1
|
The unfolded protein response transducer IRE1α promotes reticulophagy in podocytes. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166391. [PMID: 35304860 DOI: 10.1016/j.bbadis.2022.166391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/18/2023]
Abstract
Glomerular diseases involving podocyte/glomerular epithelial cell (GEC) injury feature protein misfolding and endoplasmic reticulum (ER) stress. Inositol-requiring enzyme 1α (IRE1α) mediates chaperone production and autophagy during ER stress. We examined the role of IRE1α in selective autophagy of the ER (reticulophagy). Control and IRE1α knockout (KO) GECs were incubated with tunicamycin to induce ER stress and subjected to proteomic analysis. This showed IRE1α-dependent upregulation of secretory pathway mediators, including the coat protein complex II component Sec23B. Tunicamycin enhanced expression of Sec23B and the reticulophagy adaptor reticulon-3-long (RTN3L) in control, but not IRE1α KO GECs. Knockdown of Sec23B reduced autophagosome formation in response to ER stress. Tunicamycin stimulated colocalization of autophagosomes with Sec23B and RTN3L in an IRE1α-dependent manner. Similarly, during ER stress, glomerular α5 collagen IV colocalized with RTN3L and autophagosomes. Degradation of RTN3L and collagen IV increased in response to tunicamycin, and the turnover was blocked by deletion of IRE1α; thus, the IRE1α pathway promotes RTN3L-mediated reticulophagy and collagen IV may be an IRE1α-dependent reticulophagy substrate. In experimental glomerulonephritis, expression of Sec23B, RTN3L, and LC3-II increased in glomeruli of control mice, but not in podocyte-specific IRE1α KO littermates. In conclusion, during ER stress, IRE1α redirects a subset of Sec23B-positive vesicles to deliver RTN3L-coated ER fragments to autophagosomes. Reticulophagy is a novel outcome of the IRE1α pathway in podocytes and may play a cytoprotective role in glomerular diseases.
Collapse
|
2
|
Aoto Y, Horinouchi T, Yamamura T, Kondo A, Nagai S, Ishiko S, Okada E, Rossanti R, Sakakibara N, Nagano C, Awano H, Nagase H, Shima Y, Nakanishi K, Matsuo M, Iijima K, Nozu K. Last Nucleotide Substitutions of COL4A5 Exons Cause Aberrant Splicing. Kidney Int Rep 2022; 7:108-116. [PMID: 35005319 PMCID: PMC8720670 DOI: 10.1016/j.ekir.2021.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
Introduction COL4A5 is a causative gene of X-linked Alport syndrome (XLAS). Male patients with XLAS with nonsense variants have the most severe phenotypes of early onset end-stage kidney disease (ESKD); those with splicing variants have middle phenotypes and those with missense variants have the mildest phenotypes. Therefore, genotyping for male patients with XLAS can be used to predict kidney prognosis. Single-base substitutions at the last nucleotide position in each exon are known to affect splicing patterns and could be splicing variants. Nevertheless, in XLAS, these variants are generally considered to be missense variants, without conducting a transcript analysis, which underestimates some patients as having mild phenotypes. This study aimed to investigate whether single-base substitutions at the last nucleotide position of COL4A5 exons cause aberrant splicing. Methods In total, 20 variants were found in the Human Gene Mutation Database (n = 14) and our cohort (n = 6). We performed functional splicing assays using a hybrid minigene analysis and in vivo transcript analyses of patients’ samples when available. Then, we investigated genotype–phenotype correlations for patients with splicing variants detected in this study by comparing data from our previous studies. Results Among the 20 variants, 17 (85%) caused aberrant splicing. Male patients with splicing variants had more severe phenotypes when compared with those with missense variants. Findings from the in vivo analyses for 3 variants were identical to those from the minigene assay. Conclusion Our study revealed that most single-base substitutions at the last nucleotide position of COL4A5 exons result in splicing variants, rather than missense variants, thereby leading to more severe phenotypes.
Collapse
Affiliation(s)
- Yuya Aoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsushi Kondo
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sadayuki Nagai
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Ishiko
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eri Okada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Rini Rossanti
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroaki Nagase
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuko Shima
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masafumi Matsuo
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan
| | - Kazumoto Iijima
- Hyogo Prefectural Kobe Children's Hospital, Hyogo, Japan.,Department of Advanced Pediatric Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
3
|
Demir E, Caliskan Y. Variations of type IV collagen-encoding genes in patients with histological diagnosis of focal segmental glomerulosclerosis. Pediatr Nephrol 2020; 35:927-936. [PMID: 31254113 DOI: 10.1007/s00467-019-04282-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/01/2019] [Accepted: 05/31/2019] [Indexed: 01/07/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS), an important cause of end-stage kidney disease (ESKD), covers a spectrum of clinicopathological syndromes sharing a common glomerular lesion, based on an injury of podocytes caused by diverse insults to glomeruli. Although it is well expressed in many reports that the term FSGS is not useful and applicable to a single disease, particularly in genetic studies, FSGS continues to be used as a single clinical diagnosis. Distinguishing genetic forms of FSGS is important for the treatment and overall prognosis because secondary forms of FSGS, produced by rare pathogenic variations in podocyte genes, are not good candidates for immunosuppressive treatment. Over the past decade, several next generation sequencing (NGS) methods have been used to investigate the patients with steroid resistance nephrotic syndrome (SRNS) or FSGS. Pathogenic variants in COL4A3, COL4A4, or COL4A5 genes have been frequently identified in patients with histologic diagnosis of FSGS. The contribution of these mostly heterozygous genetic variations in FSGS pathogenesis and the clinical course of patients with these variations have not been well characterized. This review emphasizes the importance of appropriate approach in selection and diagnosis of cases and interpretation of the genetic data in these studies and suggests a detailed review of existing clinical variant databases using newly available population genetic data.
Collapse
Affiliation(s)
- Erol Demir
- Division of Nephrology, Department of Internal Medicine, Istanbul School of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey
| | - Yasar Caliskan
- Division of Nephrology, Department of Internal Medicine, Istanbul School of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey.
| |
Collapse
|
4
|
Wang C, Liang S, Xing S, Xu K, Xiao H, Deng H, Wang X, Chen L, Ding J, Wang F. Endoplasmic Reticulum Stress Activation in Alport Syndrome Varies Between Genotype and Cell Type. Front Genet 2020; 11:36. [PMID: 32117450 PMCID: PMC7025644 DOI: 10.3389/fgene.2020.00036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/13/2020] [Indexed: 12/26/2022] Open
Abstract
Alport syndrome is a hereditary progressive chronic kidney disease caused by mutations in type IV collagen genes COL4A3/4/5. X-linked Alport syndrome (XLAS) is caused by mutations in the COL4A5 gene and is the most common form of Alport syndrome. A strong correlation between the type of COL4A5 mutation and the age developing end-stage renal disease in male patients has been found. Mutation to the α (IV) chain causes retention of the protein to the endoplasmic reticulum lumen, which causes endoplasmic reticulum stress (ERS) and subsequent exertion of deleterious intracellular effects through the activation of ERS. The exact time point that mutant type IV collagen α chain exerts its deleterious effects remains elusive. In this study, we explored the relationship between the COL4A5 genotype and cell type in ERS activation. We obtained skin fibroblasts from Alport syndrome patients with different COL4A5 mutation categories [i.e., a missense mutation (c.4298G > T, p.Gly1433Val) in exon 47, a splicing mutation (c.1949–1G > A) in intron 25 and an insertion (c.573_c.574insG, p. Pro193Alafs*23) in exon 10], and then reprogrammed these fibroblasts into induced pluripotent stem cells (iPSCs). Interestingly, no significant dysregulation of ERS pathway markers was observed for the three COL4A5 mutant iPSCs; however, significant activation of ERS in COL4A5 mutant fibroblasts was observed. In addition, we found that the activation levels of some ERS markers in fibroblasts varied among the three COL4A5 mutation types. Mutant COL4A5 proteins were demonstrated to have different effects on cells at different stages of ontogenesis, providing a theoretical basis for choosing the timing of intervention. The observed differences in activation of ERS by the COL4A5 mutant fibroblasts may contribute to the intracellular molecular mechanisms that describe the correlation between genotype and clinical features in XLAS.
Collapse
Affiliation(s)
- Cong Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Shenghui Liang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Shijia Xing
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Ke Xu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Huijie Xiao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Haiyue Deng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoyuan Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Fang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
5
|
Trimerization and Genotype-Phenotype Correlation of COL4A5 Mutants in Alport Syndrome. Kidney Int Rep 2020; 5:718-726. [PMID: 32405592 PMCID: PMC7210609 DOI: 10.1016/j.ekir.2020.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 01/08/2023] Open
Abstract
Introduction Alport syndrome is a hereditary glomerulonephritis that results from the disruption of collagen α345(IV) heterotrimerization caused by mutation in COL4A3, COL4A4 or COL4A5 genes. Many clinical studies have elucidated the correlation between genotype and phenotype, but there is still much ambiguity and insufficiency. Here, we focused on the α345(IV) heterotrimerization of α5(IV) missense mutant as a novel factor to further understand the pathophysiology of Alport syndrome. Methods We selected 9 α5(IV) missense mutants with typical glycine substitutions that clinically differed in disease progression. To quantify the trimerization of each mutant, split nanoluciferase-fused α3/α5 mutants and α4 were transfected into the cells, and intracellular and secreted heterotrimer were detected by luminescence using an assay that we developed previously. Results Trimer formation and secretion patterns tended to be similar to the wild type in most of the mutations that did not show proteinuria at a young age. On the other hand, trimer secretion was significantly reduced in all the mutations that showed proteinuria and early onset of renal failure. One of these mutants has low ability of intracellular trimer formation, and the others had the defect of low-level secretion. In addition, the mutant that is assumed to be nonpathogenic has similar trimer formation and secretion pattern as wild-type α5(IV). Conclusion The result of cell-based α345(IV) heterotrimer formation assay was largely correlated with clinical genotype–phenotype. These trimerization assessments provide additional phenotypic considerations and may help to distinguish between pathogenic and nonpathogenic mutations.
Collapse
|
6
|
Yamamura T, Nozu K, Minamikawa S, Horinouchi T, Sakakibara N, Nagano C, Aoto Y, Ishiko S, Nakanishi K, Shima Y, Nagase H, Rossanti R, Ye MJ, Nozu Y, Ishimori S, Morisada N, Kaito H, Iijima K. Comparison between conventional and comprehensive sequencing approaches for genetic diagnosis of Alport syndrome. Mol Genet Genomic Med 2019; 7:e883. [PMID: 31364286 PMCID: PMC6732293 DOI: 10.1002/mgg3.883] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/05/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022] Open
Abstract
Background Alport syndrome (AS) is a hereditary disease caused by mutations in COL4A3‐5 genes. Recently, comprehensive genetic analysis has become the first‐line diagnostic tool for AS. However, no reports comparing mutation identification rates between conventional sequencing and comprehensive screening have been published. Methods In this study, 441 patients clinically suspected of having AS were divided into two groups and compared. The initial mutational analysis method involved targeted exome sequencing using next‐generation sequencing (NGS) (n = 147, NGS group) or Sanger sequencing for COL4A3/COL4A4/COL4A5 (n = 294, Sanger group). Results In the NGS group, 126 patients (86%) were diagnosed with AS by NGS, while two had pathogenic mutations in other genes, NPHS1 and EYA1. Further, 239 patients (81%) were diagnosed with AS by initial analysis in the Sanger group. Thirteen patients who were negative for mutation detection in the Sanger group were analyzed by NGS; three were diagnosed with AS. Two had mutations in CLCN5 or LAMB2. The final variant detection rate was 90%. Discussion Our results reveal that Sanger sequencing and targeted exome sequencing have high diagnostic ability. NGS also has the advantage of detecting other inherited kidney diseases and pathogenic mutations missed by Sanger sequencing.
Collapse
Affiliation(s)
- Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shogo Minamikawa
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yuya Aoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shinya Ishiko
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Koichi Nakanishi
- Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Yuko Shima
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Hiroaki Nagase
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Rini Rossanti
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Ming J Ye
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yoshimi Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shingo Ishimori
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hiroshi Kaito
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
7
|
Omachi K, Kamura M, Teramoto K, Kojima H, Yokota T, Kaseda S, Kuwazuru J, Fukuda R, Koyama K, Matsuyama S, Motomura K, Shuto T, Suico MA, Kai H. A Split-Luciferase-Based Trimer Formation Assay as a High-throughput Screening Platform for Therapeutics in Alport Syndrome. Cell Chem Biol 2018. [PMID: 29526710 DOI: 10.1016/j.chembiol.2018.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alport syndrome is a hereditary glomerular disease caused by mutation in type IV collagen α3-α5 chains (α3-α5(IV)), which disrupts trimerization, leading to glomerular basement membrane degeneration. Correcting the trimerization of α3/α4/α5 chain is a feasible therapeutic approach, but is hindered by lack of information on the regulation of intracellular α(IV) chain and the absence of high-throughput screening (HTS) platforms to assess α345(IV) trimer formation. Here, we developed sets of split NanoLuc-fusion α345(IV) proteins to monitor α345(IV) trimerization of wild-type and clinically associated mutant α5(IV). The α345(IV) trimer assay, which satisfied the acceptance criteria for HTS, enabled the characterization of intracellular- and secretion-dependent defects of mutant α5(IV). Small interfering RNA-based and chemical screening targeting the ER identified several chemical chaperones that have potential to promote α345(IV) trimer formation. This split luciferase-based trimer formation assay is a functional HTS platform that realizes the feasibility of targeting α345(IV) trimers to treat Alport syndrome.
Collapse
Affiliation(s)
- Kohei Omachi
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan; Program for Leading Graduate School "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Misato Kamura
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan; Program for Leading Graduate School "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Keisuke Teramoto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan; Program for Leading Graduate School "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Haruka Kojima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Tsubasa Yokota
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Shota Kaseda
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan; Program for Leading Graduate School "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Jun Kuwazuru
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Ryosuke Fukuda
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Kosuke Koyama
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Shingo Matsuyama
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Keishi Motomura
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan.
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan; Program for Leading Graduate School "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan.
| |
Collapse
|
8
|
Cai X, Yu S, Mipam T, Yang F, Zhao W, Liu W, Cao S, Shen L, Zhao F, Sun L, Xu C, Wu S. Comparative analysis of testis transcriptomes associated with male infertility in cattleyak. Theriogenology 2017; 88:28-42. [DOI: 10.1016/j.theriogenology.2016.09.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/18/2016] [Accepted: 09/24/2016] [Indexed: 01/29/2023]
|
9
|
Pieri M, Stefanou C, Zaravinos A, Erguler K, Stylianou K, Lapathitis G, Karaiskos C, Savva I, Paraskeva R, Dweep H, Sticht C, Anastasiadou N, Zouvani I, Goumenos D, Felekkis K, Saleem M, Voskarides K, Gretz N, Deltas C. Evidence for activation of the unfolded protein response in collagen IV nephropathies. J Am Soc Nephrol 2013; 25:260-75. [PMID: 24262798 DOI: 10.1681/asn.2012121217] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Thin-basement-membrane nephropathy (TBMN) and Alport syndrome (AS) are progressive collagen IV nephropathies caused by mutations in COL4A3/A4/A5 genes. These nephropathies invariably present with microscopic hematuria and frequently progress to proteinuria and CKD or ESRD during long-term follow-up. Nonetheless, the exact molecular mechanisms by which these mutations exert their deleterious effects on the glomerulus remain elusive. We hypothesized that defective trafficking of the COL4A3 chain causes a strong intracellular effect on the cell responsible for COL4A3 expression, the podocyte. To this end, we overexpressed normal and mutant COL4A3 chains (G1334E mutation) in human undifferentiated podocytes and tested their effects in various intracellular pathways using a microarray approach. COL4A3 overexpression in the podocyte caused chain retention in the endoplasmic reticulum (ER) that was associated with activation of unfolded protein response (UPR)-related markers of ER stress. Notably, the overexpression of normal or mutant COL4A3 chains differentially activated the UPR pathway. Similar results were observed in a novel knockin mouse carrying the Col4a3-G1332E mutation, which produced a phenotype consistent with AS, and in biopsy specimens from patients with TBMN carrying a heterozygous COL4A3-G1334E mutation. These results suggest that ER stress arising from defective localization of collagen IV chains in human podocytes contributes to the pathogenesis of TBMN and AS through activation of the UPR, a finding that may pave the way for novel therapeutic interventions for a variety of collagenopathies.
Collapse
Affiliation(s)
- Myrtani Pieri
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ma J, Pan X, Wang Z, Wang Y, Feng X, Ren H, Zhang W, Chen X, Wang W, Chen N. Twenty-one novel mutations identified in the COL4A5 gene in Chinese patients with X-linked Alport's syndrome confirmed by skin biopsy. Nephrol Dial Transplant 2011; 26:4003-10. [PMID: 21505094 DOI: 10.1093/ndt/gfr184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The clinical and pathological features of Alport syndrome are characterized by abnormalities in the basement membrane collagen network which are composed of the α3, α4 and α5 chains of type IV collagen and usually associated with hearing loss and ocular lesions. The predominant form (85% of AS) is inherited as X-linked mode (XLAS) caused by mutations encoding the α5 chain of type IV collagen gene, COL4A5. Different mutations in the COL4A5 gene have been reported widely, but only a few mutations were identified in Chinese patients. METHODS We studied 71 Chinese patients from 35 unrelated families with XLAS confirmed by skin biopsy. Genomic DNA was extracted from peripheral blood of all patients. All 51 exons of the COL4A5 gene were screened by direct sequencing for the probands. RESULTS A total of twenty-five identified gene mutations were considered to be pathogenic, including 1 nonsense, 1 splice-site, 1 complex rearrangement, 5 small deletions, 2 small insertions and 15 missense mutations. Twenty-one mutations have not been reported previously. CONCLUSIONS We have identified 25 pathogenic mutations in 35 Chinese families with XLAS. Skin biopsy is effective for the diagnosis of XLAS.
Collapse
Affiliation(s)
- Jun Ma
- Department of Nephrology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
LeBleu V, Sund M, Sugimoto H, Birrane G, Kanasaki K, Finan E, Miller CA, Gattone VH, McLaughlin H, Shield CF, Kalluri R. Identification of the NC1 domain of {alpha}3 chain as critical for {alpha}3{alpha}4{alpha}5 type IV collagen network assembly. J Biol Chem 2010; 285:41874-85. [PMID: 20847057 DOI: 10.1074/jbc.m110.149534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The network organization of type IV collagen consisting of α3, α4, and α5 chains in the glomerular basement membrane (GBM) is speculated to involve interactions of the triple helical and NC1 domain of individual α-chains, but in vivo evidence is lacking. To specifically address the contribution of the NC1 domain in the GBM collagen network organization, we generated a mouse with specific loss of α3NC1 domain while keeping the triple helical α3 chain intact by connecting it to the human α5NC1 domain. The absence of α3NC1 domain leads to the complete loss of the α4 chain. The α3 collagenous domain is incapable of incorporating the α5 chain, resulting in the impaired organization of the α3α4α5 chain-containing network. Although the α5 chain can assemble with the α1, α2, and α6 chains, such assembly is incapable of functionally replacing the α3α4α5 protomer. This novel approach to explore the assembly type IV collagen in vivo offers novel insights in the specific role of the NC1 domain in the assembly and function of GBM during health and disease.
Collapse
Affiliation(s)
- Valerie LeBleu
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School,Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mutant-type alpha5(IV) collagen in a mild form of Alport syndrome has residual ability to form a heterotrimer. Pediatr Nephrol 2010; 25:1169-72. [PMID: 20130921 DOI: 10.1007/s00467-009-1433-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/07/2009] [Accepted: 12/15/2009] [Indexed: 10/19/2022]
Abstract
Alport syndrome (AS) is caused by mutations in type IV collagen alpha3, alpha4, and alpha5 chains. The three chains form a heterotrimer. We have previously shown that all 15 types of recombinant alpha5(IV) chains with mutations, corresponding to AS mutations, in the noncollagenous (NC1) domain are defective in terms of heterotrimer formation and/or secretion of the heterotrimer from cells. A relatively large family with Cys1638Tyr in the NC1 domain of the alpha5(IV) chain has been found to have mild AS phenotypes without hearing loss or ocular abnormalities. Renal biopsies of different family members also revealed the presence of the alpha3(IV), alpha4(IV), and alpha5(IV) chains in the glomerular basement membrane. In our study, we introduced the mutation corresponding to Cys1638Tyr into the alpha5(IV) chain and characterized the mutant chain. In cells containing the mutant-type alpha5(IV) chain, heterotrimer formation in the cells and secretion of the alpha5(IV) chain in the monomeric form from the cells were markedly decreased compared with cells containing the wild-type chain. However, the heterotrimer that was formed from the mutant chain was still able to be secreted from the cells. The residual ability of the mutant chain may have led to the unique phenotypes found in the AS family with the Cys1638Tyr mutation.
Collapse
|
13
|
Kobayashi T, Uchiyama M. Effect of HSP47 expression levels on heterotrimer formation among type IV collagen α3, α4 and α5 chains. Biomed Res 2010; 31:371-7. [DOI: 10.2220/biomedres.31.371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|