1
|
Wang G, Li R, Feng C, Li K, Liu S, Fu Q. Galectin-3 is involved in inflammation and fibrosis in arteriogenic erectile dysfunction via the TLR4/MyD88/NF-κB pathway. Cell Death Discov 2024; 10:92. [PMID: 38378809 PMCID: PMC10879531 DOI: 10.1038/s41420-024-01859-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
Galectin-3 (Gal-3) is a multifunctional protein that has been linked to fibrosis and inflammation in the cardiovascular system. In this study, we examined the impact of Gal-3 on inflammation and fibrosis in patients with arteriogenic erectile dysfunction (A-ED) and the underlying mechanisms involved. To induce arterial injury, we utilized cuffs on the periaqueductal common iliac arteries of Sprague‒Dawley (SD) rats and administered a high-fat diet to co-induce local atherosclerosis. Our results showed that we successfully developed a novel A-ED model that was validated based on histological evidence. In vivo, the vascular lumen of rats subjected to a high-fat diet and cuff placement exhibited significant narrowing, accompanied by the upregulation of Gal-3, Toll-like receptor 4 (TLR4), and myeloid differentiation primary response protein 88 (MyD88) expression in the penile cavernosa. This led to the activation of nuclear factor kappa B 65 (NF-κB-p65), resulting in reduced intracavernosal pressure, endothelial nitric oxide synthase expression, and smooth muscle content, promoting inflammation and fibrosis. However, treatment with Gal-3 inhibitor-modified citrus pectin (MCP) significantly normalized those effects. In vitro, knocking down Gal-3 led to a significant reduction in TLR4, MyD88, and NF-κB-p65 expression in corpus cavernosum smooth muscle cells (CCSMCs), decreasing inflammation levels. In conclusion, inhibiting Gal-3 may improve A-ED by reducing inflammation, endothelial injury, and fibrosis in the penile corpus cavernosum through the TLR4/MyD88/NF-κB pathway. These findings highlight the potential therapeutic target of Gal-3 in A-ED.
Collapse
Affiliation(s)
- Guanbo Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ruiyu Li
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Chen Feng
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Kefan Li
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Shuai Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, China.
- Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, China.
- Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
2
|
Carvalho KFDS, Ferreira AAM, Barbosa NC, Alves JV, Costa RMD. Atorvastatin Attenuates Vascular Remodeling in Mice with Metabolic Syndrome. Arq Bras Cardiol 2021; 117:737-747. [PMID: 34161419 PMCID: PMC8528348 DOI: 10.36660/abc.20200322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/04/2020] [Indexed: 11/18/2022] Open
Abstract
Fundamento A síndrome metabólica é caracterizada por um conjunto de comorbidades. Durante a síndrome, observam-se alterações estruturais no sistema cardiovascular, especialmente o remodelamento vascular. Uma das causas predisponentes para essas alterações é a inflamação crônica oriunda de mudanças na estrutura e composição do tecido adiposo perivascular. Atorvastatina é eficaz no tratamento das dislipidemias. No entanto, seus efeitos pleiotrópicos não são totalmente compreendidos. Supõe-se que, durante a síndrome metabólica, ocorre remodelamento vascular e que o tratamento com atorvastatina pode ser capaz de atenuar tal condição. Objetivos Avaliar os efeitos do tratamento com atorvastatina sobre o remodelamento vascular em modelo experimental de síndrome metabólica. Métodos Camundongos Swiss receberam dieta controle ou dieta hiperglicídica por 18 semanas. Após 14 semanas de dieta, os camundongos foram tratados com veículo ou atorvastatina (20mg/kg) durante 4 semanas. Foram avaliados o perfil nutricional e metabólico por testes bioquímicos; análise estrutural da artéria aorta por histologia e dosagem de citocinas por ensaio imunoenzimático. O nível de significância aceitável para os resultados foi p <0,05. Resultados A dieta hiperglicídica promoveu o desenvolvimento de síndrome metabólica. Tal fato culminou no remodelamento hipertrófico do músculo liso vascular e tecido adiposo perivascular. Além disso, houve aumentos das citocinas TNF-α e IL-6 circulantes e no tecido adiposo perivascular. O tratamento com atorvastatina reduziu significativamente os danos metabólicos, o remodelamento vascular e os níveis de citocinas. Conclusão Atorvastatina ameniza danos metabólicos associados à síndrome metabólica induzida por dieta hiperglicídica, além de atenuar o remodelamento vascular, sendo esses efeitos associados à redução de citocinas pró-inflamatórias.
Collapse
Affiliation(s)
| | | | | | - Juliano Vilela Alves
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo - Departamento de Farmacologia, Ribeirão Preto, SP - Brasil
| | | |
Collapse
|
3
|
CARNEIRO GIANED, SIELSKI MICHELIS, VIEIRA CRISTIANOPEDROSO, COSTA FABIOTRINDADEMARANHÃO, WERNECK CLAUDIOC, VICENTE CRISTINAP. Administration of endothelial progenitor cells accelerates the resolution of arterial thrombus in mice. Cytotherapy 2019; 21:444-459. [DOI: 10.1016/j.jcyt.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 12/11/2018] [Accepted: 01/01/2019] [Indexed: 12/31/2022]
|
4
|
Ishiwata Y, Kaneta T, Nawata S, Hino-Shishikura A, Yoshida K, Inoue T. Quantification of temporal changes in calcium score in active atherosclerotic plaque in major vessels by 18F-sodium fluoride PET/CT. Eur J Nucl Med Mol Imaging 2017; 44:1529-1537. [PMID: 28349280 DOI: 10.1007/s00259-017-3680-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/15/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE Our aim was to assess whether 18F-NaF PET/CT is able to predict progression of the CT calcium score. METHODS Between August 2007 and November 2015, 34 patients (18 women, 16 men; age, mean ± standard deviation, 57.5 ± 13.9 years; age range 19-78 years) with malignancy or orthopaedic disease were enrolled in this study, with approximately 1-year follow-up data. Baseline and follow-up CT images were retrospectively evaluated for the presence of calcification sites in major vessel walls. The maximum and mean CT values (CTmax and CTmean, in Hounsfield units), calcification volumetric score (CVS, in cubic millimetres) and Agatston units score (AU) were evaluated for each site. Subsequent changes in CTmax, CTmean, CVS and AU were calculated and expressed as ΔCTmax, ΔCTmean, ΔCVS and ΔAU, respectively. We then evaluated the relationship between 18F-NaF uptake (using the maximum target-to-background ratio, TBRmax, and the maximum blood-subtracted 18F-NaF activity, bsNaFmax, which was obtained by subtracting the SUVmax of each calcified plaque lesion and NaF-avid site from the SUVmean in the right atrium blood pool) and the change in calcified plaque volume and characteristics obtained after 1 year. RESULTS We detected and analysed 182 calcified plaque sites and 96 hot spots on major vessel walls. 18F-NaF uptake showed very weak correlations with CTmax, CTmean, CVS, CVS after 1 year, AU and AU after 1 year on both baseline and follow-up PET/CT scans for each site. 18F-NaF uptake showed no correlation with ΔCTmax or ΔCTmean. However, there was a significant correlation between the intensity of 18F-NaF uptake and ΔCVS and ΔAU. CONCLUSION 18F-NaF uptake has a strong correlation with calcium score progression which was a predictor of future cardiovascular disease risk. PET/CT using 18F-NaF may be able to predict calcium score progression which is known to be the major characteristic of atherosclerosis.
Collapse
Affiliation(s)
- Yoshinobu Ishiwata
- Department of Radiology, Yokohama City University, Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ward, Yokohama, Kanagawa, 236-0004, Japan
| | - Tomohiro Kaneta
- Department of Radiology, Yokohama City University, Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ward, Yokohama, Kanagawa, 236-0004, Japan.
| | - Shintaro Nawata
- Department of Radiology, Yokohama City University, Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ward, Yokohama, Kanagawa, 236-0004, Japan
| | - Ayako Hino-Shishikura
- Department of Radiology, Yokohama City University, Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ward, Yokohama, Kanagawa, 236-0004, Japan
| | - Keisuke Yoshida
- Department of Radiology, Yokohama City University, Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ward, Yokohama, Kanagawa, 236-0004, Japan
| | - Tomio Inoue
- Department of Radiology, Yokohama City University, Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ward, Yokohama, Kanagawa, 236-0004, Japan
| |
Collapse
|
5
|
Sata M. Cuff-Induced Neointimal Formation in Mouse Models. MOUSE MODELS OF VASCULAR DISEASES 2016. [PMCID: PMC7122099 DOI: 10.1007/978-4-431-55813-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ischemic heart failure caused by atherosclerosis is a major cause of death worldwide. Although remarkable technological advances have been made in the treatment of coronary heart disease, there is as yet no treatment that can sufficiently suppress the progression of atherosclerosis, including neointimal thickening. Therefore, a precise understanding of the mechanism of neointimal hyperplasia will provide the development of new technologies. Both ApoE-KO and LDLR-KO mice have been employed to generate other relevant mouse models of cardiovascular disease through breeding strategies. Although these mice are effective tools for the investigation of atherosclerosis, development of a progressive atherosclerotic lesion takes a long time, resulting in increase of both the costs and the space needed for the research. Thus, it is necessary to develop simpler tools that would allow easy evaluation of atherosclerosis in mouse models. In this review, we discuss our experience in generating mouse models of cuff-induced injury of the femoral artery and attempt to provide a better understanding of cuff-induced neointimal formation.
Collapse
|
6
|
Liu QF, Yu HW, Sun LL, You L, Tao GZ, Qu BZ. Apelin-13 upregulates Egr-1 expression in rat vascular smooth muscle cells through the PI3K/Akt and PKC signaling pathways. Biochem Biophys Res Commun 2015; 468:617-21. [DOI: 10.1016/j.bbrc.2015.10.171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 10/31/2015] [Indexed: 11/25/2022]
|
7
|
Lavin B, Phinikaridou A, Lorrio S, Zaragoza C, Botnar RM. Monitoring vascular permeability and remodeling after endothelial injury in a murine model using a magnetic resonance albumin-binding contrast agent. Circ Cardiovasc Imaging 2015; 8:CIRCIMAGING.114.002417. [PMID: 25873720 PMCID: PMC4405074 DOI: 10.1161/circimaging.114.002417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Despite the beneficial effects of vascular interventions, these procedures may damage the endothelium leading to increased vascular permeability and remodeling. Re-endothelialization of the vessel wall, with functionally and structurally intact cells, is controlled by endothelial nitric oxide synthase (NOS3) and is crucial for attenuating adverse effects after injury. We investigated the applicability of the albumin-binding MR contrast agent, gadofosveset, to noninvasively monitor focal changes in vascular permeability and remodeling, after injury, in NOS3-knockout (NOS3(-/-)) and wild-type (WT) mice in vivo. METHODS AND RESULTS WT and NOS3(-/-) mice were imaged at 7, 15, and 30 days after aortic denudation or sham-surgery. T1 mapping (R1=1/T1, s(-1)) and delayed-enhanced MRI were used as measurements of vascular permeability (R1) and remodeling (vessel wall enhancement, mm(2)) after gadofosveset injection, respectively. Denudation resulted in higher vascular permeability and vessel wall enhancement 7 days after injury in both strains compared with sham-operated animals. However, impaired re-endothelialization and increased neovascularization in NOS3(-/-) mice resulted in significantly higher R1 at 15 and 30 days post injury compared with WT mice that showed re-endothelialization and lack of neovascularization (R1 [s(-1)]=15 days: NOS3 (-/-)4.02 [interquartile range, IQR, 3.77-4.41] versus WT2.39 [IQR, 2.35-2.92]; 30 days: NOS3 (-/-)4.23 [IQR, 3.94-4.68] versus WT2.64 [IQR, 2.33-2.80]). Similarly, vessel wall enhancement was higher in NOS3(-/-) but recovered in WT mice (area [mm(2)]=15 days: NOS3 (-/-)5.20 [IQR, 4.68-6.80] versus WT2.13 [IQR, 0.97-3.31]; 30 days: NOS3 (-/-)7.35 [IQR, 5.66-8.61] versus WT1.60 [IQR, 1.40-3.18]). Ex vivo histological studies corroborated the MRI findings. CONCLUSIONS We demonstrate that increased vascular permeability and remodeling, after injury, can be assessed noninvasively using an albumin-binding MR contrast agent and may be used as surrogate markers for evaluating the healing response of the vessel wall after injury.
Collapse
Affiliation(s)
- Begoña Lavin
- From the Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom (B.L., A.P., S.L., R.M.B.); The British Heart Foundation Centre of Excellence, Cardiovascular Division (B.L., A.P., R.M.B.) and Wellcome Trust and EPSRC Medical Engineering Center (B.L., R.M.B.), King's College London, London, United Kingdom; Cardiovascular Research Unit, University Francisco de Vitoria/Hospital Ramón y Cajal, Ctra. Colmenar Viejo, km 9,100, Madrid 28034, Spain (C.Z.).
| | - Alkystis Phinikaridou
- From the Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom (B.L., A.P., S.L., R.M.B.); The British Heart Foundation Centre of Excellence, Cardiovascular Division (B.L., A.P., R.M.B.) and Wellcome Trust and EPSRC Medical Engineering Center (B.L., R.M.B.), King's College London, London, United Kingdom; Cardiovascular Research Unit, University Francisco de Vitoria/Hospital Ramón y Cajal, Ctra. Colmenar Viejo, km 9,100, Madrid 28034, Spain (C.Z.)
| | - Silvia Lorrio
- From the Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom (B.L., A.P., S.L., R.M.B.); The British Heart Foundation Centre of Excellence, Cardiovascular Division (B.L., A.P., R.M.B.) and Wellcome Trust and EPSRC Medical Engineering Center (B.L., R.M.B.), King's College London, London, United Kingdom; Cardiovascular Research Unit, University Francisco de Vitoria/Hospital Ramón y Cajal, Ctra. Colmenar Viejo, km 9,100, Madrid 28034, Spain (C.Z.)
| | - Carlos Zaragoza
- From the Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom (B.L., A.P., S.L., R.M.B.); The British Heart Foundation Centre of Excellence, Cardiovascular Division (B.L., A.P., R.M.B.) and Wellcome Trust and EPSRC Medical Engineering Center (B.L., R.M.B.), King's College London, London, United Kingdom; Cardiovascular Research Unit, University Francisco de Vitoria/Hospital Ramón y Cajal, Ctra. Colmenar Viejo, km 9,100, Madrid 28034, Spain (C.Z.)
| | - René M Botnar
- From the Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom (B.L., A.P., S.L., R.M.B.); The British Heart Foundation Centre of Excellence, Cardiovascular Division (B.L., A.P., R.M.B.) and Wellcome Trust and EPSRC Medical Engineering Center (B.L., R.M.B.), King's College London, London, United Kingdom; Cardiovascular Research Unit, University Francisco de Vitoria/Hospital Ramón y Cajal, Ctra. Colmenar Viejo, km 9,100, Madrid 28034, Spain (C.Z.)
| |
Collapse
|
8
|
Role of bone-marrow- and non-bone-marrow-derived receptor for advanced glycation end-products (RAGE) in a mouse model of diabetes-associated atherosclerosis. Clin Sci (Lond) 2014; 127:485-97. [PMID: 24724734 DOI: 10.1042/cs20140045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RAGE (receptor for advanced glycation end-products) is expressed on multiple cell types implicated in the progression of atherosclerosis and plays a role in DAA (diabetes-associated atherosclerosis). The aim of the present study was to determine the relative role of either BM (bone marrow)- or non-BM-derived RAGE in the pathogenesis of STZ (streptozotocin)-induced DAA. Male ApoE (apolipoprotein E)-null (ApoE-/-:RAGE+/+) and ApoE:RAGE-null (ApoE-/-:RAGE-/-) mice at 7 weeks of age were rendered diabetic with STZ. At 8 weeks of age, ApoE-/- and ApoE-/-:RAGE-/- control and diabetic mice received BM from either RAGE-null or RAGE-bearing mice, generating various chimaeras. After 10 and 20 weeks of diabetes, mice were killed and gene expression and atherosclerotic lesion formation were evaluated respectively. Deletion of RAGE in either the BM cells or non-BM cells both resulted in a significant attenuation in DAA, which was associated with reduced VCAM-1 (vascular cell adhesion molecule-1) expression and translated into reduced adhesion in vitro. In conclusion, the results of the present study highlight the importance of both BM- and non-BM-derived RAGE in attenuating the development of DAA.
Collapse
|
9
|
Gagat M, Grzanka D, Izdebska M, Sroka WD, Marszałł MP, Grzanka A. Tropomyosin-1 protects endothelial cell-cell junctions against cigarette smoke extract through F-actin stabilization in EA.hy926 cell line. Acta Histochem 2014; 116:606-18. [PMID: 24369881 DOI: 10.1016/j.acthis.2013.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/14/2013] [Accepted: 11/20/2013] [Indexed: 01/07/2023]
Abstract
The aim of the study was to estimate the effect of cigarette smoke extract (CSE) on EA.hy926 endothelial cells in culture in the context of maintenance of cell-cell junctions through the structural stabilization of the actin cytoskeleton. In the present study, F-actin was stabilized by the overexpression of tropomyosin-1, which is known to stabilize actin filaments in muscle and non-muscle cells. Our study showed that the stabilization of F-actin significantly increased the survival of cells treated with 25% CSE. In addition, after stabilization of F-actin the migratory potential of EA.hy926 cells subjected to CSE treatment was increased. Our results also showed increased fluorescence intensity of alpha- and beta-catenin after CSE treatment in cells which had stabilized F-actin. Analysis of fluorescence intensity of Zonula occludens-1 did not reveal any significant differences when EA.hy926 cells overexpressing tropomyosin-1 were compared with those lacking overexpression. It would appear that overexpression of tropomyosin-1 preserved the structure of actin filaments in the cells treated with CSE. In conclusion, the present study demonstrates that stabilization of F-actin protects EA.hy926 cells against CSE-induced loss of both adherens and tight junctions. The data presented in this study suggest that overexpression of tropomyosin-1 stabilizes the organizational structure of actin filaments and helps preserve the endothelial barrier function under conditions of strong oxidative stress.
Collapse
Affiliation(s)
- Maciej Gagat
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department and Clinic of Dermatology, Sexually Transmitted Diseases and Immunodermatology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Magdalena Izdebska
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Wiktor Dariusz Sroka
- Department of Medicinal Chemistry, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Michał Piotr Marszałł
- Department of Medicinal Chemistry, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland.
| |
Collapse
|
10
|
Liu QF, Yu HW, You L, Liu MX, Li KY, Tao GZ. Apelin-13-induced proliferation and migration induced of rat vascular smooth muscle cells is mediated by the upregulation of Egr-1. Biochem Biophys Res Commun 2013; 439:235-40. [PMID: 23973488 DOI: 10.1016/j.bbrc.2013.08.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 08/15/2013] [Indexed: 10/26/2022]
Abstract
Apelin-13 plays an important role in the migration and proliferation of vascular smooth muscle cells (VSMCs); however, the underlying mechanisms are still unclear. Egr-1 is a nuclear transcription factor, which is considered to be the critical initiating factor of the processes of VSMC proliferation and migration. Egr-1 is known to regulate the expression of osteopontin (OPN), which is a marker of the phenotypic modulation that is a necessary condition of VSMC proliferation and migration. We hypothesized that the role of Apelin-13 is mediated via upregulation of Egr-1. To test this hypothesis, we analyzed the effects of Apelin-13 treatment on Egr-1 mRNA and protein expression in A10 rat aortic VSMCs by RT-PCR and Western blotting, respectively. Results showed that, Apelin-13 upregulated the expression of Egr-1. Furthermore, treatment with the extracellular-regulated protein kinase (ERK) inhibitor, PD98059, inhibited the upregulation of Egr-1 by Apelin-13. In addition, this upregulation was inhibited by treatment of VSMCs with the Egr-1 specific deoxyribozyme ED5 (DNAenzyme/10-23 DRz). Furthermore, ED5 treatment was found to significantly inhibit Apelin-13-induced migration and proliferation of VSMCs using transwell and MTT assays, respectively. The evaluation of OPN mRNA and protein expression levels by RT-PCR and Western blot analyses revealed that ED5 treatment also inhibited Apelin-13-induced OPN upregulation. The results of this study indicated that Apelin-13 upregulates Egr-1 via ERK. Furthermore, Apelin-13 induced the proliferation and migration of VSMCs as well as the upregulation of OPN via the upregulation of Egr-1. These results will provide an important theoretical and experimental basis for the control of inappropriate remodeling of vessel walls, and will hopefully lead to the prevention and treatment of vascular remodeling diseases.
Collapse
Affiliation(s)
- Qi-Feng Liu
- Department of Cardiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001, China
| | | | | | | | | | | |
Collapse
|
11
|
Mallavia B, Oguiza A, Lopez-Franco O, Recio C, Ortiz-Muñoz G, Lazaro I, Lopez-Parra V, Egido J, Gomez-Guerrero C. Gene Deficiency in Activating Fcγ Receptors Influences the Macrophage Phenotypic Balance and Reduces Atherosclerosis in Mice. PLoS One 2013; 8:e66754. [PMID: 23805273 PMCID: PMC3689671 DOI: 10.1371/journal.pone.0066754] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 05/10/2013] [Indexed: 01/18/2023] Open
Abstract
Immunity contributes to arterial inflammation during atherosclerosis. Oxidized low-density lipoproteins induce an autoimmune response characterized by specific antibodies and immune complexes in atherosclerotic patients. We hypothesize that specific Fcγ receptors for IgG constant region participate in atherogenesis by regulating the inflammatory state of lesional macrophages. In vivo we examined the role of activating Fcγ receptors in atherosclerosis progression using bone marrow transplantation from mice deficient in γ-chain (the common signaling subunit of activating Fcγ receptors) to hyperlipidemic mice. Hematopoietic deficiency of Fcγ receptors significantly reduced atherosclerotic lesion size, which was associated with decreased number of macrophages and T lymphocytes, and increased T regulatory cell function. Lesions of Fcγ receptor deficient mice exhibited increased plaque stability, as evidenced by higher collagen and smooth muscle cell content and decreased apoptosis. These effects were independent of changes in serum lipids and antibody response to oxidized low-density lipoproteins. Activating Fcγ receptor deficiency reduced pro-inflammatory gene expression, nuclear factor-κB activity, and M1 macrophages at the lesion site, while increasing anti-inflammatory genes and M2 macrophages. The decreased inflammation in the lesions was mirrored by a reduced number of classical inflammatory monocytes in blood. In vitro, lack of activating Fcγ receptors attenuated foam cell formation, oxidative stress and pro-inflammatory gene expression, and increased M2-associated genes in murine macrophages. Our study demonstrates that activating Fcγ receptors influence the macrophage phenotypic balance in the artery wall of atherosclerotic mice and suggests that modulation of Fcγ receptor-mediated inflammatory responses could effectively suppress atherosclerosis.
Collapse
Affiliation(s)
- Beñat Mallavia
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Ainhoa Oguiza
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Oscar Lopez-Franco
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Carlota Recio
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Guadalupe Ortiz-Muñoz
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Iolanda Lazaro
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Virginia Lopez-Parra
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Jesus Egido
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Carmen Gomez-Guerrero
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- * E-mail:
| |
Collapse
|
12
|
Gagat M, Grzanka D, Izdebska M, Grzanka A. Effect of L-homocysteine on endothelial cell-cell junctions following F-actin stabilization through tropomyosin-1 overexpression. Int J Mol Med 2013; 32:115-29. [PMID: 23604178 DOI: 10.3892/ijmm.2013.1357] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/28/2013] [Indexed: 11/06/2022] Open
Abstract
Since the identification of actin in non‑muscle cells, it has been suggested that the regulation of the mechanical behaviors of the actin cytoskeleton regulates cellular shape changes and the generation of forces during cell migration and division. The maintenance of cell shape and polarity are important in the formation of cell-cell junctions. The aim of the present study was to determine the effect of L‑homocysteine thiolactone hydrochloride on EA.hy926 endothelial cells in the context of the maintenance cell-cell junctions through the stabilization of filamentous actin cytoskeleton (F‑actin). The actin filaments were stabilized by the overexpression of tropomyosin-1, which has the ability to stabilize actin filaments in muscle and non-muscle cells. The stabilization of F-actin induced a significant decrease in the percentage of late apoptotic and necrotic cells following treatment with L-homocysteine. Moreover, the migratory potential of the endothelial cells was greater in the cells overexpressing tropomyosin-1 treated with L-homocysteine. Additionally, our results indicated that the stabilization of F-actin in the EA.hy926 cells significantly increased the expression of junctional β‑catenin, as compared to the cells not overexpressing tropomyosin‑1. Similarly, the fluorescence intensity of junctional α-catenin was also increased in the cells with stabilized F‑actin cytoskeleton. However, this increase was only slightly higher than that observed in the EA.hy926 cells not overexpressing tropomyosin-1. Furthermore, the analysis of Zonula occludens (ZO)‑1 relative fluorescence demonstrated a statistically significant decrease in the cell-cell junction areas among the cells with stabilized F-actin cytoskeleton in comparison to the cells not overexpressing tropomyosin-1. Our results indicate that the stabilization of F-actin does not affect the migratory potential of cells, and consequently protects the EA.hy926 cells against the L-homocysteine-induced decrease in cell mobility. Moreover, it is suggested that α‑catenin may participate in the suppression of actin polymerization in the area of cell-cell junctions. It can be hypothesized that the stabilization of F-actin strengthens endothelial adherens and tight junctions by increasing the number of cell-cell junctions due to the amplification of β-catenin and the ZO‑1 fluorescence signal. However, ZO-1 stabilizes the endothelial barrier function through the stabilization of F-actin and F-actin itself stabilizes the localization of ZO-1.
Collapse
Affiliation(s)
- Maciej Gagat
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | | | | | | |
Collapse
|
13
|
Morris-Rosenfeld S, Blessing E, Preusch MR, Albrecht C, Bierhaus A, Andrassy M, Nawroth PP, Rosenfeld ME, Katus HA, Bea F. Deletion of bone marrow-derived receptor for advanced glycation end products inhibits atherosclerotic plaque progression. Eur J Clin Invest 2011; 41:1164-71. [PMID: 21418204 DOI: 10.1111/j.1365-2362.2011.02514.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The multiligand receptor for advanced glycation end products (RAGE) of the immunoglobulin superfamily is expressed on multiple cell types implicated in the inflammatory response in atherosclerosis. We sought to determine the role of bone marrow-derived RAGE in different stages of atherosclerotic development in apolipoprotein E-deficient mice (apoE(-/-)). METHODS Seven- and 23-week-old apoE(-/-) mice (n = 40) were lethally irradiated and given bone marrow from RAGE null (RAGE(-/-)/apoE(-/-)) or RAGE-bearing (RAGE(+/+)/apoE(-/-)) mice to apoE(-/-) mice to generate double knockout bone marrow chimera (RAGE(-/-)/apoE(-/-bmc) and RAGE(+/+)/apoE(-/-bmc)-, respectively). After 16 weeks on a standard chow diet, mice were sacrificed and atherosclerotic lesion formation was evaluated. RESULTS Plaques in the aortic root of the young mice showed no significant difference in maximum plaque size (217,470 ± 17,480 μm(2) for the RAGE(-/-) /apoE(-/-bmc) mice compared to 244,764 ± 45,840 μm(2)), whereas lesions in the brachiocephalic arteries of the older RAGE(-/-)/apoE(-/-bmc) mice had significantly smaller lesions (94,049 ± 13,0844 μm(2) vs. 145,570 ± 11,488 μm(2), P < 0.05) as well as reduced average necrotic core area (48,600 ± 9220 μm(2) compared to 89,502 ± 10,032 μm(2), P < 0.05) when compared to RAGE(+/+)/apoE(-/-bmc) mice. Reduced plaque size and more stable plaque morphology was associated with significant reduced expression of VCAM-1, ICAM-1 and MCP-1. Accumulation of the RAGE ligand HMGB-1 was also significantly reduced within the lesions of RAGE(-/-)/apoE(-/-bmc) mice. CONCLUSIONS This study demonstrates that bone marrow-derived RAGE is an important factor in the progression of atherosclerotic plaques.
Collapse
|
14
|
Ebner P, Picard F, Richter J, Darrelmann E, Schneider M, Strauer BE, Brehm M. Accumulation of VEGFR-2+/CD133+ cells and decreased number and impaired functionality of CD34+/VEGFR-2+ cells in patients with SLE. Rheumatology (Oxford) 2010; 49:63-72. [PMID: 19995856 DOI: 10.1093/rheumatology/kep335] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Inflammation and atherosclerosis are the major causes of cardiovascular disease (CVD) in SLE. Both traditional and disease-specific risk factors contribute to the formation of endothelial dysfunction. Endothelial progenitor cells (EPCs) have the ability to restore endothelial integrity. The aim of this study was to determine whether the number and function of EPCs are altered in SLE. METHODS Nineteen patients with SLE and 19 controls were analysed. VEGF receptor-2 (VEGFR-2)(+)/CD133(+) and CD34(+)/VEGFR-2(+) cells were quantified by flow cytometry. EPC differentiation was measured by DiI-acLDL/Lectin I staining. Furthermore, apoptosis, proliferation capacity, migration capacity and clonogenic ability of EPCs were determined. RESULTS VEGFR-2(+)/CD133(+) cells were enhanced in SLE [215 (37) vs 122 (11) cells/1 x 10(6) lymphocytes; P = 0.029], whereas the number [106 (13) vs 215 (27) cells/1 x 10(6) lymphocytes; P = 0.002] and the proliferation rate [96% (6%) vs 143% (19%); P = 0.008] of CD34(+)/VEGFR-2(+) cells were decreased compared with controls. Additionally, EPCs in SLE showed an increased apoptosis [7% (1.4%) vs 3% (0.4%); P = 0.004], an impaired differentiation [36 (5) vs 121 (20) cells/mm(2); P < 0.001] and a reduced migratory capacity [116% (4%) vs 139% (4%); P = 0.001]. CONCLUSIONS Our results suggest that the mobilization of progenitor cells is unaffected in SLE, but the diminished number and the altered functionality of circulating CD34(+)/VEGFR-2(+) cells reduce the ability to repair vascular damage and thus may trigger the development of atherosclerosis in SLE.
Collapse
Affiliation(s)
- Petra Ebner
- Department of Internal Medicine, Division of Cardiology, Pneumology and Angiology, Heinrich-Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Yu HW, Liu QF, Liu GN. Positive regulation of the Egr-1/osteopontin positive feedback loop in rat vascular smooth muscle cells by TGF-beta, ERK, JNK, and p38 MAPK signaling. Biochem Biophys Res Commun 2010; 396:451-6. [PMID: 20417179 DOI: 10.1016/j.bbrc.2010.04.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/20/2010] [Indexed: 11/29/2022]
Abstract
Previous studies identified a positive feedback loop in rat vascular smooth muscle cells (VSMCs) in which early growth response factor-1 (Egr-1) binds to the osteopontin (OPN) promoter and upregulates OPN expression, and OPN upregulates Egr-1 expression via the extracellular signal-regulated protein kinase (ERK) signaling pathway. The current study examined whether transforming growth factor-beta (TGF-beta) activity contributes to Egr-1 binding to the OPN promoter, and whether other signaling pathways act downstream of OPN to regulate Egr-1 expression. ChIP assays using an anti-Egr-1 antibody showed that amplification of the OPN promoter sequence decreased in TGF-beta DNA enzyme-transfected VSMCs relative to control VSMCs. Treatment of VSMCs with PD98059 (ERK inhibitor), SP600125 (JNK inhibitor), or SB203580 (p38 MAPK inhibitor) significantly inhibited OPN-induced Egr-1 expression, and PD98059 treatment was associated with the most significant decrease in Egr-1 expression. OPN-stimulated VSMC cell migration was inhibited by SP600125 or SB203580, but not by PD98059. Furthermore, MTT assays showed that OPN-mediated cell proliferation was inhibited by PD98059, but not by SP600125 or SB203580. Taken together, the results of the current study show that Egr-1 binding to the OPN promoter is positively regulated by TGF-beta, and that the p38 MAPK, JNK, and ERK pathways are involved in OPN-mediated Egr-1 upregulation.
Collapse
Affiliation(s)
- Hong-Wei Yu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, 155th North of Nanjing Street, Heping Block, Shenyang, 110001 Liaoning Province, China
| | | | | |
Collapse
|
16
|
Herbst SM, Klegerman ME, Kim H, Qi J, Shelat H, Wassler M, Moody MR, Yang CM, Ge X, Zou Y, Kopechek JA, Clubb FJ, Kraemer DC, Huang S, Holland CK, McPherson DD, Geng YJ. Delivery of stem cells to porcine arterial wall with echogenic liposomes conjugated to antibodies against CD34 and intercellular adhesion molecule-1. Mol Pharm 2010; 7:3-11. [PMID: 19719324 DOI: 10.1021/mp900116r] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In atherosclerosis, the loss of vascular stem cells via apoptosis impairs the capacity of the vascular wall to repair or regenerate the tissue damaged by atherogenic factors. Recruitment of exogenous stem cells to the plaque tissue may repopulate vascular cells and help repair the arterial tissue. Ultrasound-enhanced liposomal targeting may provide a feasible method for stem cell delivery into atheroma. Bifunctional echogenic immunoliposomes (BF-ELIP) were generated by covalently coupling two antibodies to liposomes; the first one specific for CD34 antigens on the surface of stem cells and the second directed against the intercellular adhesion molecule-1 (ICAM-1) antigens on the inflammatory endothelium covering atheroma. CD34+ stem cells from adult bone marrow were incubated on the ICAM-1-expressing endothelium of the aorta of swine fed high cholesterol diets, which was preloaded with BF-ELIP. Significantly increased stem cell adherence and penetration were detected in particular in the aortic segments treated with 1 MHz low-amplitude continuous wave ultrasound. Fluorescence and scanning electron microscopy confirmed the presence of BF-ELIP-bound CD34+ cells in the intimal compartment of the atheromatous arterial wall. Ultrasound treatment increased the number of endothelial cell progenitors migrating into the intima. Thus, under ultrasound enhancement, BF-ELIP bound CD34+ stem cells selectively bind to the ICAM-1 expressing endothelium of atherosclerotic lesions.
Collapse
Affiliation(s)
- Stephanie M Herbst
- Division of Cardiology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tannock LR, King VL. Proteoglycan mediated lipoprotein retention: a mechanism of diabetic atherosclerosis. Rev Endocr Metab Disord 2008; 9:289-300. [PMID: 18584330 DOI: 10.1007/s11154-008-9078-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 05/29/2008] [Indexed: 12/25/2022]
Abstract
The response to retention hypothesis outlines the initial stages of atherosclerotic lesion formation. The central theme of the hypothesis is that proteoglycan mediated lipoprotein retention plays a critical step in the initiation of atherosclerosis development. Recent research using human arterial specimens, transgenic mouse models and molecular biology techniques have added to our understanding of atherosclerosis development, and provided experimental data in support of the response to retention hypothesis. In this review we summarize the recent data, in particular that which addresses mechanisms by which diabetes can accelerate atherosclerosis formation, with a focus on proteoglycan-mediated LDL retention.
Collapse
Affiliation(s)
- Lisa R Tannock
- Department of Veterans Affairs, Lexington, KY, 40511, USA.
| | | |
Collapse
|