from four patients undergoing CT with paclitaxel and carboplatin (PC). mRNA from the PBLs was isolated prior to the patients receiving the first cycle and following the completion of the third cycle. The library was screened and the expression of the identified genes was studied in PBLs obtained from patients suffering from cancer prior to and following three cycles of PC and a reference group of patients undergoing treatment with Adriamycin-cyclophosphamide (AC). From the 1,200 screened colonies, 65 positive clones showed varied expression intensity and were sequenced; 27 of these were mitochondrial DNA and 38 clones (27 different) were coded for cytosolic and nuclear proteins. The genes that were studied in patients undergoing CT were ATM (ataxia-telangiectasia mutated gene), eIF4B (translation initiation factor 4B), MATR3 (Matrin 3), MORC3 (microrchidia 3), PCMTD2 (protein-L-isoaspartate O-methyltransferase), PDCD10 (programmed cell death gene 10), PSMB1 (proteasome subunit type β), RMND5A (required for meiotic nuclear division 5 homologue A), RUNX2 (runt-related transcription factor 2), SACM1L (suppressor of actin mutations 1-like), TMEM66 (transmembrane protein 66) and ZNF644 (zinc finger protein 644). Certain variations were observed in the expression of the genes that are involved in drug resistance mechanisms, some of which may be secondary to non-desirable effects and others of which may cause the undesired effects of CT. The expression of genes with a dynamic cellular role showed a marked positive correlation, indicating that their upregulation may be involved in a specific pattern of cell survival versus apoptosis in response to the cell damage induced by CT. Whether these CT-induced changes are random or directed in a specific selection-evolution manner needs to be elucidated.
Collapse
Affiliation(s)
- Rebeca González-Fernández
- Laboratory of Developmental Biology, Department of Biochemistry and Molecular Biology, University of La Laguna, La Laguna 38201
| | | | | | | |
Collapse
|
18
|
Osman AM, van Loveren H. Phosphoproteomic analysis of mouse thymoma cells treated with tributyltin oxide: TBTO affects proliferation and energy sensing pathways. Toxicol Sci 2011; 126:84-100. [PMID: 22174045 DOI: 10.1093/toxsci/kfr333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the results of phosphoproteomic analysis of mouse thymoma cells treated with tributyltin oxide (TBTO), an immunotoxic compound. After cell lysis, phosphoproteins were isolated using Phosphoprotein Purification Kit, separated by SDS-PAGE and subsequently digested with trypsin. Phosphopeptides were enriched employing titanium dioxide, and the obtained fractions were analyzed by nano-LC-MS/MS. A total of 160 phosphoproteins and 328 phosphorylation sites were identified in thymoma cells. Among the differentially phosphorylated proteins identified in TBTO-treated cells were key enzymes, which catalyze rate-limiting steps in pathways that are sensitive to cellular energy status. These proteins included acetyl-CoA carboxylase isoform 1, which catalyzes the rate-limiting step of fatty acid synthesis. Another enzyme was glutamine: fructose-6-phosphate amidotransferase, GFAT1, the first and rate-limiting enzyme for the hexoamine synthesis pathway. Pyruvate dehydrogenase (PDH), a multicomplex enzyme that catalyzes the rate-limiting step of aerobic oxidation of fuel carbohydrates, was identified in both TBTO-treated and control cells; however, phosphorylation at residue S293, known to inhibit PDH activity, was identified only in control cells. A lower expression level of ribosomal protein S6 kinase 1, a downstream kinase of the mammalian target of rapamycin signaling pathway implicated in protein synthesis through phosphorylation of 40 ribosomal S6, was observed in the treated cells. Giant kinases like AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKAR1A), which are known to mediate the phosphorylation of these enzymes, were identified in TBTO-treated cells. Downregulation of proteins, such as MAPK, matrin-3 and ribonucleotide reductase, subunit RRM2, which are implicated in cell proliferation, was also observed in TBTO-treated cells. Together, the results show that TBTO affects proliferation and energy sensor pathways.
Collapse
Affiliation(s)
- Ahmed M Osman
- National Institute for Public Health and the Environment (RIVM), NL-3720 BA Bilthoven, The Netherlands.
| | | |
Collapse
|
19
|
Salton M, Elkon R, Borodina T, Davydov A, Yaspo ML, Halperin E, Shiloh Y. Matrin 3 binds and stabilizes mRNA. PLoS One 2011; 6:e23882. [PMID: 21858232 PMCID: PMC3157474 DOI: 10.1371/journal.pone.0023882] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 07/30/2011] [Indexed: 12/26/2022] Open
Abstract
Matrin 3 (MATR3) is a highly conserved, inner nuclear matrix protein with two zinc finger domains and two RNA recognition motifs (RRM), whose function is largely unknown. Recently we found MATR3 to be phosphorylated by the protein kinase ATM, which activates the cellular response to double strand breaks in the DNA. Here, we show that MATR3 interacts in an RNA-dependent manner with several proteins with established roles in RNA processing, and maintains its interaction with RNA via its RRM2 domain. Deep sequencing of the bound RNA (RIP-seq) identified several small noncoding RNA species. Using microarray analysis to explore MATR3′s role in transcription, we identified 77 transcripts whose amounts depended on the presence of MATR3. We validated this finding with nine transcripts which were also bound to the MATR3 complex. Finally, we demonstrated the importance of MATR3 for maintaining the stability of several of these mRNA species and conclude that it has a role in mRNA stabilization. The data suggest that the cellular level of MATR3, known to be highly regulated, modulates the stability of a group of gene transcripts.
Collapse
Affiliation(s)
- Maayan Salton
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | | | | | |
Collapse
|
20
|
A study of FHL1, BAG3, MATR3, PTRF and TCAP in Australian muscular dystrophy patients. Neuromuscul Disord 2011; 21:776-81. [PMID: 21683594 DOI: 10.1016/j.nmd.2011.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/17/2011] [Accepted: 05/18/2011] [Indexed: 01/26/2023]
Abstract
FHL1, BAG3, MATR3 and PTRF are recently identified myopathy genes associated with phenotypes that overlap muscular dystrophy. TCAP is a rare reported cause of muscular dystrophy not routinely screened in most centres. We hypothesised that these genes may account for patients with undiagnosed forms of muscular dystrophy in Australia. We screened a large cohort of muscular dystrophy patients for abnormalities in FHL1 (n=102) and TCAP (n=100) and selected patients whose clinical features overlapped the phenotypes previously described for BAG3 (n=9), MATR3 (n=15) and PTRF (n=7). We found one FHL1 mutation (c.311G>A, p.C104Y) in a boy with rapidly progressive muscle weakness and reducing body myopathy who was initially diagnosed with muscular dystrophy. We identified no pathogenic mutations in BAG3, MATR3, PTRF or TCAP. In conclusion, we have excluded these five genes as common causes of muscular dystrophy in Australia. Patients with reducing body myopathy may be initially diagnosed as muscular dystrophy.
Collapse
|
21
|
Herpes simplex virus 1 ICP4 forms complexes with TFIID and mediator in virus-infected cells. J Virol 2011; 85:5733-44. [PMID: 21450820 DOI: 10.1128/jvi.00385-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The infected cell polypeptide 4 (ICP4) of herpes simplex virus 1 (HSV-1) is a regulator of viral transcription that is required for productive infection. Since viral genes are transcribed by cellular RNA polymerase II (RNA pol II), ICP4 must interact with components of the pol II machinery to regulate viral gene expression. It has been shown previously that ICP4 interacts with TATA box-binding protein (TBP), TFIIB, and the TBP-associated factor 1 (TAF1) in vitro. In this study, ICP4-containing complexes were isolated from infected cells by tandem affinity purification (TAP). Forty-six proteins that copurified with ICP4 were identified by mass spectrometry. Additional copurifying proteins were identified by Western blot analysis. These included 11 components of TFIID and 4 components of the Mediator complex. The significance of the ICP4-Mediator interaction was further investigated using immunofluorescence and chromatin immunoprecipitation. Mediator was found to colocalize with ICP4 starting at early and continuing into late times of infection. In addition, Mediator was recruited to viral promoters in an ICP4-dependent manner. Taken together, the data suggest that ICP4 interacts with components of TFIID and Mediator in the context of viral infection, and this may explain the broad transactivation properties of ICP4.
Collapse
|
22
|
Niedoszytko M, Oude Elberink JNG, Bruinenberg M, Nedoszytko B, de Monchy JGR, te Meerman GJ, Weersma RK, Mulder AB, Jassem E, van Doormaal JJ. Gene expression profile, pathways, and transcriptional system regulation in indolent systemic mastocytosis. Allergy 2011; 66:229-37. [PMID: 21208217 DOI: 10.1111/j.1398-9995.2010.02477.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Mastocytosis is an uncommon disease resulting from proliferation of abnormal mast cells infiltrating skin, bone marrow, liver, and other tissues. The aim of this study was to find differences in gene expression in peripheral blood cells of patients with indolent systemic mastocytosis compared to healthy controls. The second aim was to define a specific gene expression profile in patients with mastocytosis. METHODS Twenty-two patients with indolent systemic mastocytosis and 43 healthy controls were studied. Whole genome gene expression analysis was performed on RNA samples isolated from the peripheral blood. For amplification and labelling of the RNA, the Illumina TotalPrep 96 RNA Amplification Kit was used. Human HT-12_V3_expression arrays were processed. Data analysis was performed using GeneSpring, Genecodis, and Transcriptional System Regulators. RESULTS Comparison of gene expression between patients and controls revealed a significant difference (P < 0.05 corrected for multiple testing) and the fold change difference >2 in gene expression in 2303 of the 48.794 analysed transcripts. Functional annotation indicated that the main pathways in which the differently expressed genes were involved are ubiquitin-mediated proteolysis, MAPK signalling pathway, pathways in cancer, and Jak-STAT signalling. The expression distributions for both groups did not overlap at all, indicating that many genes are highly differentially expressed in both groups. CONCLUSION We were able to find abnormalities in gene expression in peripheral blood cells of patients with indolent systemic mastocytosis and to construct a gene expression profile which may be useful in clinical practice to predict the presence of mastocytosis and in further research of novel drugs.
Collapse
Affiliation(s)
- M Niedoszytko
- Department of Allergology Medical University of Gdansk, Debinki 7, Gdansk, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Laure L, Danièle N, Suel L, Marchand S, Aubert S, Bourg N, Roudaut C, Duguez S, Bartoli M, Richard I. A new pathway encompassing calpain 3 and its newly identified substrate cardiac ankyrin repeat protein is involved in the regulation of the nuclear factor-κB pathway in skeletal muscle. FEBS J 2010; 277:4322-37. [DOI: 10.1111/j.1742-4658.2010.07820.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Lutz K, Schmitt S, Linder M, Hermosilla C, Zahner H, Taubert A. Eimeria bovis-induced modulation of the host cell proteome at the meront I stage. Mol Biochem Parasitol 2010; 175:1-9. [PMID: 20801164 DOI: 10.1016/j.molbiopara.2010.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 07/25/2010] [Accepted: 08/20/2010] [Indexed: 01/15/2023]
Abstract
The proteome of Eimeria bovis meront I-carrying host cells was analyzed by two-dimensional gel electrophoresis (2DE) at 14 days p.i. and compared to non-infected control cells. A total of 221 protein spots were modulated in their abundance in E. bovis-infected host cells and were subsequently analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectometry (MALDI-TOF-MS). These analyses identified 104 proteins in total with 25 host cell proteins being up-regulated and 79 proteins being down-regulated in E. bovis-infected host cells. Moreover, 20 newly expressed proteins were identified exclusively in E. bovis-infected host cells and were most likely of parasite origin. Parasite-induced differences in protein abundance concerned distinct functional categories, with most proteins being involved in host cell metabolism, cell structure, protein fate and gene transcription. Some of the modulated molecules also indicated regulatory processes on the level of host cell stress response (HSP70, HSP90), host cell apoptosis (caspase 8) and actin elongation/depolymerization (α-actinin-1, gelsonin, tropomodulin-3, transgelin). Since merozoites I were already released shortly after cell sampling, the current data reflect the situation at the end of first merogony. This is the first proteomic approach on E. bovis-infected host cells that was undertaken to gain a rather broad insight into Eimeria-induced host cell modulation. The data processed in this investigation should provide a useful basis for more detailed analyses concerning Eimeria-host cell interactions.
Collapse
Affiliation(s)
- Kathleen Lutz
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Han B, Stockwin LH, Hancock C, Yu SX, Hollingshead MG, Newton DL. Proteomic analysis of nuclei isolated from cancer cell lines treated with indenoisoquinoline NSC 724998, a novel topoisomerase I inhibitor. J Proteome Res 2010; 9:4016-27. [PMID: 20515076 PMCID: PMC2917484 DOI: 10.1021/pr100194d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The indenoisoquinoline NSC724998 is a novel topoisomerase I (Top1) inhibitor entering Phase I clinical trials at the National Cancer Institute, USA. In this study, 2-D PAGE analysis was performed on nuclear lysates prepared from HCT-116 and A375 cells treated with 1 microM NSC724998 for 24 h and the differentially regulated spots identified by LC-MS/MS. One-hundred fourteen protein spot differentials were identified, 66 from A375 cells and 48 from HCT-116 cells. Proteins related to apoptosis changed specifically in A375 cells, whereas proteins involved in the ubiquitin-proteasome system were highly enriched in treated HCT-116 cells. Importantly, 12 differentially expressed proteins (ETFA, HCC1, HNRCL, KAP1, NPM, NUCL, PRDX1, PRP19, PSB6, RAE1L, RU2A, and SFRS9) were common to both cell lines. Western blotting and immunocytochemistry confirmed significant nuclear upregulation of both the proteasome subunit PSB6 and the transcriptional repressor KAP1. Interestingly, increased KAP1 polypeptide was accompanied by enhanced phosphorylation at Ser824. Similar to gammaH2AX, KAP1 phosphorylation was consistently enhanced in a panel of 12 cell lines and in A375 xenografts following NSC 724998 treatment. In summary, these data enhance our understanding of protein dynamics in the nucleus following DNA damage and provide an alternate marker (pKAP1) with potential for monitoring clinical responses to Top1 poisons.
Collapse
Affiliation(s)
- Bingnan Han
- Developmental Therapeutics Program, SAIC-Frederick Inc., NCI- Frederick, Frederick, MD 21702, USA
| | - Luke H. Stockwin
- Developmental Therapeutics Program, SAIC-Frederick Inc., NCI- Frederick, Frederick, MD 21702, USA
| | - Chad Hancock
- Developmental Therapeutics Program, SAIC-Frederick Inc., NCI- Frederick, Frederick, MD 21702, USA
| | - Sherry X. Yu
- Developmental Therapeutics Program, SAIC-Frederick Inc., NCI- Frederick, Frederick, MD 21702, USA
| | - Melinda G. Hollingshead
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI- Frederick, Frederick, Maryland 21702, USA
| | - Dianne L. Newton
- Developmental Therapeutics Program, SAIC-Frederick Inc., NCI- Frederick, Frederick, MD 21702, USA
| |
Collapse
|
26
|
|
27
|
Valencia CA, Cotten SW, Liu R. Cleavage of BNIP-2 and BNIP-XL by caspases. Biochem Biophys Res Commun 2007; 364:495-501. [PMID: 17961507 DOI: 10.1016/j.bbrc.2007.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 10/06/2007] [Indexed: 11/30/2022]
Abstract
BNIP-2 and BNIP-XL are BCH domain-containing proteins that are implicated in programmed cell death. It has been reported that overexpression of BNIP-2 in neuroblastoma cell lines resulted in massive cell death, whereas BNIP-XL was upregulated during NGF-depletion-induced apoptosis in neuroblastoma and was involved in the regulation of differentiation, survival, and aggressiveness of tumor cells. Despite their importance in apoptosis, our understanding of BNIP-2 containing proteins is limited. In this communication, we demonstrate that both BNIP-2 and BNIP-XL are cleaved by caspases during apoptosis. Significantly, the caspase cleavage sites on BNIP-2 are located on its N-terminal EF-hand motif, while that on BNIP-XL is located upstream of the C-terminal BCH domain. Our results suggest that the caspase-mediated cleavage of BNIP-2 and BNIP-XL could result in the release of the BCH domain or smaller fragments that are crucial for their proapoptotic activities.
Collapse
Affiliation(s)
- C Alexander Valencia
- School of Pharmacy and Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|