1
|
do Amaral MJ, Freire MHO, Almeida MS, Pinheiro AS, Cordeiro Y. Phase separation of the mammalian prion protein: physiological and pathological perspectives. J Neurochem 2022. [PMID: 35149997 DOI: 10.1111/jnc.15586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
Abstract
Abnormal phase transitions have been implicated in the occurrence of proteinopathies. Disordered proteins with nucleic acid binding ability drive the formation of reversible micron-sized condensates capable of controlling nucleic acid processing/transport. This mechanism, achieved via liquid-liquid phase separation (LLPS), underlies the formation of long-studied membraneless organelles (e.g., nucleolus) and various transient condensates formed by driver proteins. The prion protein (PrP) is not a classical nucleic acid-binding protein. However, it binds nucleic acids with high affinity, undergoes nucleocytoplasmic shuttling, contains a long intrinsically disordered region rich in glycines and evenly spaced aromatic residues, among other biochemical/biophysical properties of bona fide drivers of phase transitions. Because of this, our group and others have characterized LLPS of recombinant PrP. In vitro phase separation of PrP is modulated by nucleic acid aptamers, and, depending on the aptamer conformation, the liquid droplets evolve to solid-like species. Herein we discuss recent studies and previous evidence supporting PrP phase transitions. We focus on the central role of LLPS related to PrP physiology and pathology, with a special emphasis on the interaction of PrP with different ligands, such as proteins and nucleic acids, which can play a role in prion disease pathogenesis. Finally, we comment on therapeutic strategies directed at the nonfunctional phase separation that could potentially tackle prion diseases or other protein misfolding disorders.
Collapse
Affiliation(s)
- Mariana J do Amaral
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Rio de Janeiro, RJ, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
3
|
Intrinsic disorder and phase transitions: Pieces in the puzzling role of the prion protein in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:1-43. [PMID: 34656326 DOI: 10.1016/bs.pmbts.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
After four decades of prion protein research, the pressing questions in the literature remain similar to the common existential dilemmas. Who am I? Some structural characteristics of the cellular prion protein (PrPC) and scrapie PrP (PrPSc) remain unknown: there are no high-resolution atomic structures for either full-length endogenous human PrPC or isolated infectious PrPSc particles. Why am I here? It is not known why PrPC and PrPSc are found in specific cellular compartments such as the nucleus; while the physiological functions of PrPC are still being uncovered, the misfolding site remains obscure. Where am I going? The subcellular distribution of PrPC and PrPSc is wide (reported in 10 different locations in the cell). This complexity is further exacerbated by the eight different PrP fragments yielded from conserved proteolytic cleavages and by reversible post-translational modifications, such as glycosylation, phosphorylation, and ubiquitination. Moreover, about 55 pathological mutations and 16 polymorphisms on the PrP gene (PRNP) have been described. Prion diseases also share unique, challenging features: strain phenomenon (associated with the heterogeneity of PrPSc conformations) and the possible transmissibility between species, factors which contribute to PrP undruggability. However, two recent concepts in biochemistry-intrinsically disordered proteins and phase transitions-may shed light on the molecular basis of PrP's role in physiology and disease.
Collapse
|
4
|
Rousset M, Leturque A, Thenet S. The nucleo-junctional interplay of the cellular prion protein: A new partner in cancer-related signaling pathways? Prion 2017; 10:143-52. [PMID: 27216988 DOI: 10.1080/19336896.2016.1163457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cellular prion protein PrP(c) plays important roles in proliferation, cell death and survival, differentiation and adhesion. The participation of PrP(c) in tumor growth and metastasis was pointed out, but the underlying mechanisms were not deciphered completely. In the constantly renewing intestinal epithelium, our group demonstrated a dual localization of PrP(c), which is targeted to cell-cell junctions in interaction with Src kinase and desmosomal proteins in differentiated enterocytes, but is predominantly nuclear in dividing cells. While the role of PrP(c) in the dynamics of intercellular junctions was confirmed in other biological systems, we unraveled its function in the nucleus only recently. We identified several nuclear PrP(c) partners, which comprise γ-catenin, one of its desmosomal partners, β-catenin and TCF7L2, the main effectors of the canonical Wnt pathway, and YAP, one effector of the Hippo pathway. PrP(c) up-regulates the activity of the β-catenin/TCF7L2 complex and its invalidation impairs the proliferation of intestinal progenitors. We discuss how PrP(c) could participate to oncogenic processes through its interaction with Wnt and Hippo pathway effectors, which are controlled by cell-cell junctions and Src family kinases and dysregulated during tumorigenesis. This highlights new potential mechanisms that connect PrP(c) expression and subcellular redistribution to cancer.
Collapse
Affiliation(s)
- Monique Rousset
- a Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers , Paris , France ;,b INSERM, UMR_S 1138, Centre de Recherche des Cordeliers , Paris , France ;,c Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers , Paris , France
| | - Armelle Leturque
- a Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers , Paris , France ;,b INSERM, UMR_S 1138, Centre de Recherche des Cordeliers , Paris , France ;,c Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers , Paris , France
| | - Sophie Thenet
- a Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers , Paris , France ;,b INSERM, UMR_S 1138, Centre de Recherche des Cordeliers , Paris , France ;,c Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers , Paris , France ;,d EPHE, PSL Research University, Laboratoire de Pharmacologie Cellulaire et Moléculaire , Paris , France
| |
Collapse
|
5
|
PrP Knockout Cells Expressing Transmembrane PrP Resist Prion Infection. J Virol 2017; 91:JVI.01686-16. [PMID: 27847358 DOI: 10.1128/jvi.01686-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/01/2016] [Indexed: 11/20/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of the prion protein (PrPC) influences PrPC misfolding into the disease-associated isoform, PrPres, as well as prion propagation and infectivity. GPI proteins are found in cholesterol- and sphingolipid-rich membrane regions called rafts. Exchanging the GPI anchor for a nonraft transmembrane sequence redirects PrPC away from rafts. Previous studies showed that nonraft transmembrane PrPC variants resist conversion to PrPres when transfected into scrapie-infected N2a neuroblastoma cells, likely due to segregation of transmembrane PrPC and GPI-anchored PrPres in distinct membrane environments. Thus, it remained unclear whether transmembrane PrPC might convert to PrPres if seeded by an exogenous source of PrPres not associated with host cell rafts and without the potential influence of endogenous expression of GPI-anchored PrPC To further explore these questions, constructs containing either a C-terminal wild-type GPI anchor signal sequence or a nonraft transmembrane sequence containing a flexible linker were expressed in a cell line derived from PrP knockout hippocampal neurons, NpL2. NpL2 cells have physiological similarities to primary neurons, representing a novel and advantageous model for studying transmissible spongiform encephalopathy (TSE) infection. Cells were infected with inocula from multiple prion strains and in different biochemical states (i.e., membrane bound as in brain microsomes from wild-type mice or purified GPI-anchorless amyloid fibrils). Only GPI-anchored PrPC supported persistent PrPres propagation. Our data provide strong evidence that in cell culture GPI anchor-directed membrane association of PrPC is required for persistent PrPres propagation, implicating raft microdomains as a location for conversion. IMPORTANCE Mechanisms of prion propagation, and what makes them transmissible, are poorly understood. Glycosylphosphatidylinositol (GPI) membrane anchoring of the prion protein (PrPC) directs it to specific regions of cell membranes called rafts. In order to test the importance of the raft environment on prion propagation, we developed a novel model for prion infection where cells expressing either GPI-anchored PrPC or transmembrane-anchored PrPC, which partitions it to a different location, were treated with infectious, misfolded forms of the prion protein, PrPres We show that only GPI-anchored PrPC was able to convert to PrPres and able to serially propagate. The results strongly suggest that GPI anchoring and the localization of PrPC to rafts are crucial to the ability of PrPC to propagate as a prion.
Collapse
|
6
|
ONODERA T. Dual role of cellular prion protein in normal host and Alzheimer's disease. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:155-173. [PMID: 28413194 PMCID: PMC5489426 DOI: 10.2183/pjab.93.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/26/2017] [Indexed: 06/07/2023]
Abstract
Using PrPC-knockout cell lines, it has been shown that the inhibition of apoptosis through STI1 is mediated by PrPC-dependent SOD activation. Antioxidant PrPC may contribute to suppression of inflammasome activation. PrPC is functionally involved in copper metabolism, signal transduction, neuroprotection, and cell maturation. Recently several reports have shown that PrPC participates in trans-membrane signaling processes associated with hematopoietic stem cell replication and neuronal differentiation. In another role, PrPC also tends to function as a neurotoxic protein. Aβ oligomer, which is associated with neurodegeneration in Alzheimer's disease (AD), has also been reported to act as a ligand of PrPC. However, the physiological role of PrPC as an Aβ42-binding protein is not clear. Actually, PrPC is critical in Aβ42-mediated autophagy in neurons. PrPC shows a beneficial role in lipid rafts to promote autophagy. Further search for PrPC-interaction molecules using Prnp-/- mice and various types of Prnp-/- cell lines under various conditions may elucidate other important PrPC important functions.
Collapse
Affiliation(s)
- Takashi ONODERA
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Besnier LS, Cardot P, Da Rocha B, Simon A, Loew D, Klein C, Riveau B, Lacasa M, Clair C, Rousset M, Thenet S. The cellular prion protein PrPc is a partner of the Wnt pathway in intestinal epithelial cells. Mol Biol Cell 2015. [PMID: 26224313 PMCID: PMC4569320 DOI: 10.1091/mbc.e14-11-1534] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We reported previously that the cellular prion protein (PrP(c)) is a component of desmosomes and contributes to the intestinal barrier function. We demonstrated also the presence of PrP(c) in the nucleus of proliferating intestinal epithelial cells. Here we sought to decipher the function of this nuclear pool. In human intestinal cancer cells Caco-2/TC7 and SW480 and normal crypt-like HIEC-6 cells, PrP(c) interacts, in cytoplasm and nucleus, with γ-catenin, one of its desmosomal partners, and with β-catenin and TCF7L2, effectors of the canonical Wnt pathway. PrP(c) up-regulates the transcriptional activity of the β-catenin/TCF7L2 complex, whereas γ-catenin down-regulates it. Silencing of PrP(c) results in the modulation of several Wnt target gene expressions in human cells, with different effects depending on their Wnt signaling status, and in mouse intestinal crypt cells in vivo. PrP(c) also interacts with the Hippo pathway effector YAP, suggesting that it may contribute to the regulation of gene transcription beyond the β-catenin/TCF7L2 complex. Finally, we demonstrate that PrP(c) is required for proper formation of intestinal organoids, indicating that it contributes to proliferation and survival of intestinal progenitors. In conclusion, PrP(c) must be considered as a new modulator of the Wnt signaling pathway in proliferating intestinal epithelial cells.
Collapse
Affiliation(s)
- Laura S Besnier
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Philippe Cardot
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Barbara Da Rocha
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Anthony Simon
- Institut Curie, PSL Research University, Centre de Recherche, F-75005 Paris, France Centre National de la Recherche Scientifique/UMR144, F-75005 Paris, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, F-75248 Paris, France
| | - Christophe Klein
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Béatrice Riveau
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Michel Lacasa
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Caroline Clair
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Monique Rousset
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Sophie Thenet
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Pharmacologie Cellulaire et Moléculaire, F-75006 Paris, France
| |
Collapse
|
8
|
Bravard A, Auvré F, Fantini D, Bernardino-Sgherri J, Sissoëff L, Daynac M, Xu Z, Etienne O, Dehen C, Comoy E, Boussin FD, Tell G, Deslys JP, Radicella JP. The prion protein is critical for DNA repair and cell survival after genotoxic stress. Nucleic Acids Res 2014; 43:904-16. [PMID: 25539913 PMCID: PMC4333392 DOI: 10.1093/nar/gku1342] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The prion protein (PrP) is highly conserved and ubiquitously expressed, suggesting that it plays an important physiological function. However, despite decades of investigation, this role remains elusive. Here, by using animal and cellular models, we unveil a key role of PrP in the DNA damage response. Exposure of neurons to a genotoxic stress activates PRNP transcription leading to an increased amount of PrP in the nucleus where it interacts with APE1, the major mammalian endonuclease essential for base excision repair, and stimulates its activity. Preventing the induction of PRNP results in accumulation of abasic sites in DNA and impairs cell survival after genotoxic treatment. Brains from Prnp−/− mice display a reduced APE1 activity and a defect in the repair of induced DNA damage in vivo. Thus, PrP is required to maintain genomic stability in response to genotoxic stresses.
Collapse
Affiliation(s)
- Anne Bravard
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Frédéric Auvré
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Damiano Fantini
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Jacqueline Bernardino-Sgherri
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Ludmilla Sissoëff
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etudes des Prions et des Infections Atypiques, F-92265 Fontenay-aux-roses, France
| | - Mathieu Daynac
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Zhou Xu
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etudes des Prions et des Infections Atypiques, F-92265 Fontenay-aux-roses, France
| | - Olivier Etienne
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Capucine Dehen
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etudes des Prions et des Infections Atypiques, F-92265 Fontenay-aux-roses, France
| | - Emmanuel Comoy
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etudes des Prions et des Infections Atypiques, F-92265 Fontenay-aux-roses, France
| | - François D Boussin
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Gianluca Tell
- Department of Medical and Biological Sciences, University of Udine, I-33100 Udine, Italy
| | - Jean-Philippe Deslys
- CEA, Institut des Maladies Emergentes et des Thérapies Innovantes, Service d'Etudes des Prions et des Infections Atypiques, F-92265 Fontenay-aux-roses, France
| | - J Pablo Radicella
- CEA, Institute of Cellular and Molecular Radiobiology, F-92265 Fontenay-aux-Roses, France INSERM, U967, F-92265 Fontenay-aux-Roses, France Université Paris Diderot, UMR 967, F-92265 Fontenay-aux-Roses, France Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| |
Collapse
|
9
|
Petit CSV, Besnier L, Morel E, Rousset M, Thenet S. Roles of the cellular prion protein in the regulation of cell-cell junctions and barrier function. Tissue Barriers 2014; 1:e24377. [PMID: 24665391 PMCID: PMC3887058 DOI: 10.4161/tisb.24377] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 01/12/2023] Open
Abstract
The cellular prion protein was historically characterized owing to its misfolding in prion disease. Although its physiological role remains incompletely understood, PrP(C) has emerged as an evolutionary conserved, multifaceted protein involved in a wide-range of biological processes. PrP(C) is a GPI-anchored protein targeted to the plasma membrane, in raft microdomains, where its interaction with a repertoire of binding partners, which differ depending on cell models, mediates its functions. Among identified PrP(C) partners are cell adhesion molecules. This review will focus on the multiple implications of PrP(C) in cell adhesion processes, mainly the regulation of cell-cell junctions in epithelial and endothelial cells and the consequences on barrier properties. We will show how recent findings argue for a role of PrP(C) in the recruitment of signaling molecules, which in turn control the targeting or the stability of adhesion complexes at the plasma membrane.
Collapse
Affiliation(s)
- Constance S V Petit
- Centre de Recherche des Cordeliers; Université Pierre et Marie Curie; Paris, France ; INSERM; Paris, France ; Université Paris Descartes; Paris, France
| | - Laura Besnier
- Centre de Recherche des Cordeliers; Université Pierre et Marie Curie; Paris, France ; INSERM; Paris, France ; Université Paris Descartes; Paris, France
| | - Etienne Morel
- Centre de Recherche des Cordeliers; Université Pierre et Marie Curie; Paris, France ; INSERM; Paris, France ; Université Paris Descartes; Paris, France
| | - Monique Rousset
- Centre de Recherche des Cordeliers; Université Pierre et Marie Curie; Paris, France ; INSERM; Paris, France ; Université Paris Descartes; Paris, France
| | - Sophie Thenet
- Centre de Recherche des Cordeliers; Université Pierre et Marie Curie; Paris, France ; INSERM; Paris, France ; Université Paris Descartes; Paris, France ; Ecole Pratique des Hautes Etudes; Laboratoire de Pharmacologie Cellulaire et Moléculaire ; Paris, France
| |
Collapse
|
10
|
Could Intracrine Biology Play a Role in the Pathogenesis of Transmissable Spongiform Encephalopathies Alzheimer’s Disease and Other Neurodegenerative Diseases? Am J Med Sci 2014; 347:312-20. [DOI: 10.1097/maj.0b013e3182a28af3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Millan MJ. An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy. Neuropharmacology 2012; 68:2-82. [PMID: 23246909 DOI: 10.1016/j.neuropharm.2012.11.015] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/11/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022]
Abstract
Neurodevelopmental disorders (NDDs) are characterized by aberrant and delayed early-life development of the brain, leading to deficits in language, cognition, motor behaviour and other functional domains, often accompanied by somatic symptoms. Environmental factors like perinatal infection, malnutrition and trauma can increase the risk of the heterogeneous, multifactorial and polygenic disorders, autism and schizophrenia. Conversely, discrete genetic anomalies are involved in Down, Rett and Fragile X syndromes, tuberous sclerosis and neurofibromatosis, the less familiar Phelan-McDermid, Sotos, Kleefstra, Coffin-Lowry and "ATRX" syndromes, and the disorders of imprinting, Angelman and Prader-Willi syndromes. NDDs have been termed "synaptopathies" in reference to structural and functional disturbance of synaptic plasticity, several involve abnormal Ras-Kinase signalling ("rasopathies"), and many are characterized by disrupted cerebral connectivity and an imbalance between excitatory and inhibitory transmission. However, at a different level of integration, NDDs are accompanied by aberrant "epigenetic" regulation of processes critical for normal and orderly development of the brain. Epigenetics refers to potentially-heritable (by mitosis and/or meiosis) mechanisms controlling gene expression without changes in DNA sequence. In certain NDDs, prototypical epigenetic processes of DNA methylation and covalent histone marking are impacted. Conversely, others involve anomalies in chromatin-modelling, mRNA splicing/editing, mRNA translation, ribosome biogenesis and/or the regulatory actions of small nucleolar RNAs and micro-RNAs. Since epigenetic mechanisms are modifiable, this raises the hope of novel therapy, though questions remain concerning efficacy and safety. The above issues are critically surveyed in this review, which advocates a broad-based epigenetic framework for understanding and ultimately treating a diverse assemblage of NDDs ("epigenopathies") lying at the interface of genetic, developmental and environmental processes. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Mark J Millan
- Unit for Research and Discovery in Neuroscience, IDR Servier, 125 chemin de ronde, 78290 Croissy sur Seine, Paris, France.
| |
Collapse
|
12
|
Xue G, Aida Y, Onodera T, Sakudo A. The 5' flanking region and intron1 of the bovine prion protein gene (PRNP) are responsible for negative feedback regulation of the prion protein. PLoS One 2012; 7:e32870. [PMID: 22412936 PMCID: PMC3296761 DOI: 10.1371/journal.pone.0032870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/01/2012] [Indexed: 11/19/2022] Open
Abstract
Transcription factors regulate gene expression by controlling the transcription rate. Some genes can repress their own expression to prevent over production of the corresponding protein, although the mechanism and significance of this negative feedback regulation remains unclear. In the present study, we describe negative feedback regulation of the bovine prion protein (PrP) gene PRNP in Japanese Black cattle. The PrP-expressing plasmid pEF-boPrP and luciferase-expressing plasmids containing the partial promoter fragment of PRNP incorporating naturally occurring single-nucleotide or insertion/deletion polymorphisms were transfected into N2a cells. Transfection of pEF-boPrP induced PrP overexpression and decreased the promoter activity of PRNP in the wild-type haplotype (23-bp Del, 12-bp Del, and −47C). Reporter gene assays further demonstrated that the 12- and 23-bp Ins/Del polymorphisms, which are thought to be associated with Sp1 (Specific protein 1) and RP58 (Repressor Protein with a predicted molecular mass of 58 kDa), in intron1 and the upstream region, respectively, and an additional polymorphism (−47C→A) in the Sp1-binding site responded differently to PrP overexpression. With the −47C SNP, the presence of the Del in either the 23-bp Ins/Del or the 12-bp Ins/Del allele was essential for the negative feedback caused by PrP overexpression. Furthermore, deletion mutants derived from the wild-type haplotype showed that nucleotides −315 to +2526, which include the 5′-flanking region and exon1, were essential for the response. These results indicate that certain negative feedback response elements are located in these sequences, suggesting that regulation by transcription factors such as Sp1 and RP58 may contribute to the negative feedback mechanism of PRNP.
Collapse
Affiliation(s)
- Guangai Xue
- Department of Molecular Immunology, School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Viral Infectious Diseases Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Yoko Aida
- Viral Infectious Diseases Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Takashi Onodera
- Department of Molecular Immunology, School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akikazu Sakudo
- Laboratory of Biometabolic Chemistry, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
- * E-mail:
| |
Collapse
|
13
|
Cellular prion protein localizes to the nucleus of endocrine and neuronal cells and interacts with structural chromatin components. Eur J Cell Biol 2011; 90:414-9. [DOI: 10.1016/j.ejcb.2010.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/25/2010] [Accepted: 11/25/2010] [Indexed: 11/18/2022] Open
|
14
|
Zhao L, Hou X, Ji R, Han C, Yu X, Hong T. Establishment of bovine prion peptide-based monoclonal antibodies for identifying bovine prion. ACTA ACUST UNITED AC 2009; 52:754-60. [PMID: 19727594 DOI: 10.1007/s11427-009-0100-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 05/04/2009] [Indexed: 10/20/2022]
Abstract
To obtain high titer monoclonal antibodies (McAbs) which can react with mammalian prion protein (PrP), Balb/C mice were immunized with bovine (Bo) PrP peptide (BoPrP 209-228 aa) coupled to keyhole limpet hemocyanin (KLH). The hybridoma cell lines secreting monoclonal antibodies against the peptide were established by cell fusion and cloning. The obtained McAbs were applied to detect recombinant human, bovine and hamster PrP, cellular prion protein (PrP(c)) in normal bovine brain and pathogenic scrapie prion protein (PrP(Sc)) accumulated in the medulla oblongata of bovine spongiform encephalopathy(BSE)specimen with Western blot and immunohistochemical detection, respectively. The current procedure might offer a simple, feasible method to raise high titer antibodies for studying biological features of PrP in mammals, as well as detection of transmissible spongiform encephalopathy (TSE) and diagnosis of BSE, in particular.
Collapse
Affiliation(s)
- Li Zhao
- Department of Laboratory Science of Microbiology, Shandong University, Jinan, 250012, China
| | | | | | | | | | | |
Collapse
|
15
|
Morel E, Fouquet S, Strup-Perrot C, Thievend CP, Petit C, Loew D, Faussat AM, Yvernault L, Pinçon-Raymond M, Chambaz J, Rousset M, Thenet S, Clair C. The cellular prion protein PrP(c) is involved in the proliferation of epithelial cells and in the distribution of junction-associated proteins. PLoS One 2008; 3:e3000. [PMID: 18714380 PMCID: PMC2500194 DOI: 10.1371/journal.pone.0003000] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 07/28/2008] [Indexed: 12/20/2022] Open
Abstract
Background The physiological function of the ubiquitous cellular prion protein, PrPc, is still under debate. It was essentially studied in nervous system, but poorly investigated in epithelial cells. We previously reported that PrPc is targeted to cell–cell junctions of polarized epithelial cells, where it interacts with c-Src. Methodology/Findings We show here that, in cultured human enterocytes and in intestine in vivo, the mature PrPc is differentially targeted either to the nucleus in dividing cells or to cell–cell contacts in polarized/differentiated cells. By proteomic analysis, we demonstrate that the junctional PrPc interacts with cytoskeleton-associated proteins, such as gamma- and beta-actin, alpha-spectrin, annexin A2, and with the desmosome-associated proteins desmoglein, plakoglobin and desmoplakin. In addition, co-immunoprecipitation experiments revealed complexes associating PrPc, desmoglein and c-Src in raft domains. Through siRNA strategy, we show that PrPc is necessary to complete the process of epithelial cell proliferation and for the sub-cellular distribution of proteins involved in cell architecture and junctions. Moreover, analysis of the architecture of the intestinal epithelium of PrPc knock-out mice revealed a net decrease in the size of desmosomal junctions and, without change in the amount of BrdU incorporation, a shortening of the length of intestinal villi. Conclusions/Significance From these results, PrPc could be considered as a new partner involved in the balance between proliferation and polarization/differentiation in epithelial cells.
Collapse
Affiliation(s)
- Etienne Morel
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Stéphane Fouquet
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Carine Strup-Perrot
- Radiosensibilité des tissus sains, UPRES EA 27.10, Institut Gustave Roussy PRI, Villejuif F-94805, France
| | - Cathy Pichol Thievend
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Constance Petit
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Pavillon Pasteur, 75248 Paris, France
| | - Anne-Marie Faussat
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Lucile Yvernault
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Martine Pinçon-Raymond
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Jean Chambaz
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Monique Rousset
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Sophie Thenet
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Caroline Clair
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
- * E-mail:
| |
Collapse
|