1
|
Vu QV, Jiang Y, Li MS, O'Brien EP. The driving force for co-translational protein folding is weaker in the ribosome vestibule due to greater water ordering. Chem Sci 2021; 12:11851-11857. [PMID: 34659725 PMCID: PMC8442680 DOI: 10.1039/d1sc01008e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/02/2021] [Indexed: 01/12/2023] Open
Abstract
Interactions between the ribosome and nascent chain can destabilize folded domains in the ribosome exit tunnel's vestibule, the last 3 nm of the exit tunnel where tertiary folding can occur. Here, we test if a contribution to this destabilization is a weakening of hydrophobic association, the driving force for protein folding. Using all-atom molecular dynamics simulations, we calculate the potential-of-mean force between two methane molecules along the center line of the ribosome exit tunnel and in bulk solution. Associated methanes, we find, are half as stable in the ribosome's vestibule as compared to bulk solution, demonstrating that the hydrophobic effect is weakened by the presence of the ribosome. This decreased stability arises from a decrease in the amount of water entropy gained upon the association of the methanes. And this decreased entropy gain originates from water molecules being more ordered in the vestibule as compared to bulk solution. Therefore, the hydrophobic effect is weaker in the vestibule because waters released from the first solvation shell of methanes upon association do not gain as much entropy in the vestibule as they do upon release in bulk solution. These findings mean that nascent proteins pass through a ribosome vestibule environment that can destabilize folded structures, which has the potential to influence co-translational protein folding pathways, energetics, and kinetics.
Collapse
Affiliation(s)
- Quyen V. Vu
- Institute of Physics, Polish Academy of SciencesAl. Lotnikow 32/4602-668 WarsawPoland
| | - Yang Jiang
- Department of Chemistry, Penn State UniversityUniversity ParkPennsylvaniaUSA
| | - Mai Suan Li
- Institute of Physics, Polish Academy of SciencesAl. Lotnikow 32/4602-668 WarsawPoland,Institute for Computational Sciences and TechnologyQuang Trung Software City, Tan Chanh Hiep Ward, District 12Ho Chi Minh CityVietnam
| | - Edward P. O'Brien
- Department of Chemistry, Penn State UniversityUniversity ParkPennsylvaniaUSA,Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Penn State UniversityUniversity ParkPennsylvaniaUSA,Institute for Computational and Data Sciences, Penn State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
2
|
Abstract
As a mental framework for the transition of self-replicating biological forms, the RNA world concept stipulates a dual function of RNAs as genetic substance and catalyst. The chaperoning function is found intrinsic to ribozymes involved in protein synthesis and tRNA maturation, enriching the primordial RNA world with proteins of biological relevance. The ribozyme-resident protein folding activity, even before the advent of protein-based molecular chaperone, must have expedited the transition of the RNA world into the present protein theatre.
Collapse
Affiliation(s)
- Ahyun Son
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver , Denver, CO, USA
| | - Scott Horowitz
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver , Denver, CO, USA
| | - Baik L Seong
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University , Seoul, Korea.,Vaccine Innovation Technology Alliance (VITAL)-Korea, Yonsei University , Seoul, Korea
| |
Collapse
|
3
|
Ferdosh S, Banerjee S, Pathak BK, Sengupta J, Barat C. Hibernating ribosomes exhibit chaperoning activity but can resist unfolded protein-mediated subunit dissociation. FEBS J 2020; 288:1305-1324. [PMID: 32649051 DOI: 10.1111/febs.15479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 02/03/2023]
Abstract
Ribosome hibernation is a prominent cellular strategy to modulate protein synthesis during starvation and the stationary phase of bacterial cell growth. Translational suppression involves the formation of either factor-bound inactive 70S monomers or dimeric 100S hibernating ribosomal complexes, the biological significance of which is poorly understood. Here, we demonstrate that the Escherichia coli 70S ribosome associated with stationary phase factors hibernation promoting factor or protein Y or ribosome-associated inhibitor A and the 100S ribosome isolated from both Gram-negative and Gram-positive bacteria are resistant to unfolded protein-mediated subunit dissociation and subsequent degradation by cellular ribonucleases. Considering that the increase in cellular stress is accompanied by accumulation of unfolded proteins, such resistance of hibernating ribosomes towards dissociation might contribute to their maintenance during the stationary phase. Analysis of existing structures provided clues on the mechanism of inhibition of the unfolded protein-mediated disassembly in case of hibernating factor-bound ribosome. Further, the factor-bound 70S and 100S ribosomes can suppress protein aggregation and assist in protein folding. The chaperoning activity of these ribosomes is the first evidence of a potential biological activity of the hibernating ribosome that might be crucial for cell survival under stress conditions.
Collapse
Affiliation(s)
- Sehnaz Ferdosh
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| | - Senjuti Banerjee
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| | - Bani K Pathak
- Structural Biology and Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific and Industrial Research), Kolkata, India
| | - Jayati Sengupta
- Structural Biology and Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific and Industrial Research), Kolkata, India
| | - Chandana Barat
- Department of Biotechnology, St. Xavier's College, Kolkata, India
| |
Collapse
|
4
|
Rabuck-Gibbons JN, Popova AM, Greene EM, Cervantes CF, Lyumkis D, Williamson JR. SrmB Rescues Trapped Ribosome Assembly Intermediates. J Mol Biol 2019; 432:978-990. [PMID: 31877323 DOI: 10.1016/j.jmb.2019.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023]
Abstract
RNA helicases play various roles in ribosome biogenesis depending on the ribosome assembly pathway and stress state of the cell. However, it is unclear how most RNA helicases interact with ribosome assembly intermediates or participate in other cell processes to regulate ribosome assembly. SrmB is a DEAD-box helicase that acts early in the ribosome assembly process, although very little is known about its mechanism of action. Here, we use a combined quantitative mass spectrometry/cryo-electron microscopy approach to detail the protein inventory, rRNA modification state, and structures of 40S ribosomal intermediates that form upon SrmB deletion. We show that the binding site of SrmB is unperturbed by SrmB deletion, but the peptidyl transferase center, the uL7/12 stalk, and 30S contact sites all show severe assembly defects. Taking into account existing data on SrmB function and the experiments presented here, we propose several mechanisms by which SrmB could guide assembling particles from kinetic traps to competent subunits during the 50S ribosome assembly process.
Collapse
Affiliation(s)
- Jessica N Rabuck-Gibbons
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037, USA; Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Anna M Popova
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Emily M Greene
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Carla F Cervantes
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Dmitry Lyumkis
- Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - James R Williamson
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
5
|
Pathak BK, Banerjee S, Mondal S, Chakraborty B, Sengupta J, Barat C. Unfolded protein exhibits antiassociation activity toward the 50S subunit facilitating 70S ribosome dissociation. FEBS J 2017; 284:3915-3930. [DOI: 10.1111/febs.14282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 09/05/2017] [Accepted: 09/26/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Bani K. Pathak
- Department of Biotechnology St Xavier's College KolkataIndia
- Structural Biology and Bio‐Informatics Division Indian Institute of Chemical Biology (Council of Scientific and Industrial Research) Kolkata India
| | | | - Surojit Mondal
- Department of Biotechnology St Xavier's College KolkataIndia
| | - Biprashekhar Chakraborty
- Structural Biology and Bio‐Informatics Division Indian Institute of Chemical Biology (Council of Scientific and Industrial Research) Kolkata India
| | - Jayati Sengupta
- Structural Biology and Bio‐Informatics Division Indian Institute of Chemical Biology (Council of Scientific and Industrial Research) Kolkata India
| | - Chandana Barat
- Department of Biotechnology St Xavier's College KolkataIndia
| |
Collapse
|
6
|
Das D, Samanta D, Bhattacharya A, Basu A, Das A, Ghosh J, Chakrabarti A, Das Gupta C. A Possible Role of the Full-Length Nascent Protein in Post-Translational Ribosome Recycling. PLoS One 2017; 12:e0170333. [PMID: 28099529 PMCID: PMC5242463 DOI: 10.1371/journal.pone.0170333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/03/2017] [Indexed: 11/30/2022] Open
Abstract
Each cycle of translation initiation in bacterial cell requires free 50S and 30S ribosomal subunits originating from the post-translational dissociation of 70S ribosome from the previous cycle. Literature shows stable dissociation of 70S from model post-termination complexes by the concerted action of Ribosome Recycling Factor (RRF) and Elongation Factor G (EF-G) that interact with the rRNA bridge B2a/B2b joining 50S to 30S. In such experimental models, the role of full-length nascent protein was never considered seriously. We observed relatively slow release of full-length nascent protein from 50Sof post translation ribosome, and in that process, its toe prints on the rRNA in vivo and in in vitro translation with E.coli S30 extract. We reported earlier that a number of chemically unfolded proteins like bovine carbonic anhydrase (BCA), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), lysozyme, ovalbumin etc., when added to free 70Sin lieu of the full length nascent proteins, also interact with identical RNA regions of the 23S rRNA. Interestingly the rRNA nucleotides that slow down release of the C-terminus of full-length unfolded protein were found in close proximity to the B2a/B2b bridge. It indicated a potentially important chemical reaction conserved throughout the evolution. Here we set out to probe that conserved role of unfolded protein conformation in splitting the free or post-termination 70S. How both the RRF-EFG dependent and the plausible nascent protein–EFG dependent ribosome recycling pathways might be relevant in bacteria is discussed here.
Collapse
Affiliation(s)
- Debasis Das
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
| | - Dibyendu Samanta
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
| | - Arpita Bhattacharya
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
| | - Arunima Basu
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
- Department of Microbiology, Raidighi College, Raidighi, 24 Parganas (S), West Bengal, India
| | - Anindita Das
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
| | - Jaydip Ghosh
- Department of Microbiology, St. Xavier’s College, Kolkata, India
| | - Abhijit Chakrabarti
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India
| | - Chanchal Das Gupta
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
- Department of Life Sciences and Biotechnology, Jadavpur University, Kolkata, India
- * E-mail:
| |
Collapse
|
7
|
Pathak B, Mondal S, Barat C. Inhibition of Escherichia coli
ribosome subunit dissociation by chloramphenicol and Blasticidin: a new mode of action of the antibiotics. Lett Appl Microbiol 2016; 64:79-85. [DOI: 10.1111/lam.12686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 11/27/2022]
Affiliation(s)
- B.K. Pathak
- Post Graduate Department of Biotechnology; St. Xavier's College; Kolkata India
| | - S. Mondal
- Post Graduate Department of Biotechnology; St. Xavier's College; Kolkata India
| | - C. Barat
- Post Graduate Department of Biotechnology; St. Xavier's College; Kolkata India
| |
Collapse
|
8
|
Chakraborty B, Bhakta S, Sengupta J. Mechanistic Insight into the Reactivation of BCAII Enzyme from Denatured and Molten Globule States by Eukaryotic Ribosomes and Domain V rRNAs. PLoS One 2016; 11:e0153928. [PMID: 27099964 PMCID: PMC4839638 DOI: 10.1371/journal.pone.0153928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/06/2016] [Indexed: 12/29/2022] Open
Abstract
In all life forms, decoding of messenger-RNA into polypeptide chain is accomplished by the ribosome. Several protein chaperones are known to bind at the exit of ribosomal tunnel to ensure proper folding of the nascent chain by inhibiting their premature folding in the densely crowded environment of the cell. However, accumulating evidence suggests that ribosome may play a chaperone role in protein folding events in vitro. Ribosome-mediated folding of denatured proteins by prokaryotic ribosomes has been studied extensively. The RNA-assisted chaperone activity of the prokaryotic ribosome has been attributed to the domain V, a span of 23S rRNA at the intersubunit side of the large subunit encompassing the Peptidyl Transferase Centre. Evidently, this functional property of ribosome is unrelated to the nascent chain protein folding at the exit of the ribosomal tunnel. Here, we seek to scrutinize whether this unique function is conserved in a primitive kinetoplastid group of eukaryotic species Leishmania donovani where the ribosome structure possesses distinct additional features and appears markedly different compared to other higher eukaryotic ribosomes. Bovine Carbonic Anhydrase II (BCAII) enzyme was considered as the model protein. Our results manifest that domain V of the large subunit rRNA of Leishmania ribosomes preserves chaperone activity suggesting that ribosome-mediated protein folding is, indeed, a conserved phenomenon. Further, we aimed to investigate the mechanism underpinning the ribosome-assisted protein reactivation process. Interestingly, the surface plasmon resonance binding analyses exhibit that rRNA guides productive folding by directly interacting with molten globule-like states of the protein. In contrast, native protein shows no notable affinity to the rRNA. Thus, our study not only confirms conserved, RNA-mediated chaperoning role of ribosome but also provides crucial insight into the mechanism of the process.
Collapse
Affiliation(s)
- Biprashekhar Chakraborty
- Structural Biology & Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific & Industrial Research), 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Sayan Bhakta
- Structural Biology & Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific & Industrial Research), 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Jayati Sengupta
- Structural Biology & Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific & Industrial Research), 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
- * E-mail:
| |
Collapse
|
9
|
Chakraborty B, Bhakta S, Sengupta J. Disassembly of yeast 80S ribosomes into subunits is a concerted action of ribosome-assisted folding of denatured protein. Biochem Biophys Res Commun 2016; 469:923-9. [DOI: 10.1016/j.bbrc.2015.12.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 11/27/2022]
|
10
|
Banerjee D, Sanyal S. Protein folding activity of the ribosome (PFAR) -- a target for antiprion compounds. Viruses 2014; 6:3907-24. [PMID: 25341659 PMCID: PMC4213570 DOI: 10.3390/v6103907] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022] Open
Abstract
Prion diseases are fatal neurodegenerative diseases affecting mammals. Prions are misfolded amyloid aggregates of the prion protein (PrP), which form when the alpha helical, soluble form of PrP converts to an aggregation-prone, beta sheet form. Thus, prions originate as protein folding problems. The discovery of yeast prion(s) and the development of a red-/white-colony based assay facilitated safe and high-throughput screening of antiprion compounds. With this assay three antiprion compounds; 6-aminophenanthridine (6AP), guanabenz acetate (GA), and imiquimod (IQ) have been identified. Biochemical and genetic studies reveal that these compounds target ribosomal RNA (rRNA) and inhibit specifically the protein folding activity of the ribosome (PFAR). The domain V of the 23S/25S/28S rRNA of the large ribosomal subunit constitutes the active site for PFAR. 6AP and GA inhibit PFAR by competition with the protein substrates for the common binding sites on the domain V rRNA. PFAR inhibition by these antiprion compounds opens up new possibilities for understanding prion formation, propagation and the role of the ribosome therein. In this review, we summarize and analyze the correlation between PFAR and prion processes using the antiprion compounds as tools.
Collapse
Affiliation(s)
- Debapriya Banerjee
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, Uppsala SE-75124, Sweden.
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, Uppsala SE-75124, Sweden.
| |
Collapse
|
11
|
Mondal S, Pathak BK, Ray S, Barat C. Impact of P-Site tRNA and antibiotics on ribosome mediated protein folding: studies using the Escherichia coli ribosome. PLoS One 2014; 9:e101293. [PMID: 25000563 PMCID: PMC4085065 DOI: 10.1371/journal.pone.0101293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/04/2014] [Indexed: 12/22/2022] Open
Abstract
Background The ribosome, which acts as a platform for mRNA encoded polypeptide synthesis, is also capable of assisting in folding of polypeptide chains. The peptidyl transferase center (PTC) that catalyzes peptide bond formation resides in the domain V of the 23S rRNA of the bacterial ribosome. Proper positioning of the 3′ –CCA ends of the A- and P-site tRNAs via specific interactions with the nucleotides of the PTC are crucial for peptidyl transferase activity. This RNA domain is also the center for ribosomal chaperoning activity. The unfolded polypeptide chains interact with the specific nucleotides of the PTC and are released in a folding competent form. In vitro transcribed RNA corresponding to this domain (bDV RNA) also displays chaperoning activity. Results The present study explores the effects of tRNAs, antibiotics that are A- and P-site PTC substrate analogs (puromycin and blasticidin) and macrolide antibiotics (erythromycin and josamycin) on the chaperoning ability of the E. coli ribosome and bDV RNA. Our studies using mRNA programmed ribosomes show that a tRNA positioned at the P-site effectively inhibits the ribosome's chaperoning function. We also show that the antibiotic blasticidin (that mimics the interaction between 3′–CCA end of P/P-site tRNA with the PTC) is more effective in inhibiting ribosome and bDV RNA chaperoning ability than either puromycin or the macrolide antibiotics. Mutational studies of the bDV RNA could identify the nucleotides U2585 and G2252 (both of which interact with P-site tRNA) to be important for its chaperoning ability. Conclusion Both protein synthesis and their proper folding are crucial for maintenance of a functional cellular proteome. The PTC of the ribosome is attributed with both these abilities. The silencing of the chaperoning ability of the ribosome in the presence of P-site bound tRNA might be a way to segregate these two important functions.
Collapse
Affiliation(s)
- Surojit Mondal
- Department of Biotechnology, St. Xavier's College, Kolkata, West Bengal, India
| | - Bani Kumar Pathak
- Department of Biotechnology, St. Xavier's College, Kolkata, West Bengal, India
| | - Sutapa Ray
- Dr. B.C Guha Centre for Genetic Engineering and Department of Biotechnology, Calcutta University, Kolkata, West Bengal, India
| | - Chandana Barat
- Department of Biotechnology, St. Xavier's College, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
12
|
Pang Y, Kurella S, Voisset C, Samanta D, Banerjee D, Schabe A, Das Gupta C, Galons H, Blondel M, Sanyal S. The antiprion compound 6-aminophenanthridine inhibits the protein folding activity of the ribosome by direct competition. J Biol Chem 2013; 288:19081-9. [PMID: 23673663 DOI: 10.1074/jbc.m113.466748] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Domain V of the 23S/25S/28S rRNA of the large ribosomal subunit constitutes the active center for the protein folding activity of the ribosome (PFAR). Using in vitro transcribed domain V rRNAs from Escherichia coli and Saccharomyces cerevisiae as the folding modulators and human carbonic anhydrase as a model protein, we demonstrate that PFAR is conserved from prokaryotes to eukaryotes. It was shown previously that 6-aminophenanthridine (6AP), an antiprion compound, inhibits PFAR. Here, using UV cross-linking followed by primer extension, we show that the protein substrates and 6AP interact with a common set of nucleotides on domain V of 23S rRNA. Mutations at the interaction sites decreased PFAR and resulted in loss or change of the binding pattern for both the protein substrates and 6AP. Moreover, kinetic analysis of human carbonic anhydrase refolding showed that 6AP decreased the yield of the refolded protein but did not affect the rate of refolding. Thus, we conclude that 6AP competitively occludes the protein substrates from binding to rRNA and thereby inhibits PFAR. Finally, we propose a scheme clarifying the mechanism by which 6AP inhibits PFAR.
Collapse
Affiliation(s)
- Yanhong Pang
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Redeker V, Hughes C, Savistchenko J, Vissers JPC, Melki R. Qualitative and quantitative multiplexed proteomic analysis of complex yeast protein fractions that modulate the assembly of the yeast prion Sup35p. PLoS One 2011; 6:e23659. [PMID: 21931608 PMCID: PMC3172207 DOI: 10.1371/journal.pone.0023659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/22/2011] [Indexed: 01/25/2023] Open
Abstract
Background The aggregation of the baker's yeast prion Sup35p is at the origin of the transmissible [PSI+] trait. We and others have shown that molecular chaperones modulate Sup35p aggregation. However, other protein classes might be involved in [PSI+] formation. Results We designed a functional proteomic study that combines two techniques to identify modulators of Sup35p aggregation and describe the changes associated to [PSI+] formation. The first allows measuring the effect of fractionated Saccharomyces cerevisiae cytosolic extracts from [PSI+] and [psi−] yeast cells on Sup35p assembly. The second is a multiplex qualitative and quantitative comparison of protein composition of active and inactive fractions using a gel-free and label-free LC-MS approach. We identify changes in proteins involved in translation, folding, degradation, oxido-reduction and metabolic processes. Conclusion Our functional proteomic study provides the first inventory list of over 300 proteins that directly or indirectly affect Sup35p aggregation and [PSI+] formation. Our results highlight the complexity of the cellular changes accompanying [PSI+] formation and pave the way for in vitro studies aimed to document the effect of individual and/or combinations of proteins identified here, susceptible of affecting Sup35p assembly.
Collapse
Affiliation(s)
- Virginie Redeker
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
- * E-mail: (VR); (RM)
| | - Chris Hughes
- Waters Corporation, Atlas Park, Manchester, United Kingdom
| | - Jimmy Savistchenko
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | - Ronald Melki
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
- * E-mail: (VR); (RM)
| |
Collapse
|
14
|
Voisset C, Saupe SJ, Blondel M. The various facets of the protein-folding activity of the ribosome. Biotechnol J 2011; 6:668-73. [DOI: 10.1002/biot.201100021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/16/2011] [Accepted: 04/04/2011] [Indexed: 11/11/2022]
|
15
|
Reis SD, Pang Y, Vishnu N, Voisset C, Galons H, Blondel M, Sanyal S. Mode of action of the antiprion drugs 6AP and GA on ribosome assisted protein folding. Biochimie 2011; 93:1047-54. [PMID: 21396977 DOI: 10.1016/j.biochi.2011.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 03/01/2011] [Indexed: 01/25/2023]
Abstract
The ribosome, the protein synthesis machinery of the cell, has also been implicated in protein folding. This activity resides within the domain V of the main RNA component of the large subunit of the ribosome. It has been shown that two antiprion drugs 6-aminophenanthridine (6AP) and Guanabenz (GA) bind to the ribosomal RNA and inhibit specifically the protein folding activity of the ribosome. Here, we have characterized with biochemical experiments, the mode of inhibition of these two drugs using ribosomes or ribosomal components active in protein folding (referred to as 'ribosomal folding modulators' or RFMs) from both bacteria Escherichia coli and yeast Saccharomyces cerevisiae, and human carbonic anhydrase (HCA) as a sample protein. Our results indicate that 6AP and GA inhibit the protein folding activity of the ribosome by competition with the unfolded protein for binding to the ribosome. As a result, the yield of the refolded protein decreases, but the rate of its refolding remains unaffected. Further, 6AP- and GA mediated inhibition of RFM mediated refolding can be reversed by the addition of RFMs in excess. We also demonstrate with delayed addition of the ribosome and the antiprion drugs that there is a short time-span in the range of seconds within which the ribosome interacts with the unfolded protein. Thus we conclude that the protein folding activity of the ribosome is conserved from bacteria to eukaryotes and most likely the substrate for RFMs is an early refolding state of the target protein.
Collapse
Affiliation(s)
- Suzana Dos Reis
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
16
|
Das D, Samanta D, Das A, Ghosh J, Bhattacharya A, Basu A, Chakrabarti A, Das Gupta C. Ribosome: The Structure-Function Relation and a New Paradigm to the Protein Folding Problem. Isr J Chem 2010. [DOI: 10.1002/ijch.201000004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Samanta D, Das A, Bhattacharya A, Basu A, Das D, DasGupta C. Mechanism of ribosome assisted protein folding: a new insight into rRNA functions. Biochem Biophys Res Commun 2009; 384:137-40. [PMID: 19401192 DOI: 10.1016/j.bbrc.2009.04.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 04/19/2009] [Indexed: 11/26/2022]
Abstract
The peptidyl transferase center (PTC), present in the domain V of 23S rRNA of bacteria can act as a general protein folding modulator. Any general function of a nucleic acid polymer (DNA or RNA) is always related to specific sequence/sequences. The ribosome mediated protein folding also involves a specific interaction between the nucleotides of peptidyl transferase center and the amino acids of an unfolded protein. In this article the mechanism of rRNA assisted protein folding and its significance in the light of high resolution crystal structure of ribosome are discussed.
Collapse
Affiliation(s)
- Dibyendu Samanta
- Department of Biophysics, Molecular Biology and Genetics, University College of Science, Kolkata 700009, India.
| | | | | | | | | | | |
Collapse
|
18
|
Voisset C, Thuret JY, Tribouillard-Tanvier D, Saupe SJ, Blondel M. Tools for the study of ribosome-borne protein folding activity. Biotechnol J 2008; 3:1033-40. [PMID: 18683165 DOI: 10.1002/biot.200800134] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In addition to its role in protein synthesis, which involves a peptidyl transferase activity, the ribosome has also been described to be able to assist protein folding, at least in vitro, as presented in a Research Highlight (Das, et al., Biotechnol. J. 2008). This in vitro-described ribosome-borne protein folding activity (RPFA) is yet poorly characterized in vivo, in part because of the lack of tools to study its biological significance. There is substantial evidence documenting RPFA in vitro, and an assay intended to detect this activity in vivo has been set up in bacteria, but this assay is indirect. In this review, we describe the different tools and tests currently available to study RPFA. We put a special emphasis on the various available inhibitors of this activity and in particular, we discuss the use of 6-aminophenanthridine (6AP) and guanabenz (GA), two antiprion drugs that were very recently shown to specifically inhibit RPFA in vitro without any significant effect on the activity of the ribosome in protein synthesis. Therefore, these drugs should allow determining the potential biological role of RPFA. Importantly, the biological activity of 6AP and GA suggest a possible involvement of RPFA in human proteinopathies.
Collapse
|
19
|
Das D, Das A, Samanta D, Ghosh J, Dasgupta S, Bhattacharya A, Basu A, Sanyal S, Das Gupta C. Role of the ribosome in protein folding. Biotechnol J 2008; 3:999-1009. [PMID: 18702035 DOI: 10.1002/biot.200800098] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In all organisms, the ribosome synthesizes and folds full length polypeptide chains into active three-dimensional conformations. The nascent protein goes through two major interactions, first with the ribosome which synthesizes the polypeptide chain and holds it for a considerable length of time, and then with the chaperones. Some of the chaperones are found in solution as well as associated to the ribosome. A number of in vitro and in vivo experiments revealed that the nascent protein folds through specific interactions of some amino acids with the nucleotides in the peptidyl transferase center (PTC) in the large ribosomal subunit. The mechanism of this folding differs from self-folding. In this article, we highlight the folding of nascent proteins on the ribosome and the influence of chaperones etc. on protein folding.
Collapse
Affiliation(s)
- Debasis Das
- Department of Biophysics, Molecular Biology and Genetics, University College of Science, Kolkata, India
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tribouillard-Tanvier D, Dos Reis S, Gug F, Voisset C, Béringue V, Sabate R, Kikovska E, Talarek N, Bach S, Huang C, Desban N, Saupe SJ, Supattapone S, Thuret JY, Chédin S, Vilette D, Galons H, Sanyal S, Blondel M. Protein folding activity of ribosomal RNA is a selective target of two unrelated antiprion drugs. PLoS One 2008; 3:e2174. [PMID: 18478094 PMCID: PMC2374897 DOI: 10.1371/journal.pone.0002174] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 04/04/2008] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND 6-Aminophenanthridine (6AP) and Guanabenz (GA, a drug currently in use for the treatment of hypertension) were isolated as antiprion drugs using a yeast-based assay. These structurally unrelated molecules are also active against mammalian prion in several cell-based assays and in vivo in a mouse model for prion-based diseases. METHODOLOGY/PRINCIPAL FINDINGS Here we report the identification of cellular targets of these drugs. Using affinity chromatography matrices for both drugs, we demonstrate an RNA-dependent interaction of 6AP and GA with the ribosome. These specific interactions have no effect on the peptidyl transferase activity of the ribosome or on global translation. In contrast, 6AP and GA specifically inhibit the ribosomal RNA-mediated protein folding activity of the ribosome. CONCLUSION/SIGNIFICANCE 6AP and GA are therefore the first compounds to selectively inhibit the protein folding activity of the ribosome. They thus constitute precious tools to study the yet largely unexplored biological role of this protein folding activity.
Collapse
Affiliation(s)
- Déborah Tribouillard-Tanvier
- INSERM U613, Brest, France
- Univ Brest, Faculté de Médecine et des Sciences de la Santé, UMR-S613, Brest, France
- Etablissement Français du Sang (EFS) Bretagne, Brest, France
- CHU Brest, Hop Morvan, Laboratoire de Génétique Moléculaire, Brest, France
- CNRS UPS2682, Station Biologique, Protein Phosphorylation & Disease Laboratory, Roscoff, France
| | - Suzana Dos Reis
- Institute of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Fabienne Gug
- INSERM U648, Laboratoire de Chimie Organique 2, Université Paris Descartes, Paris, France
| | - Cécile Voisset
- INSERM U613, Brest, France
- Univ Brest, Faculté de Médecine et des Sciences de la Santé, UMR-S613, Brest, France
- Etablissement Français du Sang (EFS) Bretagne, Brest, France
- CHU Brest, Hop Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Vincent Béringue
- Institut National de la Recherche Agronomique (INRA), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Raimon Sabate
- Laboratoire de Génétique Moléculaire des Champignons, IBGC UMR CNRS 5095, Université de Bordeaux 2, Bordeaux, France
| | - Ema Kikovska
- Institute of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Nicolas Talarek
- Department of Medicine/Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Stéphane Bach
- CNRS UPS2682, Station Biologique, Protein Phosphorylation & Disease Laboratory, Roscoff, France
| | - Chenhui Huang
- Institute of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Nathalie Desban
- CNRS UPS2682, Station Biologique, Protein Phosphorylation & Disease Laboratory, Roscoff, France
| | - Sven J. Saupe
- Laboratoire de Génétique Moléculaire des Champignons, IBGC UMR CNRS 5095, Université de Bordeaux 2, Bordeaux, France
| | - Surachai Supattapone
- Department of Medicine, Dartmouth Medical School, Hanover, New Hampshire, United States of America
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | | | | | - Didier Vilette
- Institut National de la Recherche Agronomique (INRA), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Hervé Galons
- INSERM U648, Laboratoire de Chimie Organique 2, Université Paris Descartes, Paris, France
| | - Suparna Sanyal
- Institute of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Marc Blondel
- INSERM U613, Brest, France
- Univ Brest, Faculté de Médecine et des Sciences de la Santé, UMR-S613, Brest, France
- Etablissement Français du Sang (EFS) Bretagne, Brest, France
- CHU Brest, Hop Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| |
Collapse
|
21
|
Protein folding by domain V of Escherichia coli 23S rRNA: specificity of RNA-protein interactions. J Bacteriol 2008; 190:3344-52. [PMID: 18310328 DOI: 10.1128/jb.01800-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The peptidyl transferase center, present in domain V of 23S rRNA of eubacteria and large rRNA of plants and animals, can act as a general protein folding modulator. Here we show that a few specific nucleotides in Escherichia coli domain V RNA bind to unfolded proteins and, as shown previously, bring the trapped proteins to a folding-competent state before releasing them. These nucleotides are the same for the proteins studied so far: bovine carbonic anhydrase, lactate dehydrogenase, malate dehydrogenase, and chicken egg white lysozyme. The amino acids that interact with these nucleotides are also found to be specific in the two cases tested: bovine carbonic anhydrase and lysozyme. They are either neutral or positively charged and are present in random coils on the surface of the crystal structure of both the proteins. In fact, two of these amino acid-nucleotide pairs are identical in the two cases. How these features might help the process of protein folding is discussed.
Collapse
|