1
|
Kantarci H, Elvira PD, Thottumkara AP, O'Connell EM, Iyer M, Donovan LJ, Dugan MQ, Ambiel N, Granados A, Zeng H, Saw NL, Brosius Lutz A, Sloan SA, Gray EE, Tran KV, Vichare A, Yeh AK, Münch AE, Huber M, Agrawal A, Morri M, Zhong H, Shamloo M, Anderson TA, Tawfik VL, Du Bois J, Zuchero JB. Schwann cell-secreted PGE 2 promotes sensory neuron excitability during development. Cell 2024; 187:4690-4712.e30. [PMID: 39142281 DOI: 10.1016/j.cell.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Electrical excitability-the ability to fire and propagate action potentials-is a signature feature of neurons. How neurons become excitable during development and whether excitability is an intrinsic property of neurons remain unclear. Here, we demonstrate that Schwann cells, the most abundant glia in the peripheral nervous system, promote somatosensory neuron excitability during development. We find that Schwann cells secrete prostaglandin E2, which is necessary and sufficient to induce developing somatosensory neurons to express normal levels of genes required for neuronal function, including voltage-gated sodium channels, and to fire action potential trains. Inactivating this signaling pathway in Schwann cells impairs somatosensory neuron maturation, causing multimodal sensory defects that persist into adulthood. Collectively, our studies uncover a neurodevelopmental role for prostaglandin E2 distinct from its established role in inflammation, revealing a cell non-autonomous mechanism by which glia regulate neuronal excitability to enable the development of normal sensory functions.
Collapse
Affiliation(s)
- Husniye Kantarci
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pablo D Elvira
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Emma M O'Connell
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lauren J Donovan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Micaela Quinn Dugan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Ambiel
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Hong Zeng
- Transgenic, Knockout and Tumor model Center (TKTC), Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nay L Saw
- Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda Brosius Lutz
- Department of Obstetrics and Gynecology, University Hospital, Bern, Switzerland
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Erin E Gray
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Khanh V Tran
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aditi Vichare
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ashley K Yeh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexandra E Münch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Max Huber
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Anthony Anderson
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Ruan KH, Lu R. Latest advancements in the study of the relationship between NSAIDs and three prostaglandin E2 synthases. Future Med Chem 2023; 15:1549-1552. [PMID: 37702004 DOI: 10.4155/fmc-2023-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Tweetable abstract This work describes novel evidence of the relationship between NSAIDs and three prostaglandin E2 synthases.
Collapse
Affiliation(s)
- Ke-He Ruan
- Center for Experimental Therapeutics & Pharmacoinformatics & Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77004, USA
| | - Renzhong Lu
- Center for Experimental Therapeutics & Pharmacoinformatics & Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77004, USA
| |
Collapse
|
3
|
Zhong D, Cai J, Hu C, Chen J, Zhang R, Fan C, Li S, Zhang H, Xu Z, Jia Z, Guo D, Sun Y. Inhibition of mPGES-2 ameliorates NASH by activating NR1D1 via heme. Hepatology 2023; 78:547-561. [PMID: 35839302 DOI: 10.1002/hep.32671] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease (NAFLD), a complex metabolic syndrome, has limited therapeutic options. Microsomal prostaglandin E synthase-2 (mPGES-2) was originally discovered as a prostaglandin E 2 (PGE 2 ) synthase; however, it does not produce PGE 2 in the liver. Moreover, the role of mPGES-2 in NAFLD remains undefined. Herein, we aimed to determine the function and mechanism of mPGES-2 in liver steatosis and steatohepatitis. APPROACH AND RESULTS To evaluate the role of mPGES-2 in NAFLD, whole-body or hepatocyte-specific mPGES-2-deficient mice fed a high-fat or methionine-choline-deficient diet were used. Compared with control mice, mPGES-2-deficient mice showed reduced hepatic lipid accumulation, along with ameliorated liver injury, inflammation, and fibrosis. Furthermore, the protective effect of mPGES-2 deficiency against NAFLD was dependent on decreased cytochrome P450 4A14 and increased acyl-CoA thioesterase 4 levels regulated by the heme receptor nuclear receptor subfamily 1 group D member 1 (NR1D1), but not PGE 2 . Heme regulated the increased NR1D1 activity mediated by mPGES-2 deficiency. Further, we confirmed the protective role of the mPGES-2 inhibitor SZ0232 in NAFLD therapy. CONCLUSION Our study indicates the pathogenic role of mPGES-2 and outlines the mechanism in mediating NAFLD, thereby highlighting the therapeutic potential of mPGES-2 inhibition in liver steatosis and steatohepatitis.
Collapse
Affiliation(s)
- Dandan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Jie Cai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
- Nanjing Key Laboratory of Pediatrics , Nanjing Children's Hospital , Nanjing Medical University , Nanjing , Jiangsu , P. R. China
- Public Experimental Research Center of Xuzhou Medical University , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Cheng Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Jingshuo Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
- Public Experimental Research Center of Xuzhou Medical University , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Rumeng Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
- Department of Pharmacology , Xuzhou Central Hospital , Xuzhou , Jiangsu , China
| | - Chenyu Fan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Shanshan Li
- Jiangsu Medical Engineering Research Center of Gene Detection , Xuzhou , Jiangsu , China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
- Public Experimental Research Center of Xuzhou Medical University , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
- Nanjing Key Laboratory of Pediatrics , Nanjing Children's Hospital , Nanjing Medical University , Nanjing , Jiangsu , P. R. China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , Xuzhou , Jiangsu , P. R. China
| |
Collapse
|
4
|
Wang H, Sun P, Yao R, Zhang W, Zhou X, Yao J, He K. Comprehensive pan-cancer analysis of PTGES3 and its prognostic role in hepatocellular carcinoma. Front Oncol 2023; 13:1158490. [PMID: 37274225 PMCID: PMC10234500 DOI: 10.3389/fonc.2023.1158490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction PTGES3, also known as p23, is a molecule chaperone of Hsp90 that is involved in the pathogenesis of malignant tumors. Increasing studies have shown that PTGES3 plays a nonnegligible role in tumor development. However, analysis of PTGES3 in pan-cancer has not been performed yet. Methods We explored the role of PTGES3 in 33 types of tumors and depicted the potentialimmune-related pathways among them. Using multiple databases includingTCGA, LinkedOmics, GDSC, and TIMER, we made a comprehensive analysis to explore whether there was an interaction between PTGES3 and prognosis, DNA methylation, copy number variation (CNV), tumor mutational burden (TMB), microsatellite instability (MSI), and tumor immune microenvironment (TME). Results Our study revealed that PTGES3 expression level was upregulated in most cancers. PTGES3 was also associated with a positive or negative prognosis in a variety of cancers, which was mainly associated with DNA methylation, CNV, MSI, TMB, andmismatch repair-related genes. High PTGES3 expression was related to the infiltration of Th2 subsets of CD4+ T cells and immune checkpoint-related genes in most cancers, especially in hepatocellular carcinoma (HCC). Enrichment analysis demonstrated that PTGES3 was involved in cellular processes including DNA replication and spliceosome. The relationship between PTGES3 expression and HCC progression was verified at the protein level through immune histochemical analysis. Conclusions Our research demonstrated theprognostic predictive value of PTGES3 in a wide range of cancers, which was alsoassociated with the process of tumor immune infiltration. As a result, it suggestedthat PTGES3 was a valuable prognostic biomarker in HCC treatment.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi, Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Peng Sun
- Department of Hepatobilary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ruoyu Yao
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi, Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenrui Zhang
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi, Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaoshuang Zhou
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Jia Yao
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi, Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Kun He
- Department of Emergency Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Zhang YY, Yao YD, Luo JF, Liu ZQ, Huang YM, Wu FC, Sun QH, Liu JX, Zhou H. Microsomal prostaglandin E 2 synthase-1 and its inhibitors: Molecular mechanisms and therapeutic significance. Pharmacol Res 2021; 175:105977. [PMID: 34798265 DOI: 10.1016/j.phrs.2021.105977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/17/2022]
Abstract
Inflammation is closely linked to the abnormal phospholipid metabolism chain of cyclooxygenase-2/microsomal prostaglandin E2 synthase-1/prostaglandin E2 (COX-2/mPGES-1/PGE2). In clinical practice, non-steroidal anti-inflammatory drugs (NSAIDs) as upstream COX-2 enzyme activity inhibitors are widely used to block COX-2 cascade to relieve inflammatory response. However, NSAIDs could also cause cardiovascular and gastrointestinal side effects due to its inhibition on other prostaglandins generation. To avoid this, targeting downstream mPGES-1 instead of upstream COX is preferable to selectively block overexpressed PGE2 in inflammatory diseases. Some mPGES-1 inhibitor candidates including synthetic compounds, natural products and existing anti-inflammatory drugs have been proved to be effective in in vitro experiments. After 20 years of in-depth research on mPGES-1 and its inhibitors, ISC 27864 have completed phase II clinical trial. In this review, we intend to summarize mPGES-1 inhibitors focused on their inhibitory specificity with perspectives for future drug development.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Jin-Fang Luo
- Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang City, Guizhou Province 550025, PR China
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China
| | - Yu-Ming Huang
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Fei-Chi Wu
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Qin-Hua Sun
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province 418000, PR China.
| | - Jian-Xin Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province 310053, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China; Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province 519000, PR China.
| |
Collapse
|
6
|
Zhao S, Cheng CK, Zhang CL, Huang Y. Interplay Between Oxidative Stress, Cyclooxygenases, and Prostanoids in Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:784-799. [PMID: 32323554 DOI: 10.1089/ars.2020.8105] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: Endothelial cells lining the lumen of blood vessels play an important role in the regulation of cardiovascular functions through releasing both vasoconstricting and vasodilating factors. The production and function of vasoconstricting factors are largely elevated in hypertension, diabetes, atherosclerosis, and ischemia/reperfusion injuries. Cyclooxygenases (COXs) are the major enzymes producing five different prostanoids that act as either contracting or relaxing substances. Under conditions of increased oxidative stress, the expressions and activities of COX isoforms are altered, resulting in changes in production of various prostanoids and thus affecting vascular tone. This review briefly summarizes the relationship between oxidative stress, COXs, and prostanoids, thereby providing new insights into the pathophysiological mechanisms of cardiovascular diseases (CVDs). Recent Advances: Many new drugs targeting oxidative stress, COX-2, and prostanoids against common CVDs have been evaluated in recent years and they are summarized in this review. Critical Issues: Comprehensive understanding of the complex interplay between oxidative stress, COXs, and prostanoids in CVDs helps develop more effective measures against cardiovascular pathogenesis. Future Directions: Apart from minimizing the undesired effects of harmful prostanoids, future studies shall investigate the restoration of vasoprotective prostanoids as a means to combat CVDs. Antioxid. Redox Signal. 34, 784-799.
Collapse
Affiliation(s)
- Sha Zhao
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chak Kwong Cheng
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Cheng-Lin Zhang
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Kim B, Lee J, Kim Y, Lee SJV. Regulatory systems that mediate the effects of temperature on the lifespan of Caenorhabditis elegans. J Neurogenet 2020; 34:518-526. [PMID: 32633588 DOI: 10.1080/01677063.2020.1781849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Temperature affects animal physiology, including aging and lifespan. How temperature and biological systems interact to influence aging and lifespan has been investigated using model organisms, including the nematode Caenorhabditis elegans. In this review, we discuss mechanisms by which diverse cellular factors modulate the effects of ambient temperatures on aging and lifespan in C. elegans. C. elegans thermosensory neurons alleviate lifespan-shortening effects of high temperatures via sterol endocrine signaling and probably through systemic regulation of cytosolic proteostasis. At low temperatures, C. elegans displays a long lifespan by upregulating the cold-sensing TRPA channel, lipid homeostasis, germline-mediated prostaglandin signaling, and autophagy. In addition, co-chaperone p23 amplifies lifespan changes affected by high and low temperatures. Our review summarizes how external temperatures modulate C. elegans lifespan and provides information regarding responses of biological processes to temperature changes, which may affect health and aging at an organism level.
Collapse
Affiliation(s)
- Byounghun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jongsun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Younghun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
8
|
Attiq A, Jalil J, Husain K, Ahmad W. Raging the War Against Inflammation With Natural Products. Front Pharmacol 2018; 9:976. [PMID: 30245627 PMCID: PMC6137277 DOI: 10.3389/fphar.2018.00976] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022] Open
Abstract
Over the last few decade Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are the drugs of choice for treating numerous inflammatory diseases including rheumatoid arthritis. The NSAIDs produces anti-inflammatory activity via inhibiting cyclooxygenase enzyme, responsible for the conversation of arachidonic acid to prostaglandins. Likewise, cyclooxegenase-2 inhibitors (COX-2) selectively inhibit the COX-2 enzyme and produces significant anti-inflammatory, analgesic, and anti-pyretic activity without producing COX-1 associated gastrointestinal and renal side effects. In last two decades numerous selective COX-2 inhibitors (COXIBs) have been developed and approved for various inflammatory conditions. However, data from clinical trials have suggested that the prolong use of COX-2 inhibitors are also associated with life threatening cardiovascular side effects including ischemic heart failure and myocardial infection. In these scenario secondary metabolites from natural product offers a great hope for the development of novel anti-inflammatory compounds. Although majority of the natural product based compounds exhibit more selectively toward COX-1. However, the data suggest that slight structural modification can be helpful in developing COX-2 selective secondary metabolites with comparative efficacy and limited side effects. This review is an effort to highlight the secondary metabolites from terrestrial and marine source with significant COX-2 and COX-2 mediated PGE2 inhibitory activity, since it is anticipated that isolates with ability to inhibit COX-2 mediated PGE2 production would be useful in suppressing the inflammation and its classical sign and symptoms. Moreover, this review has highlighted the potential lead compounds including berberine, kaurenoic acid, α-cyperone, curcumin, and zedoarondiol for further development with the help of structure-activity relationship (SAR) studies and their current status.
Collapse
Affiliation(s)
- Ali Attiq
- Drug and Herbal Research Centre, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairana Husain
- Drug and Herbal Research Centre, Faculty of Pharmacy, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Waqas Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
9
|
Shelton LB, Koren J, Blair LJ. Imbalances in the Hsp90 Chaperone Machinery: Implications for Tauopathies. Front Neurosci 2017; 11:724. [PMID: 29311797 PMCID: PMC5744016 DOI: 10.3389/fnins.2017.00724] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022] Open
Abstract
The ATP-dependent 90 kDa heat shock protein, Hsp90, is a major regulator of protein triage, from assisting in nascent protein folding to refolding or degrading aberrant proteins. Tau, a microtubule associated protein, aberrantly accumulates in Alzheimer's disease (AD) and other neurodegenerative diseases, deemed tauopathies. Hsp90 binds to and regulates tau fate in coordination with a diverse group of co-chaperones. Imbalances in chaperone levels and activity, as found in the aging brain, can contribute to disease onset and progression. For example, the levels of the Hsp90 co-chaperone, FK506-binding protein 51 kDa (FKBP51), progressively increase with age. In vitro and in vivo tau models demonstrated that FKBP51 synergizes with Hsp90 to increase neurotoxic tau oligomer production. Inversely, protein phosphatase 5 (PP5), which dephosphorylates tau to restore microtubule-binding function, is repressed with aging and activity is further repressed in AD. Similarly, levels of cyclophilin 40 (CyP40) are reduced in the aged brain and further repressed in AD. Interestingly, CyP40 was shown to breakup tau aggregates in vitro and prevent tau-induced neurotoxicity in vivo. Moreover, the only known stimulator of Hsp90 ATPase activity, Aha1, increases tau aggregation and toxicity. While the levels of Aha1 are not significantly altered with aging, increased levels have been found in AD brains. Overall, these changes in the Hsp90 heterocomplex could drive tau deposition and neurotoxicity. While the relationship of tau and Hsp90 in coordination with these co-chaperones is still under investigation, it is clear that imbalances in these proteins with aging can contribute to disease onset and progression. This review highlights the current understanding of how the Hsp90 family of molecular chaperones regulates tau or other misfolded proteins in neurodegenerative diseases with a particular emphasis on the impact of aging.
Collapse
Affiliation(s)
- Lindsey B Shelton
- Department of Molecular Medicine and USF Health Byrd Institute, University of South Florida, Tampa, FL, United States
| | - John Koren
- Department of Molecular Medicine and USF Health Byrd Institute, University of South Florida, Tampa, FL, United States
| | - Laura J Blair
- Department of Molecular Medicine and USF Health Byrd Institute, University of South Florida, Tampa, FL, United States
| |
Collapse
|
10
|
Li Y, Wei Y, Zheng F, Guan Y, Zhang X. Prostaglandin E2 in the Regulation of Water Transport in Renal Collecting Ducts. Int J Mol Sci 2017; 18:ijms18122539. [PMID: 29186911 PMCID: PMC5751142 DOI: 10.3390/ijms18122539] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/16/2017] [Accepted: 11/18/2017] [Indexed: 01/26/2023] Open
Abstract
The kidney plays a central role in the regulation of the body water balance. The process of targeting the water channel aquaporin-2 (AQP2) on the apical plasma membrane of the collecting duct (CD) principal cells is mainly regulated by the antidiuretic peptide hormone arginine vasopressin (AVP), which is responsible for the maintenance of water homeostasis. Recently, much attention has been focused on the local factors modulating renal water reabsorption by AQP2 in the collecting ducts, especially prostaglandin E2 (PGE₂). PGE₂ is a lipid mediator involved in a variety of physiological and pathophysiological processes in the kidney. The biological function of PGE₂ is mainly mediated by four G-protein-coupled receptors, namely EP1-4, which couple to drive separate intracellular signaling pathways. Increasing evidence demonstrates that PGE₂ is essential for renal water transport regulation via multiple mechanisms. Each EP receptor plays a unique role in regulating water reabsorption in renal collecting ducts. This brief review highlights the role of PGE₂ in the regulation of water reabsorption and discusses the involvement of each EP receptor subtype in renal collecting duct. A better understanding of the role of PGE₂ in renal water transport process may improve disease management strategies for water balance disorders, including nephrogenic diabetes insipidus.
Collapse
Affiliation(s)
- Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Yuanyi Wei
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Xiaoyan Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
11
|
Nakatani Y, Miyazaki Y, Hara S. Cytosolic Prostaglandin E Synthase Is Involved in c-Fos Expression in Rat Fibroblastic 3Y1 Cells. Biol Pharm Bull 2017; 40:1963-1967. [PMID: 29093345 DOI: 10.1248/bpb.b17-00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytosolic prostaglandin (PG) E synthase (cPGES/p23) plays a role in the biosynthesis of PGE2 and in the molecular chaperone machinery. Studies of knockout mice lacking cPGES/p23 have demonstrated that cPGES/p23 is essential in fetal mouse development. A cDNA microarray analysis revealed that a lack of cPGES/p23 decreases the expression of some immediate early genes, such as c-fos and activating transcription factor 3 (ATF3). Here we report the involvement of cPGES/p23 in c-Fos expression. A stable knockdown of cPGES/p23 in cultured fibroblasts not only reduced serum-induced c-Fos expression, but also decreased the phosphorylation of extracellular signal regulated kinase (ERK). These results suggest that cPGES/p23 is involved in the activation of ERK to promote c-Fos expression.
Collapse
Affiliation(s)
- Yoshihito Nakatani
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| | - Yuki Miyazaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| |
Collapse
|
12
|
Yamashita M. Aspirin Intolerance: Experimental Models for Bed-to-Bench. Curr Drug Targets 2017; 17:1963-1970. [PMID: 27719658 PMCID: PMC5345322 DOI: 10.2174/1389450117666161005152327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 12/30/2022]
Abstract
Aspirin is the oldest non-steroidal anti-inflammatory drug (NSAID), and it sometimes causes asthma-like symptoms known as aspirin-exacerbated respiratory disease (AERD), which can be serious. Unwanted effects of aspirin (aspirin intolerance) are also observed in patients with food-dependent exercise-induced anaphylaxis, a type I allergy disease, and aspirin-induced urticaria (AIU). However the target and the mechanism of the aspirin intolerance are still unknown. There is no animal or cellular model of AERD, because its pathophysiological mechanism is still unknown, but it is thought that inhibition of cyclooxygenase by causative agents leads to an increase of free arachidonic acid, which is metabolized into cysteinyl leukotrienes (cysLTs) that provoke airway smooth muscle constriction and asthma symptoms. As the bed-to-bench approach, to confirm the clinical discussion in experimental cellular models, we have tried to develop a cellular model of AERD using activated RBL-2H3 cells, a rat mast cell like cell line. Indomethacin (another NSAID and also causes AERD), enhances in vitro cysLTs production by RBL-2H3 cells, while there is no induction of cysLTs production in the absence of inflammatory activation. Since this suggests that all inflammatory cells with activation of prostaglandin and cysLT metabolism should respond to NSAIDs, and then I have concluded that aspirin intolerance should be separated from subsequent bronchoconstriction. Evidence about the cellular mechanisms of NSAIDs may be employed for development of in vitro AERD models as the approach from bench-to-bed.
Collapse
Affiliation(s)
- Masamichi Yamashita
- Laboratory of Food for Health, Department of Bioscience in Daily Life, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880 Japan
| |
Collapse
|
13
|
Defective glucocorticoid receptor signaling and keratinocyte-autonomous defects contribute to skin phenotype of mouse embryos lacking the Hsp90 co-chaperone p23. PLoS One 2017. [PMID: 28650975 PMCID: PMC5484504 DOI: 10.1371/journal.pone.0180035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
p23 is a small acidic protein with intrinsic molecular chaperone activity. It is best known as a co-chaperone of the major cytosolic molecular chaperone Hsp90. p23 binds the N-terminus of Hsp90 and stabilizes the ATP-bound and N-terminally closed Hsp90 dimer. It is in this configuration that many Hsp90 clients are most stably bound. Considering the important role of p23 in the Hsp90 cycle, it came as a surprise that it is not absolutely essential for viability in the budding yeast or for mouse development. Mice without p23 develop quite normally until birth and then all die perinatally because of immature lungs. The only other apparent phenotype of late stage embryos and newborns is a skin defect, which we have further characterized here. We found that skin differentiation is impaired, and that both apoptosis and cell proliferation are augmented in the absence of p23; the consequences are a severe thinning of the stratum corneum and reduced numbers of hair follicles. The altered differentiation, spontaneous apoptosis and proliferation are all mimicked by isolated primary keratinocytes indicating that they do require p23 functions in a cell-autonomous fashion. Since the phenotype of p23-null embryos is strikingly similar to that of embryos lacking the glucocorticoid receptor, a paradigmatic Hsp90-p23 client protein, we investigated glucocorticoid signaling. We discovered that it is impaired in vivo and for some aspects in isolated keratinocytes. Our results suggest that part of the phenotype of p23-null embryos can be explained by an impact on this particular Hsp90 client, but do not exclude that p23 by itself or in association with Hsp90 affects skin development and homeostasis through yet other pathways.
Collapse
|
14
|
Seo MJ, Oh DK. Prostaglandin synthases: Molecular characterization and involvement in prostaglandin biosynthesis. Prog Lipid Res 2017; 66:50-68. [DOI: 10.1016/j.plipres.2017.04.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 01/30/2023]
|
15
|
Falik Zaccai TC, Savitzki D, Zivony-Elboum Y, Vilboux T, Fitts EC, Shoval Y, Kalfon L, Samra N, Keren Z, Gross B, Chasnyk N, Straussberg R, Mullikin JC, Teer JK, Geiger D, Kornitzer D, Bitterman-Deutsch O, Samson AO, Wakamiya M, Peterson JW, Kirtley ML, Pinchuk IV, Baze WB, Gahl WA, Kleta R, Anikster Y, Chopra AK. Phospholipase A2-activating protein is associated with a novel form of leukoencephalopathy. Brain 2016; 140:370-386. [PMID: 28007986 DOI: 10.1093/brain/aww295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022] Open
Abstract
Leukoencephalopathies are a group of white matter disorders related to abnormal formation, maintenance, and turnover of myelin in the central nervous system. These disorders of the brain are categorized according to neuroradiological and pathophysiological criteria. Herein, we have identified a unique form of leukoencephalopathy in seven patients presenting at ages 2 to 4 months with progressive microcephaly, spastic quadriparesis, and global developmental delay. Clinical, metabolic, and imaging characterization of seven patients followed by homozygosity mapping and linkage analysis were performed. Next generation sequencing, bioinformatics, and segregation analyses followed, to determine a loss of function sequence variation in the phospholipase A2-activating protein encoding gene (PLAA). Expression and functional studies of the encoded protein were performed and included measurement of prostaglandin E2 and cytosolic phospholipase A2 activity in membrane fractions of fibroblasts derived from patients and healthy controls. Plaa-null mice were generated and prostaglandin E2 levels were measured in different tissues. The novel phenotype of our patients segregated with a homozygous loss-of-function sequence variant, causing the substitution of leucine at position 752 to phenylalanine, in PLAA, which causes disruption of the protein's ability to induce prostaglandin E2 and cytosolic phospholipase A2 synthesis in patients' fibroblasts. Plaa-null mice were perinatal lethal with reduced brain levels of prostaglandin E2 The non-functional phospholipase A2-activating protein and the associated neurological phenotype, reported herein for the first time, join other complex phospholipid defects that cause leukoencephalopathies in humans, emphasizing the importance of this axis in white matter development and maintenance.
Collapse
Affiliation(s)
- Tzipora C Falik Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel .,Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - David Savitzki
- Pediatric Neurology Unit, Galilee Medical Center, Nahariya, Israel
| | | | - Thierry Vilboux
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Division of Medical Genomics, Inova Translational Medicine Institute, Inova Health System, Falls Church, VA, USA
| | - Eric C Fitts
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yishay Shoval
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Nadra Samra
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Zohar Keren
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Bella Gross
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel.,Department of Neurology, Galilee Medical Center, Nahariya, Israel
| | - Natalia Chasnyk
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Rachel Straussberg
- Pediatric Neurology Unit, Schneider Children's Medical Center, Petach Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - James C Mullikin
- Comparative Genomics Analysis Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,NIH Intramural Sequencing Center, National Human Genome Research Institute, Rockville, MD, USA
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Dan Geiger
- Computer Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Daniel Kornitzer
- Faculty of Medicine, Technion - I.I.T. and Rappaport Institute for Biomedical Research, Haifa, Israel
| | - Ora Bitterman-Deutsch
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel.,Dermatology Clinic, Galilee Medical Center, Nahariya, Israel
| | - Abraham O Samson
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - Maki Wakamiya
- Transgenic Mouse Core Facility, Institute for Translational Sciences and Animal Resource Center, University of Texas Medical Branch, Galveston, TX, USA
| | - Johnny W Peterson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michelle L Kirtley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Iryna V Pinchuk
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Wallace B Baze
- Department of Veterinary Sciences, MD Anderson Cancer Center, Bastrop, TX, USA
| | - William A Gahl
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert Kleta
- University College, Royal Free Hospital / UCL Medical School, London, UK
| | - Yair Anikster
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv, Israel
| | - Ashok K Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
16
|
Discovery of 2-((2-chloro-6-fluorophenyl)amino)- N -(3-fluoro-5-(trifluoromethyl)phenyl)-1-methyl-7,8-dihydro-1 H -[1,4]dioxino[2′,3′:3,4]benzo[1,2- d ]imidazole-5-carboxamide as potent, selective and efficacious microsomal prostaglandin E 2 synthase-1 (mPGES-1) inhibitor. Bioorg Med Chem Lett 2016; 26:5977-5984. [DOI: 10.1016/j.bmcl.2016.10.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/03/2016] [Accepted: 10/27/2016] [Indexed: 02/04/2023]
|
17
|
Nørregaard R, Kwon TH, Frøkiær J. Physiology and pathophysiology of cyclooxygenase-2 and prostaglandin E2 in the kidney. Kidney Res Clin Pract 2015; 34:194-200. [PMID: 26779421 PMCID: PMC4688592 DOI: 10.1016/j.krcp.2015.10.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/13/2015] [Indexed: 01/12/2023] Open
Abstract
The cyclooxygenase (COX) enzyme system is the major pathway catalyzing the conversion of arachidonic acid into prostaglandins (PGs). PGs are lipid mediators implicated in a variety of physiological and pathophysiological processes in the kidney, including renal hemodynamics, body water and sodium balance, and the inflammatory injury characteristic in multiple renal diseases. Since the beginning of 1990s, it has been confirmed that COX exists in 2 isoforms, referred to as COX-1 and COX-2. Even though the 2 enzymes are similar in size and structure, COX-1 and COX-2 are regulated by different systems and have different functional roles. This review summarizes the current data on renal expression of the 2 COX isoforms and highlights mainly the role of COX-2 and PGE2 in several physiological and pathophysiological processes in the kidney.
Collapse
Affiliation(s)
- Rikke Nørregaard
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Korea
| | - Jørgen Frøkiær
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Role of COX-2/mPGES-1/prostaglandin E2 cascade in kidney injury. Mediators Inflamm 2015; 2015:147894. [PMID: 25729216 PMCID: PMC4333324 DOI: 10.1155/2015/147894] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/19/2015] [Indexed: 12/26/2022] Open
Abstract
COX-2/mPGES-1/PGE2 cascade plays critical roles in modulating many physiological and pathological actions in different organs. In the kidney, this cascade is of high importance in regulating fluid metabolism, blood pressure, and renal hemodynamics. Under some disease conditions, this cascade displays various actions in response to the different pathological insults. In the present review, the roles of this cascade in the pathogenesis of kidney injuries including diabetic and nondiabetic kidney diseases and acute kidney injuries were introduced and discussed. The new insights from this review not only increase the understanding of the pathological role of the COX-2/mPGES-1/PGE2 pathway in kidney injuries, but also shed new light on the innovation of the strategies for the treatment of kidney diseases.
Collapse
|
19
|
Jia Z, Sun Y, Liu S, Liu Y, Yang T. COX-2 but not mPGES-1 contributes to renal PGE2 induction and diabetic proteinuria in mice with type-1 diabetes. PLoS One 2014; 9:e93182. [PMID: 24984018 PMCID: PMC4077725 DOI: 10.1371/journal.pone.0093182] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/28/2014] [Indexed: 01/11/2023] Open
Abstract
Prostaglandin E2 (PGE2) has been implicated to play a pathogenic role in diabetic nephropathy (DN) but its source remains unlcear. To elucidate whether mPGES-1, the best characterized PGE2 synthase, was involved in the development of DN, we examined the renal phenotype of mPGES-1 KO mice subjected to STZ-induced type-1 diabetes. After STZ treatment, mPGES-1 WT and KO mice presented the similar onset of diabetes as shown by similar elevation of blood glucose. Meanwhile, both genotypes of mice exhibited similar increases of urinary and renal PGE2 production. In parallel with this comparable diabetic status, the kidney injury indices including the urinary albumin excretion, kidney weight and the kidney histology (PAS staining) did not show any difference between the two genotypes. By Western-blotting and quantitative qRT-PCR, mPGES-1, mPGES-2, cPGES and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) remain unaltered following six weeks of diabetes. Finally, a selective COX-2 inhibitor celecoxib (50 mg/kg/day) was applied to the STZ-treated KO mice, which resulted in significant reduction of urinary albumin excretion (KO/STZ: 141.5±38.4 vs. KO/STZ + Celebrex: 48.7±20.8 ug/24 h, p<0.05) and the blockade of renal PGE2 induction (kidney: KO/STZ: 588.7±89.2 vs. KO/STZ + Celebrex: 340.8±58.7 ug/24 h, p<0.05; urine: KO/STZ 1667.6±421.4 vs. KO/STZ + Celebrex 813.6±199.9 pg/24 h, p<0.05), without affecting the blood glucose levels and urine volume. Taken together, our data suggests that an as yet unidentified prostaglanind E synthase but not mPGES-1 may couple with COX-2 to mediate increased renal PGE2 sythsesis in DN.
Collapse
Affiliation(s)
- Zhanjun Jia
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
| | - Ying Sun
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
| | - Shanshan Liu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
| | - Ying Liu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
- * E-mail:
| |
Collapse
|
20
|
Role of long-chain acyl-coenzyme A synthetases in the regulation of arachidonic acid metabolism in interleukin 1β-stimulated rat fibroblasts. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:44-53. [DOI: 10.1016/j.bbalip.2013.09.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/19/2013] [Accepted: 09/23/2013] [Indexed: 11/17/2022]
|
21
|
Gomez I, Foudi N, Longrois D, Norel X. The role of prostaglandin E2 in human vascular inflammation. Prostaglandins Leukot Essent Fatty Acids 2013; 89:55-63. [PMID: 23756023 DOI: 10.1016/j.plefa.2013.04.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 10/26/2022]
Abstract
Prostaglandins (PG) are the product of a cascade of enzymes such as cyclooxygenases and PG synthases. Among PG, PGE2 is produced by 3 isoforms of PGE synthase (PGES) and through activation of its cognate receptors (EP1-4), this PG is involved in the pathophysiology of vascular diseases. Some anti-inflammatory drugs (e.g. glucocorticoids, nonsteroidal anti-inflammatory drugs) interfere with its metabolism or effects. Vascular cells can initiate many of the responses associated with inflammation. In human vascular tissue, PGE2 is involved in many physiological processes, such as increasing vascular permeability, cell proliferation, cell migration and control of vascular smooth muscle tone. PGE2 has been shown to contribute to the pathogenesis of atherosclerosis, abdominal aortic aneurysm but also in physiologic/adaptive processes such as angiogenesis. Understanding the roles of PGE2 and its cognate receptors in vascular diseases could help to identify diagnostic and prognostic biomarkers. In addition, from these recent studies new promising therapeutic approaches like mPGES-1 inhibition and/or EP4-antagonism should be investigated.
Collapse
Affiliation(s)
- I Gomez
- INSERM, U698, Paris F-75018, France; University Paris Nord, UMR-S698, Paris F-75018, France
| | | | | | | |
Collapse
|
22
|
Distinct roles of central and peripheral prostaglandin E2 and EP subtypes in blood pressure regulation. Am J Hypertens 2012; 25:1042-9. [PMID: 22695507 DOI: 10.1038/ajh.2012.67] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prostaglandin E(2) (PGE(2)) is a major prostanoid with a wide variety of biological activities. PGE(2) can influence blood pressure (BP) both positively and negatively. In particular, centrally administered PGE(2) induces hypertension whereas systemic administration of PGE(2) produces a hypotensive effect. These physiologically opposing effects are generated by the existence of multiple EP receptors, namely EP(1-4), which are G protein-coupled receptors with distinct signaling properties. This review highlights the distinct roles of PGE(2) in BP regulation and the involvement of specific EP receptor subtypes.
Collapse
|
23
|
Parazzoli S, Harmon JS, Vallerie SN, Zhang T, Zhou H, Robertson RP. Cyclooxygenase-2, not microsomal prostaglandin E synthase-1, is the mechanism for interleukin-1β-induced prostaglandin E2 production and inhibition of insulin secretion in pancreatic islets. J Biol Chem 2012; 287:32246-53. [PMID: 22822059 DOI: 10.1074/jbc.m112.364612] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arachidonic acid is converted to prostaglandin E(2) (PGE(2)) by a sequential enzymatic reaction performed by two isoenzyme groups, cyclooxygenases (COX-1 and COX-2) and terminal prostaglandin E synthases (cPGES, mPGES-1, and mPGES-2). mPGES-1 is widely considered to be the final enzyme regulating COX-2-dependent PGE(2) synthesis. These generalizations have been based in most part on experiments utilizing gene expression analyses of cell lines and tumor tissue. To assess the relevance of these generalizations to a native mammalian tissue, we used isolated human and rodent pancreatic islets to examine interleukin (IL)-1β-induced PGE(2) production, because PGE(2) has been shown to mediate IL-1β inhibition of islet function. Rat islets constitutively expressed mRNAs of COX-1, COX-2, cPGES, and mPGES-1. As expected, IL-1β increased mRNA levels for COX-2 and mPGES-1, but not for COX-1 or cPGES. Basal protein levels of COX-1, cPGES, and mPGES-2 were readily detected in whole cell extracts but were not regulated by IL-1β. IL-1β increased protein levels of COX-2, but unexpectedly mPGES-1 protein levels were low and unaffected. In microsomal extracts, mPGES-1 protein was barely detectable in rat islets but clearly present in human islets; however, in neither case did IL-1β increase mPGES-1 protein levels. To further assess the importance of mPGES-1 to IL-1β regulation of an islet physiologic response, glucose-stimulated insulin secretion was examined in isolated islets of WT and mPGES-1-deficient mice. IL-1β inhibited glucose-stimulated insulin secretion equally in both WT and mPGES-1(-/-) islets, indicating that COX-2, not mPGES-1, mediates IL-1β-induced PGE(2) production and subsequent inhibition of insulin secretion.
Collapse
Affiliation(s)
- Susan Parazzoli
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington 98122, USA
| | | | | | | | | | | |
Collapse
|
24
|
Liu X, Zou L, Zhu L, Zhang H, Du C, Li Z, Gao C, Zhao X, Bao S, Zheng H. miRNA mediated up-regulation of cochaperone p23 acts as an anti-apoptotic factor in childhood acute lymphoblastic leukemia. Leuk Res 2012; 36:1098-104. [PMID: 22677230 DOI: 10.1016/j.leukres.2012.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 04/18/2012] [Accepted: 05/08/2012] [Indexed: 01/24/2023]
Abstract
p23 is a heat shock protein 90 (Hsp90) cochaperone that plays a significant role in estrogen receptor (ER) alpha signal transduction and telomerase activity; it is up-regulated in several cancers. Recent studies have found that high level of p23 may promote tumor progression and poor prognosis in breast cancer patients. p23 was found to be overexpressed in our previous microarray assay of 100 childhood acute lymphoblastic leukemia (ALL) bone marrow (BM) samples. In the present study, we verified the upregulation of p23 in clinical ALL samples, and identified p23 to be an anti-apoptotic factor in the process of chemotherapy. We also found that p23 was regulated by hsa-miR-101 which was down-regulated in childhood ALL cases. Altogether these data demonstrate that the misregulation of hsa-miR-101 contributes partly to the overexpression of p23 in childhood ALL. As an anti-apoptotic factor, p23 is able to be a potential target for anti-leukemic therapy.
Collapse
Affiliation(s)
- Xiao Liu
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is the terminal synthase responsible for the synthesis of the pro-tumorigenic prostaglandin E(2) (PGE(2)). mPGES-1 is overexpressed in a wide variety of cancers. Since its discovery in 1997 by Bengt Samuelsson and collaborators, the enzyme has been the object of over 200 peer-reviewed articles. Although today mPGES-1 is considered a validated and promising therapeutic target for anticancer drug discovery, challenges in inhibitor design and selectivity are such that up to this date there are only a few published records of small-molecule inhibitors targeting the enzyme and exhibiting some in vivo anticancer activity. This review summarizes the structures, and the in vitro and in vivo activities of these novel mPGES-1 inhibitors. Challenges that have been encountered are also discussed.
Collapse
|
26
|
Jia Z, Liu G, Downton M, Dong Z, Zhang A, Yang T. mPGES-1 deletion potentiates urine concentrating capability after water deprivation. Am J Physiol Renal Physiol 2012; 302:F1005-12. [PMID: 22237797 DOI: 10.1152/ajprenal.00508.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PGE(2) plays an important role in the regulation of fluid metabolism chiefly via antagonizing vasopressin-induced osmotic permeability in the distal nephron, but its enzymatic sources remain uncertain. The present study was undertaken to investigate the potential role of microsomal PGE synthase (mPGES)-1 in the regulation of urine concentrating ability after water deprivation (WD). Following 24-h WD, wild-type (WT) mice exhibited a significant reduction in urine volume, accompanied by a significant elevation in urine osmolality compared with control groups. In contrast, in response to WD, mPGES-1 knockout (KO) mice had much less urine volume and higher urine osmolality. Analysis of plasma volume by measurement of hematocrit and by using a nanoparticle-based method consistently demonstrated that dehydrated WT mice were volume depleted, which was significantly improved in the KO mice. WD induced a twofold increase in urinary PGE(2) output in WT mice, which was completely blocked by mPGES-1 deletion. At baseline, the KO mice had a 20% increase in V(2) receptor mRNA expression in the renal medulla but not the cortex compared with WT controls; the expression was unaffected by WD irrespective of the genotype. In response to WD, renal medullary aquaporin-2 (AQP2) mRNA exhibited a 60% increase in WT mice, and this increase was greater in the KO mice. Immunoblotting demonstrated increased renal medullary AQP2 protein abundance in both genotypes following WD, with a greater increase in the KO mice. Similar results were obtained by using immunohistochemistry. Paradoxically, plasma AVP response to WD seen in WT mice was absent in the KO mice. Taken together, these results suggest that mPGES-1-derived PGE(2) reduces urine concentrating ability through suppression of renal medullary expression of V(2) receptors and AQP2 but may enhance it by mediating the central AVP response.
Collapse
Affiliation(s)
- Zhanjun Jia
- Department of Internal Medicine, Veterans Affairs Medical Center, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | | | | | |
Collapse
|
27
|
Sanchez ER. Chaperoning steroidal physiology: lessons from mouse genetic models of Hsp90 and its cochaperones. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:722-9. [PMID: 22155719 DOI: 10.1016/j.bbamcr.2011.11.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 02/06/2023]
Abstract
The molecular chaperone Hsp90 is abundant, ubiquitous, and catholic to biological processes in eukaryotes, controlling phosphorylation cascades, protein stability and turnover, client localization and trafficking, and ligand-receptor interactions. Not surprisingly, Hsp90 does not accomplish these activities alone. Instead, an ever-growing number of cochaperones have been identified, leading to an explosion of reports on their molecular and cellular effects on Hsp90 chaperoning of client substrates. Notable among these clients are many members of the steroid receptor family, such as glucocorticoid, androgen, estrogen and progesterone receptors. Cochaperones typically associated with the mature, hormone-competent states of these receptors include p23, the FK506-binding protein 52 (FKBP52), FKBP51, protein phosphatase 5 (PP5) and cyclophilin 40 (Cyp40). The ultimate relevance of these cochaperones to steroid receptor action depends on their physiological effects. In recent years, the first mouse genetic models of these cochaperones have been developed. This work will review the complex and intriguing phenotypes so far obtained in genetically-altered mice and compare them to the known molecular and cellular impacts of cochaperones on steroid receptors. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
Affiliation(s)
- Edwin R Sanchez
- Department of Physiologyand Pharmacology, University of Toledo College of Medicine, Toledo, OH, USA.
| |
Collapse
|
28
|
Abstract
Prostaglandins are lipid autacoids derived from arachidonic acid. They both sustain homeostatic functions and mediate pathogenic mechanisms, including the inflammatory response. They are generated from arachidonate by the action of cyclooxygenase isoenzymes, and their biosynthesis is blocked by nonsteroidal antiinflammatory drugs, including those selective for inhibition of cyclooxygenase-2. Despite the clinical efficacy of nonsteroidal antiinflammatory drugs, prostaglandins may function in both the promotion and resolution of inflammation. This review summarizes insights into the mechanisms of prostaglandin generation and the roles of individual mediators and their receptors in modulating the inflammatory response. Prostaglandin biology has potential clinical relevance for atherosclerosis, the response to vascular injury and aortic aneurysm.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Institute for Translational Medicine and Therapeutics, 153 Johnson Pavilion, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
29
|
Involvement of the constitutive prostaglandin E synthase cPGES/p23 in expression of an initial prostaglandin E2 inactivating enzyme, 15-PGDH. Prostaglandins Other Lipid Mediat 2011; 94:112-7. [PMID: 21334450 DOI: 10.1016/j.prostaglandins.2011.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 01/15/2011] [Accepted: 02/07/2011] [Indexed: 12/21/2022]
Abstract
We previously showed that cytosolic prostaglandin (PG) E synthase (cPGES/p23) which isomerizes PGH(2) to PGE(2), is essential for fetal mouse development. Embryonic fibroblasts derived from cPGES/p23 knockout mice generated higher amounts of PGE(2) in culture supernatants than wild-type-derived cells. In order to elucidate this apparent conflict that absence of PGE(2) synthetic enzyme caused facilitation of PGE(2) biosynthesis, we examined expression of the PGE(2) degrading enzyme in embryonic fibroblasts. We report here that embryonic fibroblasts deficient in cPGES/p23 decreased the expression of the PGE(2) degrading enzyme, 15-hydroxyprostaglandin dehydrogenase (15-PGDH), which catalyzes the inactivating conversion of the PGE(2) 15-OH to a 15-keto group, compared with that of wild-type. In addition, rat fibroblastic 3Y1 cells harboring cPGES/p23 siRNA exhibited lower 15-PGDH expression than mock-transfected cells. Furthermore, forcible expression of cPGES/p23 in 3Y1 cells resulted in facilitation of 15-PGDH promoter activity. These results suggest that the PGE(2)-inactivating pathway is controlled by the PGE(2) biosynthetic enzyme, cPGES/p23.
Collapse
|
30
|
Hara S, Kamei D, Sasaki Y, Tanemoto A, Nakatani Y, Murakami M. Prostaglandin E synthases: Understanding their pathophysiological roles through mouse genetic models. Biochimie 2010; 92:651-9. [DOI: 10.1016/j.biochi.2010.02.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
|
31
|
Jia Z, Aoyagi T, Yang T. mPGES-1 protects against DOCA-salt hypertension via inhibition of oxidative stress or stimulation of NO/cGMP. Hypertension 2010; 55:539-46. [PMID: 20065149 DOI: 10.1161/hypertensionaha.109.144840] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is a recently characterized cytokine-inducible enzyme critically involved in pain and inflammatory response. However, its role in blood pressure regulation is still debatable. The present study was undertaken to examine the effect of mPGES-1 deletion on DOCA-salt hypertension. After 2 weeks of DOCA plus 1% NaCl as drinking fluid, hypertension and sodium retention were more severe in mPGES-1 knockout (KO) mice than in wild-type (WT) controls. The indices of oxidative stress including urinary 8-isprostane and renal thiobarbituric acid-reactive substances were only modestly increased or unchanged in the WT mice but more significantly increased in the KO mice after DOCA-salt. Conversely, in response to DOCA-salt, the indices of antioxidant systems including renal expression of superoxide dismutase-3 and urinary nitrate/nitrite excretion were all significantly elevated in the WT mice but remarkably suppressed in the KO mice. Tempol treatment (50 mg/kg per day) in DOCA-salt KO mice produced a marked attenuation of hypertension, sodium retention, and kidney injury. Immunoblotting demonstrated increased renal expression of mPGES-1 in DOCA-salt WT mice. DOCA-salt induced a nearly 5-fold increase in urinary PGE(2) excretion in the WT mice, and this increase was completely abolished in the KO mice. Together, these results suggest that mPGES-1-derived PGE(2) confers protection against DOCA-salt hypertension likely via inhibition of oxidative stress or stimulation of superoxide dismutase-3 and urinary nitrate/nitrite system.
Collapse
Affiliation(s)
- Zhanjun Jia
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
32
|
Iyer JP, Srivastava PK, Dev R, Dastidar SG, Ray A. Prostaglandin E(2) synthase inhibition as a therapeutic target. Expert Opin Ther Targets 2009; 13:849-65. [PMID: 19530988 DOI: 10.1517/14728220903018932] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Most NSAIDs function by inhibiting biosynthesis of PGE(2) by inhibition of COX-1 and/or COX-2. Since COX-1 has a protective function in the gastro-intestinal tract (GIT), non-selective inhibition of both cycloxy genases leads to moderate to severe gastro-intestinal intolerance. Attempts to identify selective inhibitors of COX-2, led to the identification of celecoxib and rofecoxib. However, long-term use of these drugs has serious adverse effects of sudden myocardial infarction and thrombosis. Drug-mediated imbalance in the levels of prostaglandin I(2) (PGI(2)) and thromboxane A(2) (TXA(2)) with a bias towards TXA(2) may be the primary reason for these events. This resulted in the drugs being withdrawn from the market, leaving a need for an effective and safe anti-inflammatory drug. METHODS Recently, the focus of research has shifted to enzymes downstream of COX in the prosta glandin biosynthetic pathway such as prostaglandin E(2) synthases. Microsomal prostaglandin E(2) synthase-1 (mPGES-1) specifically isomerizes PGH(2) to PGE(2), under inflammatory conditions. In this review, we examine the biology of mPGES-1 and its role in disease. Progress in designing molecules that can selectively inhibit mPGES-1 is reviewed. CONCLUSION mPGES-1 has the potential to be a target for anti-inflammatory therapy, devoid of adverse GIT and cardiac effects and warrants further investigation.
Collapse
Affiliation(s)
- Jitesh P Iyer
- Department of Pharmacology, New Drug Discovery Research, Ranbaxy Research Laboratories, Plot No-20, Sector-18, Udyog Vihar, Gurgaon, Haryana, India-122015
| | | | | | | | | |
Collapse
|
33
|
Jia Z, Wang H, Yang T. Mice lacking mPGES-1 are resistant to lithium-induced polyuria. Am J Physiol Renal Physiol 2009; 297:F1689-96. [PMID: 19692487 DOI: 10.1152/ajprenal.00117.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cyclooxygenase-2 activity is required for the development of lithium-induced polyuria. However, the involvement of a specific, terminal prostaglandin (PG) isomerase has not been evaluated. The present study was undertaken to assess lithium-induced polyuria in mice deficient in microsomal prostaglandin E synthase-1 (mPGES-1). A 2-wk administration of LiCl (4 mmol.kg(-1).day(-1) ip) in mPGES-1 +/+ mice led to a marked polyuria with hyposmotic urine. This was associated with elevated renal mPGES-1 protein expression and increased urine PGE(2) excretion. In contrast, mPGES-1 -/- mice were largely resistant to lithium-induced polyuria and a urine concentrating defect, accompanied by nearly complete blockade of high urine PGE(2) and cAMP output. Immunoblotting, immunohistochemistry, and quantitative (q) RT-PCR consistently detected a significant decrease in aquaporin-2 (AQP2) protein expression in both the renal cortex and medulla of lithium-treated +/+ mice. This decrease was significantly attenuated in the -/- mice. qRT-PCR detected similar patterns of changes in AQP2 mRNA in the medulla but not in the cortex. Similarly, the total protein abundance of the Na-K-2Cl cotransporter (NKCC2) in the medulla but not in the cortex of the +/+ mice was significantly reduced by lithium treatment. In contrast, the dowregulation of renal medullary NKCC2 expression was significantly attenuated in the -/- mice. We conclude that mPGES-1-derived PGE(2) mediates lithium-induced polyuria likely via inhibition of AQP2 and NKCC2 expression.
Collapse
Affiliation(s)
- Zhanjun Jia
- Univ. of Utah and VA Medical Center, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
34
|
Wu D, Mennerich D, Arndt K, Sugiyama K, Ozaki N, Schwarz K, Wei J, Wu H, Bishopric NH, Doods H. Comparison of microsomal prostaglandin E synthase-1 deletion and COX-2 inhibition in acute cardiac ischemia in mice. Prostaglandins Other Lipid Mediat 2009; 90:21-5. [PMID: 19559811 DOI: 10.1016/j.prostaglandins.2009.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 01/26/2023]
Abstract
The aim of the present study was to compare the effects of genetic mPGES-1 loss and COX-2 inhibition on myocardial damage after coronary occlusion. mPGES-1(-/-) mice and their wild-type littermates were injected with vehicle or COX-2 inhibitor (celecoxib), and 30min later the left coronary artery was surgically occluded. At 24h, myocardial infarct (MI) volume was measured histologically. Post-MI survival was reduced in WT mice receiving celecoxib (12/20) compared with vehicle-treated controls (12/12) or the loss of mPGES-1 (13/13) together with increased phosphokinase (CPK) and cardiac troponin-I release. Endogenous mPGES-1 expression was unchanged by ischemia in WT mice and absent in mPGES-1(-/-) hearts. COX-2 expression was markedly increased at 24h after MI in WT hearts; this upregulation was largely attenuated in mPGES-1(-/-) mice. We conclude that loss of mPGES-1 prevents the upregulation of COX-2 after myocardial infarct, and in contrast to inhibition of COX-2, does not increase ischemic myocardial damage.
Collapse
Affiliation(s)
- Dongmei Wu
- Department of Research, Division of Neonatology, Mount Sinai Medical Center, 4300 Alton Road, Miami Beach, FL 33140, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Flaveny C, Perdew GH, Miller CA. The Aryl-hydrocarbon receptor does not require the p23 co-chaperone for ligand binding and target gene expression in vivo. Toxicol Lett 2009; 189:57-62. [PMID: 19447165 DOI: 10.1016/j.toxlet.2009.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/05/2009] [Accepted: 05/06/2009] [Indexed: 12/27/2022]
Abstract
The Aryl-hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates most of the toxic affects of 2,3,7,8-tetrachlorodibenzo-(p)-dioxin (TCDD) and other xenobiotic compounds. The AHR cytoplasmic complex consists of two molecules of HSP90 and at least one molecule of Hepatitis B Virus-X associated protein 2 and the co-chaperone p23. With the use of in vitro model systems, p23 has been shown previously to be important to maintaining the efficient ligand binding and subsequent downstream inducibility of the AHR. In this study we attempted to identify the role p23 plays in AHR signaling in vivo using a p23 null mouse. Ligand binding assays and western blot analysis revealed that p23 was not required for AHR protein stability and competent ligand binding in liver. Real-time RT-PCR analysis conducted on p23 null, heterozygous and homozygous mice suggested that p23 is dispensable for stable AHR protein levels, or efficient TCDD-mediated AHR activation of Cyp1a1 and Cyp1a2.
Collapse
Affiliation(s)
- Colin Flaveny
- Department of Veterinary and Biomedical Sciences and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
36
|
O'Banion MK. Prostaglandin E2 synthases in neurologic homeostasis and disease. Prostaglandins Other Lipid Mediat 2009; 91:113-7. [PMID: 19393332 DOI: 10.1016/j.prostaglandins.2009.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 04/10/2009] [Accepted: 04/10/2009] [Indexed: 01/17/2023]
Abstract
Prostaglandin E(2) synthases (PGES) currently comprise a group of three structurally and biologically distinct molecules. These enzymes are part of an important and complex paracrine signaling system involved in a wide range of biological processes. This review focuses on the normal physiological and pathological roles of these enzymes in the nervous system. Specific topics include the role of PGES(s) in fever and sickness behavior, inflammatory pain, and neural disease. Although the field is in its early stages, ongoing development of selective PGES inhibitors for possible use in people creates a significant need for more fully understanding the biological roles of these important enzymes.
Collapse
Affiliation(s)
- M Kerry O'Banion
- Department of Neurobiology & Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
37
|
Soodvilai S, Jia Z, Wang MH, Dong Z, Yang T. mPGES-1 deletion impairs diuretic response to acute water loading. Am J Physiol Renal Physiol 2009; 296:F1129-35. [PMID: 19225050 DOI: 10.1152/ajprenal.90478.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PGE(2) has an established role in renal water handling. The present study was undertaken to examine the role of microsomal prostaglandin E synthase-1 (mPGES-1) in the diuretic response to acute and chronic water loading. Compared with wild-type (+/+) controls, mPGES-1 -/- mice exhibited impaired ability to excrete an acute, but not chronic water load. In response to acute water loading, urinary PGE(2) excretion in the +/+ mice increased at 2 h, in parallel with increased urine flow. In contrast, the -/- mice exhibited a delayed increase in urinary PGE(2) excretion, coinciding with the stimulation of renal medullary mRNA expression of cytosolic prostaglandin E synthase but not mPGES-2. At baseline, renal aquaporin-2 (AQP2) expression in mPGES-1 -/- mice was enhanced compared with the +/+ control. In response to acute water loading, renal AQP2 expression in the +/+ mice was significantly reduced, and this reduction was blunted in the -/- mice. Despite striking changes in AQP2 protein expression, renal AQP2 mRNA in both genotypes largely remained unchanged. Overall, these data support an important role of mPGES-1 in provoking the diuretic response to acute water loading.
Collapse
Affiliation(s)
- Sunhapas Soodvilai
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | | | | | | | | |
Collapse
|
38
|
Chaudhry UA, Dore S. Cytosolic prostaglandin E synthase: expression patterns in control and Alzheimer's disease brains. Am J Alzheimers Dis Other Demen 2009; 24:46-51. [PMID: 19001348 PMCID: PMC2859688 DOI: 10.1177/1533317508323655] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Anti-inflammatory drugs reduce the risk of Alzheimer's disease but fail to slow its progression. Studying the expression of prostaglandin E(2) synthases downstream of cyclooxygenase-2 is important. Here, the expression patterns of cytosolic prostaglandin E( 2) synthases, an immediate prostaglandin E(2) source was investigated. Sections taken from the middle frontal gyrus of brains of 10 patients with Alzheimer's and 5 age-matched controls were examined by immunostaining for the presence of the synthases. Immunofluorescence analysis of control brains showed that cytosolic prostaglandin E(2) synthases co-localize with microglia, neurons, and endothelium markers, but not with astrocytes or smooth muscle cells. Immunohistochemical staining for the synthases was positive in the pyramidal neurons of controls but barely detectable in the brain of Alzheimer's patients. These findings revealed that cytosolic prostaglandin E(2) synthases is found in microglia, neurons, and endothelium of control human middle frontal gyrus and that its levels decrease in pyramidal cells of Alzheimer's disease brains.
Collapse
Affiliation(s)
- Uzma A Chaudhry
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
39
|
Fatty acid status and behavioural symptoms of attention deficit hyperactivity disorder in adolescents: a case-control study. Nutr J 2008; 7:8. [PMID: 18275609 PMCID: PMC2275745 DOI: 10.1186/1475-2891-7-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 02/14/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most studies of Attention-deficit hyperactivity disorder (ADHD) have focused on either young children or older adults. The current study compared 11 ADHD adolescents with 12 age-matched controls. The purpose was to examine differences in dietary intake, particularly of essential fatty acids, and determine whether this could explain the typical abnormalities in red blood cell fatty acids observed in previous studies of young children. A secondary purpose was to determine if there were relationships between circulating concentrations of essential fatty acids and specific ADHD behaviours as measured by the Conners' Parent Rating Scale (CPRS-L). METHODS Eleven ADHD adolescents and twelve age-matched controls were recruited through newspaper ads, posters and a university website. ADHD diagnosis was confirmed by medical practitioners according to DSM-IV criteria. Blood, dietary intake information as well as behavioural assessments were completed. RESULTS Results showed that ADHD adolescents consumed more energy and fat than controls but had similar anthropometry. ADHD children consumed equivalent amounts of omega-3 and omega-6 fatty acids to controls, however they had significantly lower levels of docosahexaenoic acid (DHA, 22:6n-3) and total omega-3 fatty acids, higher omega-6 fatty acids and a lower ratio of n-3:n-6 fatty acids than control subjects. In addition, low omega-3 status correlated with higher scores on several Conners' behavioural scales. CONCLUSION These data suggest that adolescents with ADHD continue to display abnormal essential fatty acid profiles that are often observed in younger children and distinctly different from normal controls of similar age. Further these red blood cell fatty acid differences are not explained by differences in intake. This suggests that there are metabolic differences in fatty acid handling between ADHD adolescents and normal controls. The value of omega-3 supplements to improve fatty acid profiles and possibly behaviours associated with ADHD, need to be examined.
Collapse
|
40
|
Tang EHC, Vanhoutte PM. Gene expression changes of prostanoid synthases in endothelial cells and prostanoid receptors in vascular smooth muscle cells caused by aging and hypertension. Physiol Genomics 2008; 32:409-18. [DOI: 10.1152/physiolgenomics.00136.2007] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The present study was designed to assess whether or not changes in genomic expression of cyclooxygenases (COX-1, COX-2), endothelial nitric oxide synthase (eNOS), and prostanoid synthases in the endothelium and of prostanoid receptors in vascular smooth muscle contribute to the occurrence of endothelium-dependent contractions during aging and hypertension. Gene expression was quantified by real-time PCR using isolated endothelial cells and smooth muscle cells (SMC) from the aorta of Wistar-Kyoto and spontaneously hypertensive rats. Genes for all known prostanoid synthases and receptors were present in endothelial cells and SMC, respectively. Aging caused overexpression of eNOS, COX-1, COX-2, thromboxane synthase, hematopoietic-type prostaglandin D synthase, membrane prostaglandin E synthase-2, and prostaglandin F synthase in endothelial cells and COX-1 and prostaglandin E2 (EP)4 receptors in SMC. Hypertension augmented the expression of COX-1, prostacyclin synthase, thromboxane synthase, and hematopoietic-type prostaglandin D synthase in endothelial cells and prostaglandin D2 (DP), EP3, and EP4 receptors in SMC. The increase in genomic expression of endothelial COX-1 explains why in aging and hypertension the endothelium has greater propensity to release cyclooxygenase-derived vasoconstrictive prostanoids. The expression of prostacyclin synthase was by far the most abundant, explaining why the majority of the COX-1-derived endoperoxides are transformed into prostacyclin, substantiating the role of prostacyclin as an endothelium-derived contracting factor. The expression of thromboxane synthase was increased in the cells of aging or hypertensive rats, explaining why the prostanoid can contribute to endothelium-dependent contractions. It is uncertain whether the gene modifications caused by aging and hypertension directly contribute to endothelium-dependent contractions or rather to vascular aging and the vascular complications of the hypertensive process.
Collapse
Affiliation(s)
- Eva H. C. Tang
- Department of Pharmacology, University of Hong Kong, Hong Kong
| | | |
Collapse
|