1
|
Hajizadeh M, Hajizadeh F, Ghaffarei S, Amin Doustvandi M, Hajizadeh K, Yaghoubi SM, Mohammadnejad F, Khiabani NA, Mousavi P, Baradaran B. MicroRNAs and their vital role in apoptosis in hepatocellular carcinoma: miRNA-based diagnostic and treatment methods. Gene 2023; 888:147803. [PMID: 37716587 DOI: 10.1016/j.gene.2023.147803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/03/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies with high invasive and metastatic capability. Although significant advances have been made in the treatment of HCC, the overall survival rate of patients is still low. It is essential to explore accurate biomarkers for early diagnosis and prognosis along with therapeutic procedures to increase the survival rate of these patients. Anticancer therapies can contribute to induce apoptosis for the elimination of cancerous cells. However, dysregulated apoptosis and proliferation signaling pathways lead to treatment resistance, a significant challenge in improving efficient therapies. MiRNAs, short non-coding RNAs, play crucial roles in the progression of HCC, which regulate gene expression through post-transcriptional inhibition and targeting mRNA degradation in cancers. Dysregulated expression of multiple miRNAs is associated with numerous biological processes, including cell proliferation, apoptosis, invasion and metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and drug resistance in HCC. This review summarizes the role and potential efficacy of miRNAs in promoting and inhibiting cell proliferation and apoptosis in HCC, as well as the role of miRNAs in therapy resistance in HCC.
Collapse
Affiliation(s)
- Masoumeh Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnaz Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevil Ghaffarei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Khadijeh Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Mohammad Yaghoubi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | | | - Pegah Mousavi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Doepner M, Lee I, Natale CA, Brathwaite R, Venkat S, Kim SH, Wei Y, Vakoc CR, Capell BC, Katzenellenbogen JA, Katzenellenbogen BS, Feigin ME, Ridky TW. Endogenous DOPA inhibits melanoma through suppression of CHRM1 signaling. SCIENCE ADVANCES 2022; 8:eabn4007. [PMID: 36054350 PMCID: PMC10848963 DOI: 10.1126/sciadv.abn4007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/14/2022] [Indexed: 05/18/2023]
Abstract
Melanoma risk is 30 times higher in people with lightly pigmented skin versus darkly pigmented skin. Using primary human melanocytes representing the full human skin pigment continuum and preclinical melanoma models, we show that cell-intrinsic differences between dark and light melanocytes regulate melanocyte proliferative capacity and susceptibility to malignant transformation, independent of melanin and ultraviolet exposure. These differences result from dihydroxyphenylalanine (DOPA), a melanin precursor synthesized at higher levels in melanocytes from darkly pigmented skin. We used both high-throughput pharmacologic and genetic in vivo CRISPR screens to determine that DOPA limits melanocyte and melanoma cell proliferation by inhibiting the muscarinic acetylcholine receptor M1 (CHRM1) signaling. Pharmacologic CHRM1 antagonism in melanoma leads to depletion of c-Myc and FOXM1, both of which are proliferation drivers associated with aggressive melanoma. In preclinical mouse melanoma models, pharmacologic inhibition of CHRM1 or FOXM1 inhibited tumor growth. CHRM1 and FOXM1 may be new therapeutic targets for melanoma.
Collapse
Affiliation(s)
- Miriam Doepner
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Inyoung Lee
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A. Natale
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roderick Brathwaite
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Swati Venkat
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sung Hoon Kim
- Department of Chemistry and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yiliang Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Brian C. Capell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John A. Katzenellenbogen
- Department of Chemistry and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Benita S. Katzenellenbogen
- Departments of Molecular and Integrative Physiology and Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael E. Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Todd W. Ridky
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Abstract
Upon DNA damage, complex transduction cascades are unleashed to locate, recognise and repair affected lesions. The process triggers a pause in the cell cycle until the damage is resolved. Even under physiologic conditions, this deliberate interruption of cell division is essential to ensure orderly DNA replication and chromosomal segregation. WEE1 is an established regulatory protein in this vast fidelity-monitoring machinery. Its involvement in the DNA damage response and cell cycle has been a subject of study for decades. Emerging studies have also implicated WEE1 directly and indirectly in other cellular functions, including chromatin remodelling and immune response. The expanding role of WEE1 in pathophysiology is matched by the keen surge of interest in developing WEE1-targeted therapeutic agents. This review summarises WEE1 involvement in the cell cycle checkpoints, epigenetic modification and immune signalling, as well as the current state of WEE1 inhibitors in cancer therapeutics.
Collapse
|
4
|
Zeng XY, Li M. Looking into key bacterial proteins involved in gut dysbiosis. World J Methodol 2021; 11:130-143. [PMID: 34322365 PMCID: PMC8299906 DOI: 10.5662/wjm.v11.i4.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/11/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal microbiota plays a pivotal role in health and has been linked to many diseases. With the rapid accumulation of pyrosequencing data of the bacterial composition, the causal-effect relationship between specific dysbiosis features and diseases is now being explored. The aim of this review is to describe the key functional bacterial proteins and antigens in the context of dysbiosis related-diseases. We subjectively classify the key functional proteins into two categories: Primary key proteins and secondary key proteins. The primary key proteins mainly act by themselves and include biofilm inhibitors, toxin degraders, oncogene degraders, adipose metabolism modulators, anti-inflammatory peptides, bacteriocins, host cell regulators, adhesion and invasion molecules, and intestinal barrier regulators. The secondary key proteins mainly act by eliciting host immune responses and include flagellin, outer membrane proteins, and other autoantibody-related antigens. Knowledge of key bacterial proteins is limited compared to the rich microbiome data. Understanding and focusing on these key proteins will pave the way for future mechanistic level cause-effect studies of gut dysbiosis and diseases.
Collapse
Affiliation(s)
- Xin-Yu Zeng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Ming Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumors, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
5
|
Yang X, Yang S, Song J, Yang W, Ji Y, Zhang F, Rao J. Dysregulation of miR-23b-5p promotes cell proliferation via targeting FOXM1 in hepatocellular carcinoma. Cell Death Discov 2021; 7:47. [PMID: 33723252 PMCID: PMC7960996 DOI: 10.1038/s41420-021-00440-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/29/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022] Open
Abstract
Growing evidence demonstrates that MicroRNAs (miRNAs) play an essential role in contributing to tumor development and progression. However, the underlying role and mechanisms of miR-23b-5p in hepatocellular carcinoma (HCC) formation remain unclear. Our study showed that miR-23b-5p was downregulated in the HCC tissues and cell lines, and lower expression of miR-23b-5p was associated with more severe tumor size and poorer survival. Gain- or loss-of-function assays demonstrated that miR-23b-5p induced G0/G1 cell cycle arrest and inhibited cell proliferation both in vitro and in vivo. qRT-PCR, western blot and luciferase assays verified that Mammalian transcription factor Forkhead Box M1 (FOXM1), upregulated in HCC specimens, was negatively correlated with miR-23b-5p expression and acted as a direct downstream target of miR-23b-5p. In addition, miR-23b-5p could regulate cyclin D1 and c-MYC expression by directly targeting FOXM1. Further study revealed that restoration of FOXM1 neutralized the cell cycle arrest and cell proliferation inhibition caused by miR-23b-5p. Taken together, our findings suggest that miR-23b-5p acted as a tumor suppressor role in HCC progression by targeting FOXM1 and may serve as a potential novel biomarker for HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Xinchen Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, China
| | - Shikun Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, China
| | - Wenjie Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, China
| | - Yang Ji
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, China
| | - Feng Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, China.
| | - Jianhua Rao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Liver Transplantation, Nanjing, China.
| |
Collapse
|
6
|
Butler DSC, Cafaro C, Putze J, Wan MLY, Tran TH, Ambite I, Ahmadi S, Kjellström S, Welinder C, Chao SM, Dobrindt U, Svanborg C. A bacterial protease depletes c-MYC and increases survival in mouse models of bladder and colon cancer. Nat Biotechnol 2021; 39:754-764. [PMID: 33574609 DOI: 10.1038/s41587-020-00805-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/15/2020] [Indexed: 01/12/2023]
Abstract
Is the oncogene MYC upregulated or hyperactive? In the majority of human cancers, finding agents that target c-MYC has proved difficult. Here we report specific bacterial effector molecules that inhibit cellular MYC (c-MYC) in human cells. We show that uropathogenic Escherichia coli (UPEC) degrade the c-MYC protein and attenuate MYC expression in both human cells and animal tissues. c-MYC protein was rapidly degraded by both cell-free bacterial lysates and the purified bacterial protease Lon. In mice, intravesical or peroral delivery of Lon protease delayed tumor progression and increased survival in MYC-dependent bladder and colon cancer models, respectively. These results suggest that bacteria have evolved strategies to control c-MYC tissue levels in the host and that the Lon protease shows promise for therapeutic targeting of c-MYC in cancer.
Collapse
Affiliation(s)
- Daniel S C Butler
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | - Caterina Cafaro
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | - Johannes Putze
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Murphy Lam Yim Wan
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | - Thi Hien Tran
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | - Ines Ambite
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | - Shahram Ahmadi
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | - Sven Kjellström
- Department of Clinical Sciences, BioMS, Lund University, Lund, Sweden
| | - Charlotte Welinder
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Sing Ming Chao
- Department of Paediatrics, Nephrology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Catharina Svanborg
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden.
| |
Collapse
|
7
|
He S, Liao B, Deng Y, Su C, Tuo J, Liu J, Yao S, Xu L. MiR-216b inhibits cell proliferation by targeting FOXM1 in cervical cancer cells and is associated with better prognosis. BMC Cancer 2017; 17:673. [PMID: 28978307 PMCID: PMC5628450 DOI: 10.1186/s12885-017-3650-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 09/21/2017] [Indexed: 02/07/2023] Open
Abstract
Background Our previous study showed FOXM1 expression was significantly up-regulated in cervical cancer, and was associated with poor prognosis. To clarify miRNAs-FOXM1 modulation pathways, in this study, we investigated the relationships between miR-216b and FOXM1 and the role of miR-216b in cell proliferation and prognosis of cervical cancer patients. Methods Western blotting and qPCR were used to determine expression of FOXM1, cell cycle related factors and miR-216b level. MiR-216b overexpression and inhibited cell models were constructed, and siRNA was used for FOXM1 silencing. Cell proliferation was analyzed by MTT and colony formation assay. Dual luciferase reporter assay system was used to clarify the relationships between miR-216b and FOXM1. Kaplan-Meier survival analysis was used to evaluate prognosis. Results MiR-216b was down-regulated in cervical cancer cells and tissues, and its ectopic expression could decrease cell proliferation. Western blotting analysis showed miR-216b can inhibit cell proliferation by regulating FOXM1-related cell cycle factors, suppressing cyclinD1, c-myc, LEF1 and p-Rb and enhancing p21 expression. Repressing of miR-216b stimulated cervical cancer cell proliferation, whereas silencing FOXM1 expression could reverse this effect. Western blotting and luciferase assay results proved FOXM1 is a direct target of miR-216b. Survival analysis showed higher level of miR-216b was associated with better prognosis in cervical cancer patients. Conclusions FOXM1 expression could be suppressed by miR-216b via direct binding to FOXM1 3′-UTR and miR-216b could inhibit cell proliferation by regulating FOXM1 related Wnt/β-catenin signal pathway. MiR-216b level is related to prognosis in cervical cancer patients and may serve as a potential prognostic marker. Electronic supplementary material The online version of this article (10.1186/s12885-017-3650-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanyang He
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, China
| | - Bing Liao
- Department of Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yalan Deng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, China
| | - Chang Su
- Department of Hematology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiuling Tuo
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, China.
| | - Lin Xu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Everolimus (RAD001) inhibits the proliferation of rat vascular smooth muscle cells by up-regulating the activity of the p27/kip1 gene promoter. Anatol J Cardiol 2016; 16:385-91. [PMID: 27163533 PMCID: PMC5331368 DOI: 10.14744/anatoljcardiol.2015.6426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE We investigated whether the inhibitory effect of the immunosuppressant everolimus (RAD001) on vascular smooth muscle cell (VSMC) proliferation is mediated by p27/kip1 gene promoter activity. METHODS In this experimental study, cultured rat VSMCs were transiently transfected with a recombinant plasmid (pXp27) containing p27/kip1 gene promoter sequence and a chloramphenicol acetyltransferase (CAT) reporter gene. After stimulation with the mitogen platelet-derived growth factor (PDGF-BB, 10 ng/mL) in the presence or absence of RAD001 (10 nM), the promoter activity, mRNA expression, and protein expression of p27/kip1 were examined by CAT assay, RT-PCR, and immunoblotting, respectively. Cell cycle-related changes were detected by flow cytometry. DNA synthesis was determined using 3H-TdR incorporation. RESULTS Compared with the non-stimulation group, PDGF-BB stimulation induced a significant proliferative response in the VSMCs as indicated by decreased p27/kip1 gene promoter activity, decreased p27/kip1 mRNA and protein expression, increased S-phase and G2/M-phase cells, and increased DNA synthesis. RAD001 intervention increased p27/kip1 gene promoter activity 3.5-fold, promoted p27/kip1 mRNA and protein expression, increased G0-phase cells, reduced DNA synthesis, and, overall, inhibited PDGF-BB-stimulated cell proliferation. CONCLUSION RAD001 inhibits PDGF-BB-stimulated proliferation of cultured VSMCs by upregulating p27/kip1 gene promoter activity and increasing p27/kip1 mRNA and protein expression.
Collapse
|
9
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|
10
|
Grant GD, Brooks L, Zhang X, Mahoney JM, Martyanov V, Wood TA, Sherlock G, Cheng C, Whitfield ML. Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors. Mol Biol Cell 2013; 24:3634-50. [PMID: 24109597 PMCID: PMC3842991 DOI: 10.1091/mbc.e13-05-0264] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Characterization of the cell cycle–regulated transcripts in U2OS cells yielded 1871 unique genes. FOXM1 targets were identified via ChIP-seq, and novel targets in G2/M and S phases were verified using a real-time luciferase assay. ChIP-seq data were used to map cell cycle transcriptional regulators of cell cycle–regulated gene expression in U2OS cells. We identify the cell cycle–regulated mRNA transcripts genome-wide in the osteosarcoma-derived U2OS cell line. This results in 2140 transcripts mapping to 1871 unique cell cycle–regulated genes that show periodic oscillations across multiple synchronous cell cycles. We identify genomic loci bound by the G2/M transcription factor FOXM1 by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) and associate these with cell cycle–regulated genes. FOXM1 is bound to cell cycle–regulated genes with peak expression in both S phase and G2/M phases. We show that ChIP-seq genomic loci are responsive to FOXM1 using a real-time luciferase assay in live cells, showing that FOXM1 strongly activates promoters of G2/M phase genes and weakly activates those induced in S phase. Analysis of ChIP-seq data from a panel of cell cycle transcription factors (E2F1, E2F4, E2F6, and GABPA) from the Encyclopedia of DNA Elements and ChIP-seq data for the DREAM complex finds that a set of core cell cycle genes regulated in both U2OS and HeLa cells are bound by multiple cell cycle transcription factors. These data identify the cell cycle–regulated genes in a second cancer-derived cell line and provide a comprehensive picture of the transcriptional regulatory systems controlling periodic gene expression in the human cell division cycle.
Collapse
Affiliation(s)
- Gavin D Grant
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wierstra I. Cyclin D1/Cdk4 increases the transcriptional activity of FOXM1c without phosphorylating FOXM1c. Biochem Biophys Res Commun 2013; 431:753-9. [PMID: 23333330 DOI: 10.1016/j.bbrc.2013.01.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 01/05/2013] [Indexed: 01/17/2023]
Abstract
Anders et al. (2011) [11] reported that cyclinD1/Cdk4 and cyclinD3/Cdk6 enhance the transcriptional activity of FOXM1c by phosphorylating its TAD. They defined 12 Cdk consensus sites as essential for the activation of FOXM1c by cyclinD1/Cdk4 and cyclinD3/Cdk6 and stated that the 12 Cdk-sites are positioned within the TAD of FOXM1c. In contrast, this study demonstrates that all potential cyclin/Cdk phosphorylation sites S/T-P of FOXM1c are located outside its TAD so that the TAD of FOXM1c contains no potential cyclin/Cdk site, which excludes a phosphorylation of the FOXM1c-TAD by cyclinD1/Cdk4 and cyclinD3/Cdk6. This study shows that the activation of FOXM1c by cyclinD1/Cdk4 is lost without removal of any cyclin/Cdk site and gained without addition of any cyclin/Cdk site because it depends on a FOXM1c domain with no potential cyclin/Cdk site, namely on the interaction domain for the tumor suppressor RB, which binds to and represses FOXM1c. CyclinD1/Cdk4 activates FOXM1c because cyclinD1/Cdk4 releases FOXM1c from its repression by RB through removal of RB from FOXM1c. For this purpose, cyclinD1/Cdk4 phosphorylates only RB, but not FOXM1c, so that cyclinD1/Cdk4 increases the transcriptional activity of FOXM1c without phosphorylating FOXM1c and activates FOXM1c independently of cyclin/Cdk phosphorylation sites in FOXM1c. In summary, this study changes the model of Anders et al. (2011) [11] completely because it disproves their central conclusion that cyclinD1/Cdk4 and cyclinD3/Cdk6 enhance the transcriptional activity of FOXM1c by phosphorylating its TAD at the 12 Cdk-sites.
Collapse
Affiliation(s)
- Inken Wierstra
- Institute of Molecular Biology, Medical School Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|
12
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
13
|
Wierstra I. The transcription factor FOXM1c is activated by protein kinase CK2, protein kinase A (PKA), c-Src and Raf-1. Biochem Biophys Res Commun 2011; 413:230-5. [PMID: 21875579 DOI: 10.1016/j.bbrc.2011.08.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 01/04/2023]
Abstract
The transcription factor FOXM1c possesses a very strong C-terminal TAD (transactivation domain), but full-length FOXM1c is only a weak transactivator because the TAD is completely inhibited by the auto-inhibitory N-terminus. The N-terminus blocks the TAD by directly binding to the TAD. Accordingly, FOXM1c deletion mutants without N-terminus are strong transactivators. Therefore, the question arises whether signals exist, which activate full-length FOXM1c by releasing the FOXM1c-TAD from its inhibition by the N-terminus. Indeed, full-length FOXM1c is strongly activated by protein kinase CK2 and PKA (protein kinase A). Both CK2 and PKA do not activate a FOXM1c deletion mutant without N-terminus demonstrating that the activation of FOXM1c by CK2 and PKA depends on the presence of the N-terminus. Consequently, CK2 and PKA activate FOXM1c by alleviating the inhibition of FOXM1c by its N-terminus. The presence of two potential CK2 phosphorylation sites and two potential PKA phosphorylation sites in the N-terminus of FOXM1c suggests that CK2 and PKA may activate FOXM1c through phosphorylation of the FOXM1c N-terminus. Thus, CK2 and PKA strongly activate full-length FOXM1c because they alleviate the repression of FOXM1c by its own auto-inhibitory N-terminus. Also c-Src activates full-length FOXM1c by relieving the inhibition of FOXM1c by its N-terminus. In contrast, Raf-1 activates FOXM1c independently of the FOXM1c N-terminus. In summary, this study shows for the first time that FOXM1c is activated by the four kinases CK2, PKA, c-Src and Raf-1.
Collapse
Affiliation(s)
- Inken Wierstra
- Institute of Molecular Biology, Medical School Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|
14
|
The transcription factor FOXM1 is a cellular target of the natural product thiostrepton. Nat Chem 2011; 3:725-31. [PMID: 21860463 DOI: 10.1038/nchem.1114] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 07/08/2011] [Indexed: 12/12/2022]
Abstract
Transcription factors are proteins that bind specifically to defined DNA sequences to promote gene expression. Targeting transcription factors with small molecules to modulate the expression of certain genes has been notoriously difficult to achieve. The natural product thiostrepton is known to reduce the transcriptional activity of FOXM1, a transcription factor involved in tumorigenesis and cancer progression. Herein we demonstrate that thiostrepton interacts directly with FOXM1 protein in the human breast cancer cells MCF-7. Biophysical analyses of the thiostrepton-FOXM1 interaction provide additional insights on the molecular mode of action of thiostrepton. In cellular experiments, we show that thiostrepton can inhibit the binding of FOXM1 to genomic target sites. These findings illustrate the potential druggability of transcription factors and provide a molecular basis for targeting the FOXM1 family with small molecules.
Collapse
|
15
|
Castro DS, Martynoga B, Parras C, Ramesh V, Pacary E, Johnston C, Drechsel D, Lebel-Potter M, Garcia LG, Hunt C, Dolle D, Bithell A, Ettwiller L, Buckley N, Guillemot F. A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev 2011; 25:930-45. [PMID: 21536733 DOI: 10.1101/gad.627811] [Citation(s) in RCA: 311] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proneural genes such as Ascl1 are known to promote cell cycle exit and neuronal differentiation when expressed in neural progenitor cells. The mechanisms by which proneural genes activate neurogenesis--and, in particular, the genes that they regulate--however, are mostly unknown. We performed a genome-wide characterization of the transcriptional targets of Ascl1 in the embryonic brain and in neural stem cell cultures by location analysis and expression profiling of embryos overexpressing or mutant for Ascl1. The wide range of molecular and cellular functions represented among these targets suggests that Ascl1 directly controls the specification of neural progenitors as well as the later steps of neuronal differentiation and neurite outgrowth. Surprisingly, Ascl1 also regulates the expression of a large number of genes involved in cell cycle progression, including canonical cell cycle regulators and oncogenic transcription factors. Mutational analysis in the embryonic brain and manipulation of Ascl1 activity in neural stem cell cultures revealed that Ascl1 is indeed required for normal proliferation of neural progenitors. This study identified a novel and unexpected activity of the proneural gene Ascl1, and revealed a direct molecular link between the phase of expansion of neural progenitors and the subsequent phases of cell cycle exit and neuronal differentiation.
Collapse
Affiliation(s)
- Diogo S Castro
- Medical Research Council National Institute for Medical Research, Division of Molecular Neurobiology, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Integrative genomic profiling reveals conserved genetic mechanisms for tumorigenesis in common entities of non-Hodgkin's lymphoma. Genes Chromosomes Cancer 2011; 50:313-26. [DOI: 10.1002/gcc.20856] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 01/07/2011] [Indexed: 01/10/2023] Open
|
17
|
Wang Z, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH. Forkhead box M1 transcription factor: a novel target for cancer therapy. Cancer Treat Rev 2009; 36:151-6. [PMID: 20022709 DOI: 10.1016/j.ctrv.2009.11.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 11/09/2009] [Accepted: 11/15/2009] [Indexed: 02/08/2023]
Abstract
FoxM1 signaling has been reported to be associated with carcinogenesis. Therefore, the FoxM1 may represent a novel therapeutic target, and thus the development of agents that will target FoxM1 is likely to have significant therapeutic impact on human cancer. This review describes the mechanisms of signal transduction associated with FoxM1 and provides emerging evidence in support of its role in the carcinogenesis. Further, we summarize data on several FoxM1 inhibitors especially "chemopreventive agents" and these agents could be useful for targeted inactivation of FoxM1, which indeed could become a novel approach for the prevention and/or treatment of human cancer.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|