1
|
Sisodia R, Sarmadhikari D, Mazumdar PA, Asthana S, Madhurantakam C. Molecular analysis of dUTPase of Helicobacter pylori for identification of novel inhibitors using in silico studies. J Biomol Struct Dyn 2024; 42:8598-8623. [PMID: 37587906 DOI: 10.1080/07391102.2023.2247080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
The human gastric pathogen Helicobacter pylori chronically affects the gastric mucosal layer of approximately half of world's population. The emergence of resistant strains urges the need for identification of novel and selective drug against new molecular targets. A ubiquitous enzyme, Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase), is considered as first line of defense against uracil mis-incorporation into DNA, and essential for genome integrity. Lack of dUTPase triggers an elevated recombination frequency, DNA breaks and ultimately cell death. Hence, dUTPase can be considered as a promising target for development of novel lead inhibitor compounds in H. pylori treatment. Herein, we report the generation of three-dimensional model of the target protein using comparative modelling and its validation. To identify dUTPase inhibitors, a high throughput virtual screening approach utilizing Knowledge-based inhibitors and DrugBank database was implemented. Top ranked compounds were scrutinized based on investigations of the protein-ligand interaction fingerprints, molecular interaction maps and binding affinities and the drug potentiality. The best ligands were studied further for complex stability and intermolecular interaction profiling with respect to time under 100 ns classical molecular dynamic stimulation, establishing significant stability in dynamic states as observed from RMSD and RMSF parameters and interactions with the catalytic site residues. The binding free energy calculation computed using MM-GBSA method from the MD simulation trajectories demonstrated that our molecules possess strong binding affinity towards the Helicobacter pylori dUTPase protein. We conclude that our proposed molecules may be potential lead molecules for effective inhibition against the H. pylori dUTPase protein subject to experimental validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rinki Sisodia
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| | - Debapriyo Sarmadhikari
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | | | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Chaithanya Madhurantakam
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| |
Collapse
|
2
|
Tárnoki-Zách J, Bősze S, Czirók A. Quantitative Analysis of a Pilot Transwell Barrier Model with Automated Sampling and Mathematical Modeling. Pharmaceutics 2023; 15:2646. [PMID: 38004624 PMCID: PMC10675510 DOI: 10.3390/pharmaceutics15112646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
In the preclinical phase of drug development, it is necessary to determine how the active compound can pass through the biological barriers surrounding the target tissue. In vitro barrier models provide a reliable, low-cost, high-throughput solution for screening substances early in the drug candidate development process, thus reducing more complex and costly animal studies. In this pilot study, the transport properties of TB501, an antimycobacterial drug candidate, were characterized using an in vitro barrier model of VERO E6 kidney cells. The compound was delivered into the apical chamber of the transwell insert, and its concentration passing through the barrier layer was measured through the automated sampling of the basolateral compartment, where media were replaced every 30 min for 6 h, and the collected samples were stored for further spectroscopic analysis. The kinetics of TB501 concentration obtained from VERO E6 transwell cultures and transwell membranes saturated with serum proteins reveal the extent to which the cell layer functions as a diffusion barrier. The large number of samples collected allows us to fit a detailed mathematical model of the passive diffusive currents to the measured concentration profiles. This approach enables the determination of the diffusive permeability, the diffusivity of the compound in the cell layer, the affinity of the compound binding to the cell membrane as well as the rate by which the cells metabolize the compound. The proposed approach goes beyond the determination of the permeability coefficient and offers a more detailed pharmacokinetic characterization of the transwell barrier model. We expect the presented method to be fruitful in evaluating other compounds with different chemical features on simple in vitro barrier models. The proposed mathematical model can also be extended to include various forms of active transport.
Collapse
Affiliation(s)
- Júlia Tárnoki-Zách
- Department of Biological Physics, Eötvös University, 1053 Budapest, Hungary;
| | - Szilvia Bősze
- National Center for Public Health and Pharmacy, 1437 Budapest, Hungary;
- HUN-REN-ELTE Research Group of Peptide Chemistry, Hungarian Research Network, Eötvös Loránd University, 1052 Budapest, Hungary
| | - András Czirók
- Department of Biological Physics, Eötvös University, 1053 Budapest, Hungary;
| |
Collapse
|
3
|
Zhang Y, Zhang H, Chen Y, Qiao L, Han Y, Lin Y, Si S, Jiang JD. Screening and Identification of a Novel Anti-tuberculosis Compound That Targets Deoxyuridine 5'-Triphosphate Nucleotidohydrolase. Front Microbiol 2021; 12:757914. [PMID: 34707597 PMCID: PMC8544286 DOI: 10.3389/fmicb.2021.757914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/10/2021] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB) is still a threat to humans worldwide. The rise of drug-resistant TB strains has escalated the need for developing effective anti-TB agents. Deoxyuridine 5′-triphosphate nucleotidohydrolase (dUTPase) is essential for thymidylate biosynthesis to maintain the DNA integrity. In Mycobacterium tuberculosis, dUTPase provides the sole source for thymidylate biosynthesis, which also has the specific five-residue loop and the binding pockets absent in human dUTPase. Therefore, dUTPase has been regarded as a promising anti-TB drug target. Herein, we used a luminescence-based dUTPase assay to search for the inhibitors target M. tuberculosis dUTPase (Mt-dUTPase) and identified compound F0414 as a potent Mt-dUTPase inhibitor with an IC50 of 0.80 ± 0.09 μM. F0414 exhibited anti-TB activity with low cytotoxicity. Molecular docking model and site-directed mutation experiments revealed that P79 was the key residue in the interaction of Mt-dUTPase and F0414. Moreover, F0414 was shown to have stronger binding with Mt-dUTPase than with Mt-P79A-dUTPase by surface plasmon resonance (SPR) detection. Interestingly, F0414 exhibited insensitivity and weak directly binding on human dUTPase compared with that on Mt-dUTPase. All the results highlight that F0414 is the first compound reported to have anti-TB activity by inhibiting Mt-dUTPase, which indicates the potential application in anti-TB therapy.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongjuan Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Chen
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luyao Qiao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Lin
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Szabó JE, Nyíri K, Andrási D, Matejka J, Ozohanics O, Vértessy B. Redox status of cysteines does not alter functional properties of human dUTPase but the Y54C mutation involved in monogenic diabetes decreases protein stability. Sci Rep 2021; 11:19197. [PMID: 34584184 PMCID: PMC8478915 DOI: 10.1038/s41598-021-98790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
Recently it was proposed that the redox status of cysteines acts as a redox switch to regulate both the oligomeric status and the activity of human dUTPase. In a separate report, a human dUTPase point mutation, resulting in a tyrosine to cysteine substitution (Y54C) was identified as the monogenic cause of a rare syndrome associated with diabetes and bone marrow failure. These issues prompt a critical investigation about the potential regulatory role of cysteines in the enzyme. Here we show on the one hand that independently of the redox status of wild-type cysteines, human dUTPase retains its characteristic trimeric assembly and its catalytic activity. On the other hand, the Y54C mutation did not compromise the substrate binding and the catalytic properties of the enzyme at room temperature. The thermal stability of the mutant protein was found to be decreased, which resulted in the loss of 67% of its activity after 90 min incubation at the physiological temperature in contrast to the wild-type enzyme. In addition, the presence or absence of reducing agents had no effect on hDUTY54C activity and stability, although it was confirmed that the introduced cysteine contains a solvent accessible thiol group.
Collapse
Affiliation(s)
- Judit Eszter Szabó
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary.
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary.
| | - Kinga Nyíri
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Dániel Andrási
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Judit Matejka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Olivér Ozohanics
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Beáta Vértessy
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, Budapest, Hungary.
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary.
| |
Collapse
|
5
|
Kósa N, Zolcsák Á, Voszka I, Csík G, Horváti K, Horváth L, Bősze S, Herenyi L. Comparison of the Efficacy of Two Novel Antitubercular Agents in Free and Liposome-Encapsulated Formulations. Int J Mol Sci 2021; 22:2457. [PMID: 33671100 PMCID: PMC7957691 DOI: 10.3390/ijms22052457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis is one of the top ten causes of death worldwide, and due to the appearance of drug-resistant strains, the development of new antituberculotic agents is a pressing challenge. Employing an in silico docking method, two coumaran (2,3-dihydrobenzofuran) derivatives-TB501 and TB515-were determined, with promising in vitro antimycobacterial activity. To enhance their effectiveness and reduce their cytotoxicity, we used liposomal drug carrier systems. Two types of small unilamellar vesicles (SUV) were prepared: multicomponent pH-sensitive stealth liposome (SUVmixed) and monocomponent conventional liposome. The long-term stability of our vesicles was obtained by the examination of particle size distribution with dynamic light scattering. Encapsulation efficiency (EE) of the two drugs was determined from absorption spectra before and after size exclusion chromatography. Cellular uptake and cytotoxicity were determined on human MonoMac-6 cells by flow cytometry. The antitubercular effect was characterized by the enumeration of colony-forming units on Mycobacterium tuberculosis H37Rv infected MonoMac-6 cultures. We found that SUVmixed + TB515 has the best long-term stability. TB515 has much higher EE in both types of SUVs. Cellular uptake for native TB501 is extremely low, but if it is encapsulated in SUVmixed it appreciably increases; in the case of TB515, quasi total uptake is accessible. It is concluded that SUVmixed + TB501 seems to be the most efficacious antitubercular formulation given the presented experiments; to find the most promising antituberculotic formulation for therapy further in vivo investigations are needed.
Collapse
Affiliation(s)
- Nikoletta Kósa
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (Á.Z.); (I.V.); (G.C.)
| | - Ádám Zolcsák
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (Á.Z.); (I.V.); (G.C.)
| | - István Voszka
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (Á.Z.); (I.V.); (G.C.)
| | - Gabriella Csík
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (Á.Z.); (I.V.); (G.C.)
| | - Kata Horváti
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Hungarian Academy of Sciences, 1518 Budapest, Hungary; (K.H.); (L.H.)
- Institute of Chemistry, Eötvös Loránd University, 1518 Budapest, Hungary
| | - Lilla Horváth
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Hungarian Academy of Sciences, 1518 Budapest, Hungary; (K.H.); (L.H.)
- Institute of Chemistry, Eötvös Loránd University, 1518 Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Hungarian Academy of Sciences, 1518 Budapest, Hungary; (K.H.); (L.H.)
| | - Levente Herenyi
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (Á.Z.); (I.V.); (G.C.)
| |
Collapse
|
6
|
Liang R, Wang G, Zhang D, Ye G, Li M, Shi Y, Shi J, Chen H, Peng G. Structural comparisons of host and African swine fever virus dUTPases reveal new clues for inhibitor development. J Biol Chem 2021; 296:100015. [PMID: 33139328 PMCID: PMC7948977 DOI: 10.1074/jbc.ra120.014005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 11/06/2022] Open
Abstract
African swine fever, caused by the African swine fever virus (ASFV), is among the most significant swine diseases. There are currently no effective treatments against ASFV. ASFV contains a gene encoding a dUTPase (E165R), which is required for viral replication in swine macrophages, making it an attractive target for inhibitor development. However, the full structural details of the ASFV dUTPase and those of the comparable swine enzyme are not available, limiting further insights. Herein, we determine the crystal structures of ASFV dUTPase and swine dUTPase in both their ligand-free and ligand-bound forms. We observe that the swine enzyme employs a classical dUTPase architecture made up of three-subunit active sites, whereas the ASFV enzyme employs a novel two-subunit active site. We then performed a comparative analysis of all dUTPase structures uploaded in the Protein Data Bank (PDB), which showed classical and non-classical types were mainly determined by the C-terminal β-strand orientation, and the difference was mainly related to the four amino acids behind motif IV. Thus, our study not only explains the reason for the structural diversity of dUTPase but also reveals how to predict dUTPase type, which may have implications for the dUTPase family. Finally, we tested two dUTPase inhibitors developed for the Plasmodium falciparum dUTPase against the swine and ASFV enzymes. One of these compounds inhibited the ASFV dUTPase at low micromolar concentrations (Kd = 15.6 μM) and with some selectivity (∼2x) over swine dUTPase. In conclusion, our study expands our understanding of the dUTPase family and may aid in the development of specific ASFV inhibitors.
Collapse
Affiliation(s)
- Rui Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Gang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Ding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Gang Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Mengxia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jiale Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei Province, China.
| |
Collapse
|
7
|
Base excision repair pathways of bacteria: new promise for an old problem. Future Med Chem 2020; 12:339-355. [PMID: 32031026 DOI: 10.4155/fmc-2019-0267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases continue to be a major cause of human mortality. With the emergence of drug resistance, diseases that were long thought to have been curable by antibiotics are resurging. There is an urgent clinical need for newer antibiotics that target novel cellular pathways to overcome resistance to currently used therapeutics. The base excision repair (BER) pathways of the pathogen restore altered bases and safeguard the genomic integrity of the pathogen from the host's immune response. Although the BER machinery is of paramount importance to the survival of the pathogens, its potential as a drug target is largely unexplored. In this review, we discuss the importance of BER in different pathogenic organisms and the potential of its inhibition with small molecules.
Collapse
|
8
|
Structural Insight into African Swine Fever Virus dUTPase Reveals a Novel Folding Pattern in the dUTPase Family. J Virol 2020; 94:JVI.01698-19. [PMID: 31748385 DOI: 10.1128/jvi.01698-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
The African swine fever virus (ASFV) is the deadly pathogen of African swine fever (ASF) that induces high mortality, approaching 100% in domestic pigs, causes enormous losses to the global pig industry, and threatens food security. Currently, there is no effective treatment or preventive countermeasure. dUTPases (deoxyuridine 5'-triphosphate pyrophosphatases) are ubiquitous enzymes that are essential for the hydrolysis of dUTP and prevent the misincorporation of dUTP into newly synthesized DNA. Here, we present the crystal structures of the ASFV dUTPase in complex with the product dUMP and cofactor Mg2+ at a resolution of 2.2 Å. We observed that a unique "turning point" at G125 plays an unexpected critical role in the swapping region of the C-terminal segment, which is further stabilized by the interactions of the last C-terminal β strand with the β1 and β2 strands, thereby positioning the catalytic motif 5 into the active site of its own subunit instead of into a third subunit. Therefore, the ASFV dUTPase employs a novel two-subunit active site that is different than the classic trimeric dUTPase active site, which is composed of all three subunits. Meanwhile, further results confirmed that the configuration of motifs 1 to 5 has high structural homology with and a catalytic mechanism similar to that of the known trimeric dUTPases. In general, our study expands the information not only on the structural diversity of the conserved dUTPase family but also on the details needed to utilize this dUTPase as a novel target in the treatment of ASF.IMPORTANCE African swine fever virus (AFSV), a large enveloped double-stranded DNA virus, causes a deadly infection in domestic pigs. In addition to Africa, Europe, and South America, countries in Asia, such as China, Vietnam, and Mongolia, have suffered the hazards posed by ASFV outbreaks in recent years. Until now, there has been no vaccine for protection from ASFV infection or effective treatments to cure ASF. Here, we solved the crystal structure of the ASFV dUTPase-dUMP-Mg2+ complex. The ASFV dUTPase displays a noncanonical folding pattern that differs from that of the classic homotrimeric dUTPase, in which the active site is composed of two subunits. In addition, several nonconserved residues within the 3-fold axis channel play a vital role in ASFV dUTPase homotrimer stability. Our finding on these unique structural features of the ASFV dUTPase could be explored for the design of potential specific inhibitors that target this unique enzyme.
Collapse
|
9
|
Lopata A, Jójárt B, Surányi ÉV, Takács E, Bezúr L, Leveles I, Bendes ÁÁ, Viskolcz B, Vértessy BG, Tóth J. Beyond Chelation: EDTA Tightly Binds Taq DNA Polymerase, MutT and dUTPase and Directly Inhibits dNTPase Activity. Biomolecules 2019; 9:biom9100621. [PMID: 31627475 PMCID: PMC6843921 DOI: 10.3390/biom9100621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022] Open
Abstract
EDTA is commonly used as an efficient chelator of metal ion enzyme cofactors. It is highly soluble, optically inactive and does not interfere with most chemicals used in standard buffers making EDTA a common choice to generate metal-free conditions for biochemical and biophysical investigations. However, the controversy in the literature on metal-free enzyme activities achieved using EDTA or by other means called our attention to a putative effect of EDTA beyond chelation. Here, we show that EDTA competes for the nucleotide binding site of the nucleotide hydrolase dUTPase by developing an interaction network within the active site similar to that of the substrate. To achieve these findings, we applied kinetics and molecular docking techniques using two different dUTPases. Furthermore, we directly measured the binding of EDTA to dUTPases and to two other dNTPases, the Taq polymerase and MutT using isothermal titration calorimetry. EDTA binding proved to be exothermic and mainly enthalpy driven with a submicromolar dissociation constant considerably lower than that of the enzyme:substrate or the Mg:EDTA complexes. Control proteins, including an ATPase, did not interact with EDTA. Our findings indicate that EDTA may act as a selective inhibitor against dNTP hydrolyzing enzymes and urge the rethinking of the utilization of EDTA in enzymatic experiments.
Collapse
Affiliation(s)
- Anna Lopata
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1113 Budapest, Hungary.
- Department of Applied Biotechnology, Budapest University of Technology and Economics, 1111 Budapest, Hungary.
- Institute of Biophysical Chemistry, Goethe University, Frankfurt am Main, 60438 Frankfurt, Germany.
| | - Balázs Jójárt
- Institute of Food Engineering, Faculty of Engineering, University of Szeged, 6724 Szeged, Hungary.
| | - Éva V Surányi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1113 Budapest, Hungary.
- Department of Applied Biotechnology, Budapest University of Technology and Economics, 1111 Budapest, Hungary.
| | - Enikő Takács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1113 Budapest, Hungary.
| | - László Bezúr
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, 1111 Budapest, Hungary.
| | - Ibolya Leveles
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1113 Budapest, Hungary.
- Department of Applied Biotechnology, Budapest University of Technology and Economics, 1111 Budapest, Hungary.
| | - Ábris Á Bendes
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1113 Budapest, Hungary.
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland.
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, 3515 Miskolc, Hungary.
| | - Beáta G Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1113 Budapest, Hungary.
- Department of Applied Biotechnology, Budapest University of Technology and Economics, 1111 Budapest, Hungary.
| | - Judit Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1113 Budapest, Hungary.
| |
Collapse
|
10
|
The Role of a Key Amino Acid Position in Species-Specific Proteinaceous dUTPase Inhibition. Biomolecules 2019; 9:biom9060221. [PMID: 31174420 PMCID: PMC6627510 DOI: 10.3390/biom9060221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023] Open
Abstract
Protein inhibitors of key DNA repair enzymes play an important role in deciphering physiological pathways responsible for genome integrity, and may also be exploited in biomedical research. The staphylococcal repressor StlSaPIbov1 protein was described to be an efficient inhibitor of dUTPase homologues showing a certain degree of species-specificity. In order to provide insight into the inhibition mechanism, in the present study we investigated the interaction of StlSaPIbov1 and Escherichia coli dUTPase. Although we observed a strong interaction of these proteins, unexpectedly the E. coli dUTPase was not inhibited. Seeking a structural explanation for this phenomenon, we identified a key amino acid position where specific mutations sensitized E. coli dUTPase to StlSaPIbov1 inhibition. We solved the three-dimensional (3D) crystal structure of such a mutant in complex with the substrate analogue dUPNPP and surprisingly found that the C-terminal arm of the enzyme, containing the P-loop-like motif was ordered in the structure. This segment was never localized before in any other E. coli dUTPase crystal structures. The 3D structure in agreement with solution phase experiments suggested that ordering of the flexible C-terminal segment upon substrate binding is a major factor in defining the sensitivity of E. coli dUTPase for StlSaPIbov1 inhibition.
Collapse
|
11
|
Minias A, Brzostek A, Dziadek J. Targeting DNA Repair Systems in Antitubercular Drug Development. Curr Med Chem 2019; 26:1494-1505. [DOI: 10.2174/0929867325666180129093546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 11/22/2022]
Abstract
Infections with Mycobacterium tuberculosis, the causative agent of tuberculosis, are difficult to treat using currently available chemotherapeutics. Clinicians agree on the urgent need for novel drugs to treat tuberculosis. In this mini review, we summarize data that prompts the consideration of DNA repair-associated proteins as targets for the development of new antitubercular compounds. We discuss data, including gene expression data, that highlight the importance of DNA repair genes during the pathogenic cycle as well as after exposure to antimicrobials currently in use. Specifically, we report experiments on determining the essentiality of DNA repair-related genes. We report the availability of protein crystal structures and summarize discovered protein inhibitors. Further, we describe phenotypes of available gene mutants of M. tuberculosis and model organisms Mycobacterium bovis and Mycobacterium smegmatis. We summarize experiments regarding the role of DNA repair-related proteins in pathogenesis and virulence performed both in vitro and in vivo during the infection of macrophages and animals. We detail the role of DNA repair genes in acquiring mutations, which influence the rate of drug resistance acquisition.
Collapse
Affiliation(s)
- Alina Minias
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Anna Brzostek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Jarosław Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
12
|
Pálinkás HL, Rácz GA, Gál Z, Hoffmann OI, Tihanyi G, Róna G, Gócza E, Hiripi L, Vértessy BG. CRISPR/Cas9-Mediated Knock-Out of dUTPase in Mice Leads to Early Embryonic Lethality. Biomolecules 2019; 9:biom9040136. [PMID: 30987342 PMCID: PMC6523736 DOI: 10.3390/biom9040136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 01/05/2023] Open
Abstract
Sanitization of nucleotide pools is essential for genome maintenance. Deoxyuridine 5′-triphosphate nucleotidohydrolase (dUTPase) is a key enzyme in this pathway since it catalyzes the cleavage of 2′-deoxyuridine 5′-triphosphate (dUTP) into 2′-deoxyuridine 5′-monophosphate (dUMP) and inorganic pyrophosphate. Through its action dUTPase efficiently prevents uracil misincorporation into DNA and at the same time provides dUMP, the substrate for de novo thymidylate biosynthesis. Despite its physiological significance, knock-out models of dUTPase have not yet been investigated in mammals, but only in unicellular organisms, such as bacteria and yeast. Here we generate CRISPR/Cas9-mediated dUTPase knock-out in mice. We find that heterozygous dut +/– animals are viable while having decreased dUTPase levels. Importantly, we show that dUTPase is essential for embryonic development since early dut −/− embryos reach the blastocyst stage, however, they die shortly after implantation. Analysis of pre-implantation embryos indicates perturbed growth of both inner cell mass (ICM) and trophectoderm (TE). We conclude that dUTPase is indispensable for post-implantation development in mice.
Collapse
Affiliation(s)
- Hajnalka Laura Pálinkás
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
- Doctoral School of Multidisciplinary Medical Science, University of Szeged, H-6720 Szeged, Hungary.
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, H-1111 Budapest, Hungary.
| | - Gergely Attila Rácz
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, H-1111 Budapest, Hungary.
| | - Zoltán Gál
- Department of Animal Biotechnology, Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, H-2100 Gödöllő, Hungary.
| | - Orsolya Ivett Hoffmann
- Department of Animal Biotechnology, Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, H-2100 Gödöllő, Hungary.
| | - Gergely Tihanyi
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, H-1111 Budapest, Hungary.
| | - Gergely Róna
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, H-1111 Budapest, Hungary.
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| | - Elen Gócza
- Department of Animal Biotechnology, Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, H-2100 Gödöllő, Hungary.
| | - László Hiripi
- Department of Animal Biotechnology, Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, H-2100 Gödöllő, Hungary.
| | - Beáta G Vértessy
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, H-1111 Budapest, Hungary.
| |
Collapse
|
13
|
Horváti K, Gyulai G, Csámpai A, Rohonczy J, Kiss É, Bősze S. Surface Layer Modification of Poly(d,l-lactic- co-glycolic acid) Nanoparticles with Targeting Peptide: A Convenient Synthetic Route for Pluronic F127-Tuftsin Conjugate. Bioconjug Chem 2018; 29:1495-1499. [PMID: 29669198 DOI: 10.1021/acs.bioconjchem.8b00156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nanoparticles consisting of biodegradable poly(d,l-lactic- co-glycolic acid) (PLGA) are promising carriers for drug molecules to improve the treatment of tuberculosis. Surface modifiers, such as Pluronic F127, are essential for biocompatibility and for the protection against particle aggregation. This study demonstrates a successful approach to conjugate Pluronic F127 coated PLGA nanoparticles with Tuftsin, which has been reported as a macrophage-targeting peptide. Transformation of Pluronic F127 hydroxyl groups-which have limited reactivity-into aldehyde groups provide a convenient way to bind aminooxy-peptide derivatives in a one-step reaction. We have also investigated that this change has no effect on the physicochemical properties of the nanoparticles. Our data showed that coating nanoparticles with Pluronic-Tuftsin conjugate markedly increased the internalization rate and the intracellular activity of the encapsulated drug candidate against Mycobacterium tuberculosis. By employing this approach, a large variety of peptide targeted PLGA nanoparticles can be designed for drug delivery.
Collapse
Affiliation(s)
- Kata Horváti
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences Budapest , and ‡Laboratory of Interfaces and Nanostructures , ∥Department of Organic Chemistry , and §Department of Inorganic Chemistry , Eötvös Loránd University , Budapest 112, P.O. Box 32, H-1518 , Hungary
| | | | | | | | | | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences Budapest , and ‡Laboratory of Interfaces and Nanostructures , ∥Department of Organic Chemistry , and §Department of Inorganic Chemistry , Eötvös Loránd University , Budapest 112, P.O. Box 32, H-1518 , Hungary
| |
Collapse
|
14
|
Benedek A, Pölöskei I, Ozohanics O, Vékey K, Vértessy BG. The Stl repressor from Staphylococcus aureus is an efficient inhibitor of the eukaryotic fruitfly dUTPase. FEBS Open Bio 2017; 8:158-167. [PMID: 29435406 PMCID: PMC5794464 DOI: 10.1002/2211-5463.12302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 11/17/2022] Open
Abstract
DNA metabolism and repair is vital for the maintenance of genome integrity. Specific proteinaceous inhibitors of key factors in this process have high potential for deciphering pathways of DNA metabolism and repair. The dUTPase enzyme family is responsible for guarding against erroneous uracil incorporation into DNA. Here, we investigate whether the staphylococcal Stl repressor may interact with not only bacterial but also eukaryotic dUTPase. We provide experimental evidence for the formation of a strong complex between Stl and Drosophila melanogasterdUTPase. We also find that dUTPase activity is strongly diminished in this complex. Our results suggest that the dUTPase protein sequences involved in binding to Stl are at least partially conserved through evolution from bacteria to eukaryotes.
Collapse
Affiliation(s)
- András Benedek
- Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary.,Department of Applied Biotechnology Budapest University of Technology and Economics Hungary
| | - István Pölöskei
- Department of Applied Biotechnology Budapest University of Technology and Economics Hungary
| | - Olivér Ozohanics
- Institute of Organic Chemistry Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Károly Vékey
- Institute of Organic Chemistry Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary
| | - Beáta G Vértessy
- Institute of Enzymology Research Centre for Natural Sciences Hungarian Academy of Sciences Budapest Hungary.,Department of Applied Biotechnology Budapest University of Technology and Economics Hungary
| |
Collapse
|
15
|
Zang K, Li F, Ma Q. The dUTPase of white spot syndrome virus assembles its active sites in a noncanonical manner. J Biol Chem 2017; 293:1088-1099. [PMID: 29187596 DOI: 10.1074/jbc.m117.815266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/14/2017] [Indexed: 01/04/2023] Open
Abstract
dUTPases are essential enzymes for maintaining genome integrity and have recently been shown to play moonlighting roles when containing extra sequences. Interestingly, the trimeric dUTPase of white spot syndrome virus (wDUT) harbors a sequence insert at the position preceding the C-terminal catalytic motif V (pre-V insert), rarely seen in other dUTPases. However, whether this extra sequence endows wDUT with additional properties is unknown. Herein, we present the crystal structures of wDUT in both ligand-free and ligand-bound forms. We observed that the pre-V insert in wDUT forms an unusual β-hairpin structure in the domain-swapping region and thereby facilitates a unique orientation of the adjacent C-terminal segment, positioning the catalytic motif V onto the active site of its own subunit instead of a third subunit. Consequently, wDUT employs two-subunit active sites, unlike the widely accepted paradigm that the active site of trimeric dUTPase is contributed by all three subunits. According to results from local structural comparisons, the active-site configuration of wDUT is similar to that of known dUTPases. However, we also found that residues in the second-shell region of the active site are reconfigured in wDUT as an adaption to its unique C-terminal orientation. We also show that deletion of the pre-V insert significantly reduces wDUT's enzymatic activity and thermal stability. We hypothesize that this rare structural arrangement confers additional functionality to wDUT. In conclusion, our study expands the structural diversity in the conserved dUTPase family and illustrates how sequence insertion and amino acid substitution drive protein evolution cooperatively.
Collapse
Affiliation(s)
- Kun Zang
- From the Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China.,the Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China, and.,the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuhua Li
- From the Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China.,the Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China, and
| | - Qingjun Ma
- From the Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China, .,the Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China, and
| |
Collapse
|
16
|
Hirmondo R, Lopata A, Suranyi EV, Vertessy BG, Toth J. Differential control of dNTP biosynthesis and genome integrity maintenance by the dUTPase superfamily enzymes. Sci Rep 2017; 7:6043. [PMID: 28729658 PMCID: PMC5519681 DOI: 10.1038/s41598-017-06206-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 06/12/2017] [Indexed: 01/22/2023] Open
Abstract
dUTPase superfamily enzymes generate dUMP, the obligate precursor for de novo dTTP biosynthesis, from either dUTP (monofunctional dUTPase, Dut) or dCTP (bifunctional dCTP deaminase/dUTPase, Dcd:dut). In addition, the elimination of dUTP by these enzymes prevents harmful uracil incorporation into DNA. These two beneficial outcomes have been thought to be related. Here we determined the relationship between dTTP biosynthesis (dTTP/dCTP balance) and the prevention of DNA uracilation in a mycobacterial model that encodes both the Dut and Dcd:dut enzymes, and has no other ways to produce dUMP. We show that, in dut mutant mycobacteria, the dTTP/dCTP balance remained unchanged, but the uracil content of DNA increased in parallel with the in vitro activity-loss of Dut accompanied with a considerable increase in the mutation rate. Conversely, dcd:dut inactivation resulted in perturbed dTTP/dCTP balance and two-fold increased mutation rate, but did not increase the uracil content of DNA. Thus, unexpectedly, the regulation of dNTP balance and the prevention of DNA uracilation are decoupled and separately brought about by the Dcd:dut and Dut enzymes, respectively. Available evidence suggests that the discovered functional separation is conserved in humans and other organisms.
Collapse
Affiliation(s)
- Rita Hirmondo
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anna Lopata
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
| | - Eva Viola Suranyi
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Applied Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Beata G Vertessy
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Applied Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Judit Toth
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
17
|
Nagy GN, Suardíaz R, Lopata A, Ozohanics O, Vékey K, Brooks BR, Leveles I, Tóth J, Vértessy BG, Rosta E. Structural Characterization of Arginine Fingers: Identification of an Arginine Finger for the Pyrophosphatase dUTPases. J Am Chem Soc 2016; 138:15035-15045. [PMID: 27740761 DOI: 10.1021/jacs.6b09012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arginine finger is a highly conserved and essential residue in many GTPase and AAA+ ATPase enzymes that completes the active site from a distinct protomer, forming contacts with the γ-phosphate of the nucleotide. To date, no pyrophosphatase has been identified that employs an arginine finger fulfilling all of the above properties; all essential arginine fingers are used to catalyze the cleavage of the γ-phosphate. Here, we identify and unveil the role of a conserved arginine residue in trimeric dUTPases that meets all the criteria established for arginine fingers. We found that the conserved arginine adjacent to the P-loop-like motif enables structural organization of the active site for efficient catalysis via its nucleotide coordination, while its direct electrostatic role in transition state stabilization is secondary. An exhaustive structure-based comparison of analogous, conserved arginines from nucleotide hydrolases and transferases revealed a consensus amino acid location and orientation for contacting the γ-phosphate of the substrate nucleotide. Despite the structurally equivalent position, functional differences between arginine fingers of dUTPases and NTPases are explained on the basis of the unique chemistry performed by the pyrophosphatase dUTPases.
Collapse
Affiliation(s)
- Gergely N Nagy
- Department of Biotechnology and Food Sciences, Budapest University of Technology and Economics , Budapest 1111, Hungary.,Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest 1117, Hungary
| | - Reynier Suardíaz
- Department of Chemistry, King's College London , London SE1 1DB, United Kingdom
| | - Anna Lopata
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest 1117, Hungary
| | - Olivér Ozohanics
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest 1117, Hungary
| | - Károly Vékey
- Core Technologies Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest 1117, Hungary
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health , Rockville, Maryland 10892-9314, United States
| | - Ibolya Leveles
- Department of Biotechnology and Food Sciences, Budapest University of Technology and Economics , Budapest 1111, Hungary.,Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest 1117, Hungary
| | - Judit Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest 1117, Hungary
| | - Beata G Vértessy
- Department of Biotechnology and Food Sciences, Budapest University of Technology and Economics , Budapest 1111, Hungary.,Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest 1117, Hungary
| | - Edina Rosta
- Department of Chemistry, King's College London , London SE1 1DB, United Kingdom
| |
Collapse
|
18
|
Lopata A, Leveles I, Bendes ÁÁ, Viskolcz B, Vértessy BG, Jójárt B, Tóth J. A Hidden Active Site in the Potential Drug Target Mycobacterium tuberculosis dUTPase Is Accessible through Small Amplitude Protein Conformational Changes. J Biol Chem 2016; 291:26320-26331. [PMID: 27815500 DOI: 10.1074/jbc.m116.734012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 11/04/2016] [Indexed: 11/06/2022] Open
Abstract
dUTPases catalyze the hydrolysis of dUTP into dUMP and pyrophosphate to maintain the proper nucleotide pool for DNA metabolism. Recent evidence suggests that dUTPases may also represent a selective drug target in mycobacteria because of the crucial role of these enzymes in maintaining DNA integrity. Nucleotide-hydrolyzing enzymes typically harbor a buried ligand-binding pocket at interdomain or intersubunit clefts, facilitating proper solvent shielding for the catalyzed reaction. The mechanism by which substrate binds this hidden pocket and product is released in dUTPases is unresolved because of conflicting crystallographic and spectroscopic data. We sought to resolve this conflict by using a combination of random acceleration molecular dynamics (RAMD) methodology and structural and biochemical methods to study the dUTPase from Mycobacterium tuberculosis In particular, the RAMD approach used in this study provided invaluable insights into the nucleotide dissociation process that reconciles all previous experimental observations. Specifically, our data suggest that nucleotide binding takes place as a small stretch of amino acids transiently slides away and partially uncovers the active site. The in silico data further revealed a new dUTPase conformation on the pathway to a relatively open active site. To probe this model, we developed the Trp21 reporter and collected crystallographic, spectroscopic, and kinetic data that confirmed the interaction of Trp21 with the active site shielding C-terminal arm, suggesting that the RAMD method is effective. In summary, our computational simulations and spectroscopic results support the idea that small loop movements in dUTPase allow the shuttlingof the nucleotides between the binding pocket and the solvent.
Collapse
Affiliation(s)
- Anna Lopata
- From the Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary H1117
| | - Ibolya Leveles
- From the Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary H1117
| | - Ábris Ádám Bendes
- From the Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary H1117
| | - Béla Viskolcz
- the Institute of Chemistry, University of Miskolc, Miskolc, Hungary H3529
| | - Beáta G Vértessy
- From the Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary H1117.,the Department of Applied Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary H1111, and
| | - Balázs Jójárt
- Department of Chemical Informatics, University of Szeged, Szeged, Hungary H6725
| | - Judit Tóth
- From the Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary H1117,
| |
Collapse
|
19
|
Ábrahám Á, Baranyai Z, Gyulai G, Pári E, Horváti K, Bősze S, Kiss É. Comparative analysis of new peptide conjugates of antitubercular drug candidates—Model membrane and in vitro studies. Colloids Surf B Biointerfaces 2016; 147:106-115. [DOI: 10.1016/j.colsurfb.2016.07.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/27/2016] [Accepted: 07/28/2016] [Indexed: 01/14/2023]
|
20
|
Benedek A, Horváth A, Hirmondó R, Ozohanics O, Békési A, Módos K, Révész Á, Vékey K, Nagy GN, Vértessy BG. Potential steps in the evolution of a fused trimeric all-β dUTPase involve a catalytically competent fused dimeric intermediate. FEBS J 2016; 283:3268-86. [PMID: 27380921 DOI: 10.1111/febs.13800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 06/08/2016] [Accepted: 07/04/2016] [Indexed: 12/15/2022]
Abstract
Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) is essential for genome integrity. Interestingly, this enzyme from Drosophila virilis has an unusual form, as three monomer repeats are merged with short linker sequences, yielding a fused trimer-like dUTPase fold. Unlike homotrimeric dUTPases that are encoded by a single repeat dut gene copy, the three repeats of the D. virilis dut gene are not identical due to several point mutations. We investigated the potential evolutionary pathway that led to the emergence of this extant fused trimeric dUTPase in D. virilis. The herein proposed scenario involves two sequential gene duplications followed by sequence divergence amongst the dut repeats. This pathway thus requires the existence of a transient two-repeat-containing fused dimeric dUTPase intermediate. We identified the corresponding ancestral dUTPase single repeat enzyme together with its tandem repeat evolutionary intermediate and characterized their enzymatic function and structural stability. We additionally engineered and characterized artificial single or tandem repeat constructs from the extant enzyme form to investigate the influence of the emergent residue alterations on the formation of a functional assembly. The observed severely impaired stability and catalytic activity of these latter constructs provide a plausible explanation for evolutionary persistence of the extant fused trimeric D. virilis dUTPase form. For the ancestral homotrimeric and the fused dimeric intermediate forms, we observed strong catalytic and structural competence, verifying viability of the proposed evolutionary pathway. We conclude that the progression along the herein described evolutionary trajectory is determined by the retained potential of the enzyme for its conserved three-fold structural symmetry.
Collapse
Affiliation(s)
- András Benedek
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary. .,Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Hungary.
| | - András Horváth
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Rita Hirmondó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Olivér Ozohanics
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Angéla Békési
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Károly Módos
- Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Ágnes Révész
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Károly Vékey
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely N Nagy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary. .,Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Hungary.
| | - Beáta G Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary. .,Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Hungary.
| |
Collapse
|
21
|
Nyíri K, Vértessy BG. Perturbation of genome integrity to fight pathogenic microorganisms. Biochim Biophys Acta Gen Subj 2016; 1861:3593-3612. [PMID: 27217086 DOI: 10.1016/j.bbagen.2016.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/05/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Resistance against antibiotics is unfortunately still a major biomedical challenge for a wide range of pathogens responsible for potentially fatal diseases. SCOPE OF REVIEW In this study, we aim at providing a critical assessment of the recent advances in design and use of drugs targeting genome integrity by perturbation of thymidylate biosynthesis. MAJOR CONCLUSION We find that research efforts from several independent laboratories resulted in chemically highly distinct classes of inhibitors of key enzymes within the routes of thymidylate biosynthesis. The present article covers numerous studies describing perturbation of this metabolic pathway in some of the most challenging pathogens like Mycobacterium tuberculosis, Plasmodium falciparum, and Staphylococcus aureus. GENERAL SIGNIFICANCE Our comparative analysis allows a thorough summary of the current approaches to target thymidylate biosynthesis enzymes and also include an outlook suggesting novel ways of inhibitory strategies. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
Affiliation(s)
- Kinga Nyíri
- Dept. Biotechnology, Budapest University of Technology and Economics, 4 Szent Gellért tér, Budapest HU 1111, Hungary; Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest HU 1117, Hungary.
| | - Beáta G Vértessy
- Dept. Biotechnology, Budapest University of Technology and Economics, 4 Szent Gellért tér, Budapest HU 1111, Hungary; Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest HU 1117, Hungary.
| |
Collapse
|
22
|
Trading in cooperativity for specificity to maintain uracil-free DNA. Sci Rep 2016; 6:24219. [PMID: 27063406 PMCID: PMC4827122 DOI: 10.1038/srep24219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/22/2016] [Indexed: 11/21/2022] Open
Abstract
Members of the dUTPase superfamily play an important role in the maintenance of the pyrimidine nucleotide balance and of genome integrity. dCTP deaminases and the bifunctional dCTP deaminase-dUTPases are cooperatively regulated by dTTP. However, the manifestation of allosteric behavior within the same trimeric protein architecture of dUTPases, the third member of the superfamily, has been a question of debate for decades. Therefore, we designed hybrid dUTPase trimers to access conformational states potentially mimicking the ones observed in the cooperative relatives. We studied how the interruption of different steps of the enzyme cycle affects the active site cross talk. We found that subunits work independently in dUTPase. The experimental results combined with a comparative structural analysis of dUTPase superfamily enzymes revealed that subtile structural differences within the allosteric loop and the central channel in these enzymes give rise to their dramatically different cooperative behavior. We demonstrate that the lack of allosteric regulation in dUTPase is related to the functional adaptation to more efficient dUTP hydrolysis which is advantageous in uracil-DNA prevention.
Collapse
|
23
|
Evidence-Based Structural Model of the Staphylococcal Repressor Protein: Separation of Functions into Different Domains. PLoS One 2015; 10:e0139086. [PMID: 26414067 PMCID: PMC4634304 DOI: 10.1371/journal.pone.0139086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/09/2015] [Indexed: 12/05/2022] Open
Abstract
Horizontal transfer of mobile genetic elements within Staphylococci is of high biomedical significance as such elements are frequently responsible for virulence and toxic effects. Staphylococcus-encoded repressor proteins regulate the replication of these mobile genetic elements that are located within the so-called pathogenicity islands. Here, we report structural and functional characterization of one such repressor protein, namely the Stl protein encoded by the pathogenicity island SaPIbov1. We create a 3D structural model and based on this prediction, we investigate the different functionalities of truncated and point mutant constructs. Results suggest that a helix-turn-helix motif governs the interaction of the Stl protein with its cognate DNA site: point mutations within this motif drastically decrease DNA-binding ability, whereas the interaction with the Stl-binding partner protein dUTPase is unperturbed by these point mutations. The 3D model also suggested the potential independent folding of a carboxy-terminal domain. This suggestion was fully verified by independent experiments revealing that the carboxy-terminal domain does not bind to DNA but is still capable of binding to and inhibiting dUTPase. A general model is proposed, which suggests that among the several structurally different repressor superfamilies Stl-like Staphylococcal repressor proteins belong to the helix-turn-helix transcription factor group and the HTH motif is suggested to reside within N-terminal segment.
Collapse
|
24
|
|
25
|
Lopata A, Jambrina PG, Sharma PK, Brooks BR, Toth J, Vertessy BG, Rosta E. Mutations Decouple Proton Transfer from Phosphate Cleavage in the dUTPase Catalytic Reaction. ACS Catal 2015. [DOI: 10.1021/cs502087f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Anna Lopata
- Institute
of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H1113, Hungary
| | - Pablo G. Jambrina
- Department
of Chemistry, King’s College London, London SE1 1DB, United Kingdom
| | - Pankaz K. Sharma
- College
of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Bernard R. Brooks
- Laboratory
of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20892-9314, United States
| | - Judit Toth
- Institute
of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H1113, Hungary
| | - Beata G. Vertessy
- Institute
of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H1113, Hungary
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest H1111, Hungary
| | - Edina Rosta
- Department
of Chemistry, King’s College London, London SE1 1DB, United Kingdom
| |
Collapse
|
26
|
Horváth A, Batki J, Henn L, Lukacsovich T, Róna G, Erdélyi M, Vértessy BG. dUTPase expression correlates with cell division potential in Drosophila melanogaster. FEBS J 2015; 282:1998-2013. [PMID: 25735890 DOI: 10.1111/febs.13255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/30/2015] [Accepted: 03/02/2015] [Indexed: 11/30/2022]
Abstract
dUTP pyrophosphatase (dUTPase) is a dNTP-sanitizing enzyme that prevents the appearance of potentially harmful uracil bases in DNA by hydrolyzing cellular dUTP. This function of dUTPase is found to be essential in many organisms including Drosophila melanogaster. Previously, we showed that the expression pattern of dUTPase determines the extent of uracil accumulation in the genome of different tissues. We wished to find the regulatory mechanism that eventually leaves a set of tissues with a uracil-free and intact genome. We found that the expression pattern established by the promoter of Drosophila dUTPase overlaps with mRNA and protein expression, excluding the involvement of other post-transcriptional contributions. This promoter was found to be active in primordial tissues, such as in the imaginal discs of larvae, in the larval brain and in reproductive organs. In the case of brain and imaginal tissues, we observed that the promoter activity depends on a DNA replication-related element motif, the docking site of DNA replication-related element binding factor, which is known as a transcriptional activator of genes involved in replication and proliferation. These results suggest that dUTPase expression is fine-tuned to meet the requirements of DNA synthesis in tissues where the maintenance of genome integrity is of high importance.
Collapse
Affiliation(s)
- András Horváth
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Júlia Batki
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Henn
- Institute of Genetics, Hungarian Academy of Sciences, Szeged, Hungary
| | - Tamás Lukacsovich
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Gergely Róna
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Miklós Erdélyi
- Institute of Genetics, Hungarian Academy of Sciences, Szeged, Hungary
| | - Beáta G Vértessy
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
27
|
Hirmondó R, Szabó JE, Nyíri K, Tarjányi S, Dobrotka P, Tóth J, Vértessy BG. Cross-species inhibition of dUTPase via the Staphylococcal Stl protein perturbs dNTP pool and colony formation in Mycobacterium. DNA Repair (Amst) 2015; 30:21-7. [PMID: 25841100 DOI: 10.1016/j.dnarep.2015.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/11/2022]
Abstract
Proteins responsible for the integrity of the genome are often used targets in drug therapies against various diseases. The inhibitors of these proteins are also important to study the pathways in genome integrity maintenance. A prominent example is Ugi, a well known cross-species inhibitor protein of the enzyme uracil-DNA glycosylase, responsible for uracil excision from DNA. Here, we report that a Staphylococcus pathogenicity island repressor protein called StlSaPIbov1 (Stl) exhibits potent dUTPase inhibition in Mycobacteria. To our knowledge, this is the first indication of a cross-species inhibitor protein for any dUTPase. We demonstrate that the Staphylococcus aureus Stl and the Mycobacterium tuberculosis dUTPase form a stable complex and that in this complex, the enzymatic activity of dUTPase is strongly inhibited. We also found that the expression of the Stl protein in Mycobacterium smegmatis led to highly increased cellular dUTP levels in the mycobacterial cell, this effect being in agreement with its dUTPase inhibitory role. In addition, Stl expression in M. smegmatis drastically decreased colony forming ability, as well, indicating significant perturbation of the phenotype. Therefore, we propose that Stl can be considered to be a cross-species dUTPase inhibitor and may be used as an important reagent in dUTPase inhibition experiments either in vitro/in situ or in vivo.
Collapse
Affiliation(s)
- Rita Hirmondó
- Institute of Enzymology, Research Centre for Natural Sciences (RCNS), Hungarian Academy of Sciences, Budapest, Hungary.
| | - Judit E Szabó
- Institute of Enzymology, Research Centre for Natural Sciences (RCNS), Hungarian Academy of Sciences, Budapest, Hungary; Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Kinga Nyíri
- Institute of Enzymology, Research Centre for Natural Sciences (RCNS), Hungarian Academy of Sciences, Budapest, Hungary; Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Szilvia Tarjányi
- Institute of Enzymology, Research Centre for Natural Sciences (RCNS), Hungarian Academy of Sciences, Budapest, Hungary
| | - Paula Dobrotka
- Institute of Enzymology, Research Centre for Natural Sciences (RCNS), Hungarian Academy of Sciences, Budapest, Hungary; Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Judit Tóth
- Institute of Enzymology, Research Centre for Natural Sciences (RCNS), Hungarian Academy of Sciences, Budapest, Hungary
| | - Beáta G Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences (RCNS), Hungarian Academy of Sciences, Budapest, Hungary; Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary.
| |
Collapse
|
28
|
Horváti K, Bacsa B, Szabó N, Fodor K, Balka G, Rusvai M, Kiss É, Mező G, Grolmusz V, Vértessy B, Hudecz F, Bősze S. Antimycobacterial activity of peptide conjugate of pyridopyrimidine derivative against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Tuberculosis (Edinb) 2015; 95 Suppl 1:S207-11. [PMID: 25728610 DOI: 10.1016/j.tube.2015.02.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
New pyridopyrimidine derivatives were defined using a novel HTS in silico docking method (FRIGATE). The target protein was a dUTPase enzyme (EC 3.6.1.23; Rv2697) which plays a key role in nucleotide biosynthesis of Mycobacterium tuberculosis (Mtb). Top hit molecules were assayed in vitro for their antimycobacterial effect on Mtb H37Rv culture. In order to enhance the cellular uptake rate, the TB820 compound was conjugated to a peptid-based carrier and a nanoparticle type delivery system (polylactide-co-glycolide, PLGA) was applied. The conjugate had relevance to in vitro antitubercular activity with low in vitro and in vivo toxicity. In a Mtb H37Rv infected guinea pig model the in vivo efficacy of orally administrated PLGA encapsulated compound was proven: animals maintained a constant weight gain and no external clinical signs of tuberculosis were observed. All tissue homogenates from lung, liver and kidney were found negative for Mtb, and diagnostic autopsy showed that no significant malformations on the tissues occurred.
Collapse
Affiliation(s)
- Kata Horváti
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest, Hungary
| | - Bernadett Bacsa
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest, Hungary
| | - Nóra Szabó
- Laboratory of Bacteriology, Korányi National Institute for Tuberculosis and Respiratory Medicine, Budapest, Hungary
| | - Kinga Fodor
- Department of State Veterinary Medicine and Agricultural Economics, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - Gyula Balka
- Department of Pathology and Forensic Veterinary Medicine, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - Miklós Rusvai
- Department of Pathology and Forensic Veterinary Medicine, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - Éva Kiss
- Laboratory of Interfaces and Nanostructures, Eötvös L. University, Budapest, Hungary
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest, Hungary
| | - Vince Grolmusz
- Protein Information Technology Group, Eötvös L. University, Budapest, Hungary
| | - Beáta Vértessy
- Institute of Enzimology, Hungarian Academy of Science, Budapest, Hungary
| | - Ferenc Hudecz
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest, Hungary; Department of Organic Chemistry, Eötvös L. University, Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University, Budapest, Hungary.
| |
Collapse
|
29
|
Róna G, Pálinkás HL, Borsos M, Horváth A, Scheer I, Benedek A, Nagy GN, Zagyva I, Vértessy BG. NLS copy-number variation governs efficiency of nuclear import - case study on dUTPases. FEBS J 2014; 281:5463-78. [DOI: 10.1111/febs.13086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 09/10/2014] [Accepted: 09/29/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Gergely Róna
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
- Department of Applied Biotechnology and Food Sciences; Budapest University of Technology and Economics; Hungary
| | - Hajnalka L. Pálinkás
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
- Doctoral School of Multidisciplinary Medical Science; University of Szeged; Hungary
| | - Máté Borsos
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
| | - András Horváth
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
| | - Ildikó Scheer
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
- Department of Applied Biotechnology and Food Sciences; Budapest University of Technology and Economics; Hungary
| | - András Benedek
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
- Department of Applied Biotechnology and Food Sciences; Budapest University of Technology and Economics; Hungary
| | - Gergely N. Nagy
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
- Department of Applied Biotechnology and Food Sciences; Budapest University of Technology and Economics; Hungary
| | - Imre Zagyva
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
| | - Beáta G. Vértessy
- Institute of Enzymology; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
- Department of Applied Biotechnology and Food Sciences; Budapest University of Technology and Economics; Hungary
| |
Collapse
|
30
|
Migliardo F, Tallima H, El Ridi R. Is there a sphingomyelin-based hydrogen bond barrier at the mammalian host-schistosome parasite interface? Cell Biochem Biophys 2014; 68:359-67. [PMID: 23943053 DOI: 10.1007/s12013-013-9716-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Schistosomes develop, mature, copulate, lay eggs, and live for years in the mammalian host bloodstream, importing nutrients across the tegument, but entirely impervious to the surrounding elements of the immune system. We have hypothesized that sphingomyelin (SM) in the parasite apical lipid bilayer is responsible for these sieving properties via formation of a tight hydrogen bond network with the surrounding water. Here we have used quasi-elastic neutron scattering for characterizing the diffusion of larval and adult Schistosoma mansoni and adult Schistosoma haematobium in the surrounding medium, under various environmental conditions. The results documented the presence of a hydrogen bond barrier around larvae and adult schistosomes. The hydrogen bond network readily collapses if worms are subjected to hypoxic conditions, likely via activation of the parasite tegument-associated neutral sphingomyelinase, and consequent excessive SM hydrolysis. The slower dynamics of lung-stage larvae as compared to adult worms has been related to the existence of hydrogen-bonded networks of different strength and then to their differential resistance to immune attacks.
Collapse
Affiliation(s)
- Federica Migliardo
- Department of Physics and Earth Sciences, University of Messina, Messina, 98166, Italy,
| | | | | |
Collapse
|
31
|
Szabó JE, Németh V, Papp-Kádár V, Nyíri K, Leveles I, Bendes AÁ, Zagyva I, Róna G, Pálinkás HL, Besztercei B, Ozohanics O, Vékey K, Liliom K, Tóth J, Vértessy BG. Highly potent dUTPase inhibition by a bacterial repressor protein reveals a novel mechanism for gene expression control. Nucleic Acids Res 2014; 42:11912-20. [PMID: 25274731 PMCID: PMC4231751 DOI: 10.1093/nar/gku882] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transfer of phage-related pathogenicity islands of Staphylococcus aureus (SaPI-s) was recently reported to be activated by helper phage dUTPases. This is a novel function for dUTPases otherwise involved in preservation of genomic integrity by sanitizing the dNTP pool. Here we investigated the molecular mechanism of the dUTPase-induced gene expression control using direct techniques. The expression of SaPI transfer initiating proteins is repressed by proteins called Stl. We found that Φ11 helper phage dUTPase eliminates SaPIbov1 Stl binding to its cognate DNA by binding tightly to Stl protein. We also show that dUTPase enzymatic activity is strongly inhibited in the dUTPase:Stl complex and that the dUTPase:dUTP complex is inaccessible to the Stl repressor. Our results disprove the previously proposed G-protein-like mechanism of SaPI transfer activation. We propose that the transfer only occurs if dUTP is cleared from the nucleotide pool, a condition promoting genomic stability of the virulence elements.
Collapse
Affiliation(s)
- Judit E Szabó
- Institutes of Enzymology and Organic Chemistry, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
| | - Veronika Németh
- Institutes of Enzymology and Organic Chemistry, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
| | - Veronika Papp-Kádár
- Institutes of Enzymology and Organic Chemistry, RCNS, Hungarian Academy of Sciences, Budapest, Hungary Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Kinga Nyíri
- Institutes of Enzymology and Organic Chemistry, RCNS, Hungarian Academy of Sciences, Budapest, Hungary Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ibolya Leveles
- Institutes of Enzymology and Organic Chemistry, RCNS, Hungarian Academy of Sciences, Budapest, Hungary Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Abris Á Bendes
- Institutes of Enzymology and Organic Chemistry, RCNS, Hungarian Academy of Sciences, Budapest, Hungary Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Imre Zagyva
- Institutes of Enzymology and Organic Chemistry, RCNS, Hungarian Academy of Sciences, Budapest, Hungary Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gergely Róna
- Institutes of Enzymology and Organic Chemistry, RCNS, Hungarian Academy of Sciences, Budapest, Hungary Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Hajnalka L Pálinkás
- Institutes of Enzymology and Organic Chemistry, RCNS, Hungarian Academy of Sciences, Budapest, Hungary Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary Doctoral School of Multidisciplinary Medical Science, University of Szeged, Szeged, Hungary
| | - Balázs Besztercei
- Institutes of Enzymology and Organic Chemistry, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
| | - Olivér Ozohanics
- Institutes of Enzymology and Organic Chemistry, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
| | - Károly Vékey
- Institutes of Enzymology and Organic Chemistry, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
| | - Károly Liliom
- Institutes of Enzymology and Organic Chemistry, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
| | - Judit Tóth
- Institutes of Enzymology and Organic Chemistry, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beáta G Vértessy
- Institutes of Enzymology and Organic Chemistry, RCNS, Hungarian Academy of Sciences, Budapest, Hungary Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
32
|
Nagy GN, Leveles I, Vértessy BG. Preventive DNA repair by sanitizing the cellular (deoxy)nucleoside triphosphate pool. FEBS J 2014; 281:4207-23. [PMID: 25052017 DOI: 10.1111/febs.12941] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/01/2014] [Accepted: 07/16/2014] [Indexed: 01/24/2023]
Abstract
The occurrence of modified bases in DNA is attributed to some major factors: incorporation of altered nucleotide building blocks and chemical reactions or radiation effects on bases within the DNA structure. Several enzyme families are involved in preventing the incorporation of noncanonical bases playing a 'sanitizing' role. The catalytic mechanism of action of these enzymes has been revealed for a number of representatives in clear structural and kinetic detail. In this review, we focus in detail on those examples where clear evidence has been produced using high-resolution structural studies. Comparing the protein fold and architecture of the enzyme active sites, two main classes of sanitizing deoxyribonucleoside triphosphate pyrophosphatases can be assigned that are distinguished by the site of nucleophilic attack. In enzymes associated with attack at the α-phosphorus, it is shown that coordination of the γ-phosphate group is also ensured by multiple interactions. By contrast, enzymes catalyzing attack at the β-phosphorus atom mainly coordinate the α- and the β-phosphate only. Characteristic differences are also observed with respect to the role of the metal ion cofactor (Mg(2+) ) and the coordination of nucleophilic water. Using different catalytic mechanisms embedded in different protein folds, these enzymes present a clear example of convergent evolution.
Collapse
Affiliation(s)
- Gergely N Nagy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Hungary
| | | | | |
Collapse
|
33
|
Szalkai B, Scheer I, Nagy K, Vértessy BG, Grolmusz V. The metagenomic telescope. PLoS One 2014; 9:e101605. [PMID: 25054802 PMCID: PMC4108317 DOI: 10.1371/journal.pone.0101605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/09/2014] [Indexed: 11/19/2022] Open
Abstract
Next generation sequencing technologies led to the discovery of numerous new microbe species in diverse environmental samples. Some of the new species contain genes never encountered before. Some of these genes encode proteins with novel functions, and some of these genes encode proteins that perform some well-known function in a novel way. A tool, named the Metagenomic Telescope, is described here that applies artificial intelligence methods, and seems to be capable of identifying new protein functions even in the well-studied model organisms. As a proof-of-principle demonstration of the Metagenomic Telescope, we considered DNA repair enzymes in the present work. First we identified proteins in DNA repair in well-known organisms (i.e., proteins in base excision repair, nucleotide excision repair, mismatch repair and DNA break repair); next we applied multiple alignments and then built hidden Markov profiles for each protein separately, across well-researched organisms; next, using public depositories of metagenomes, originating from extreme environments, we identified DNA repair genes in the samples. While the phylogenetic classification of the metagenomic samples are not typically available, we hypothesized that some very special DNA repair strategies need to be applied in bacteria and Archaea living in those extreme circumstances. It is a difficult task to evaluate the results obtained from mostly unknown species; therefore we applied again the hidden Markov profiling: for the identified DNA repair genes in the extreme metagenomes, we prepared new hidden Markov profiles (for each genes separately, subsequent to a cluster analysis); and we searched for similarities to those profiles in model organisms. We have found well known DNA repair proteins, numerous proteins with unknown functions, and also proteins with known, but different functions in the model organisms.
Collapse
Affiliation(s)
- Balázs Szalkai
- PIT Bioinformatics Group, Eötvös University, Budapest, Hungary
| | - Ildikó Scheer
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kinga Nagy
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beáta G. Vértessy
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
- * E-mail: (BGV); (VG)
| | - Vince Grolmusz
- PIT Bioinformatics Group, Eötvös University, Budapest, Hungary
- Uratim Ltd., Budapest, Hungary
- * E-mail: (BGV); (VG)
| |
Collapse
|
34
|
Migliardo F, Salmeron C, Bayan N. Mobility and temperature resistance of trehalose mycolates as key characteristics of the outer membrane ofMycobacterium tuberculosis. J Biomol Struct Dyn 2014; 33:447-59. [DOI: 10.1080/07391102.2014.887032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Barabás O, Németh V, Bodor A, Perczel A, Rosta E, Kele Z, Zagyva I, Szabadka Z, Grolmusz VI, Wilmanns M, Vértessy BG. Catalytic mechanism of α-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling. Nucleic Acids Res 2013; 41:10542-55. [PMID: 23982515 PMCID: PMC3905902 DOI: 10.1093/nar/gkt756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 12/26/2022] Open
Abstract
Enzymatic synthesis and hydrolysis of nucleoside phosphate compounds play a key role in various biological pathways, like signal transduction, DNA synthesis and metabolism. Although these processes have been studied extensively, numerous key issues regarding the chemical pathway and atomic movements remain open for many enzymatic reactions. Here, using the Mason-Pfizer monkey retrovirus dUTPase, we study the dUTPase-catalyzed hydrolysis of dUTP, an incorrect DNA building block, to elaborate the mechanistic details at high resolution. Combining mass spectrometry analysis of the dUTPase-catalyzed reaction carried out in and quantum mechanics/molecular mechanics (QM/MM) simulation, we show that the nucleophilic attack occurs at the α-phosphate site. Phosphorus-31 NMR spectroscopy ((31)P-NMR) analysis confirms the site of attack and shows the capability of dUTPase to cleave the dUTP analogue α,β-imido-dUTP, containing the imido linkage usually regarded to be non-hydrolyzable. We present numerous X-ray crystal structures of distinct dUTPase and nucleoside phosphate complexes, which report on the progress of the chemical reaction along the reaction coordinate. The presently used combination of diverse structural methods reveals details of the nucleophilic attack and identifies a novel enzyme-product complex structure.
Collapse
Affiliation(s)
- Orsolya Barabás
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Veronika Németh
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Andrea Bodor
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - András Perczel
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Edina Rosta
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zoltán Kele
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Imre Zagyva
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zoltán Szabadka
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Vince I. Grolmusz
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Matthias Wilmanns
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Beáta G. Vértessy
- Laboratory of Genome Metabolism, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1113, Hungary, Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg D-69117, Germany, Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Protein Modelling Group MTA-ELTE, Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary, Department of Chemistry, King's College London, London, SE1 1UL, UK, Department of Medical Chemistry, University of Szeged, Hungary, Department of Computer Science, Eötvös Loránd University, Budapest, Hungary, European Molecular Biology Laboratory, Hamburg Outstation, Hamburg D-22603, Germany and Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
36
|
Leveles I, Németh V, Szabó JE, Harmat V, Nyíri K, Bendes ÁÁ, Papp-Kádár V, Zagyva I, Róna G, Ozohanics O, Vékey K, Tóth J, Vértessy BG. Structure and enzymatic mechanism of a moonlighting dUTPase. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2298-308. [PMID: 24311572 DOI: 10.1107/s0907444913021136] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/29/2013] [Indexed: 02/08/2023]
Abstract
Genome integrity requires well controlled cellular pools of nucleotides. dUTPases are responsible for regulating cellular dUTP levels and providing dUMP for dTTP biosynthesis. In Staphylococcus, phage dUTPases are also suggested to be involved in a moonlighting function regulating the expression of pathogenicity-island genes. Staphylococcal phage trimeric dUTPase sequences include a specific insertion that is not found in other organisms. Here, a 2.1 Å resolution three-dimensional structure of a ϕ11 phage dUTPase trimer with complete localization of the phage-specific insert, which folds into a small β-pleated mini-domain reaching out from the dUTPase core surface, is presented. The insert mini-domains jointly coordinate a single Mg2+ ion per trimer at the entrance to the threefold inner channel. Structural results provide an explanation for the role of Asp95, which is suggested to have functional significance in the moonlighting activity, as the metal-ion-coordinating moiety potentially involved in correct positioning of the insert. Enzyme-kinetics studies of wild-type and mutant constructs show that the insert has no major role in dUTP binding or cleavage and provide a description of the elementary steps (fast binding of substrate and release of products). In conclusion, the structural and kinetic data allow insights into both the phage-specific characteristics and the generally conserved traits of ϕ11 phage dUTPase.
Collapse
Affiliation(s)
- Ibolya Leveles
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 29 Karolina Street, 1113 Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Migliardo F, Salmeron C, Bayan N. A neutron scattering study on the stability of trehalose mycolates under thermal stress. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2012.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
García-Nafría J, Timm J, Harrison C, Turkenburg JP, Wilson KS. Tying down the arm in Bacillus dUTPase: structure and mechanism. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1367-80. [PMID: 23897460 DOI: 10.1107/s090744491300735x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/18/2013] [Indexed: 03/07/2023]
Abstract
Homotrimeric dUTPases contain three active sites, each formed by five conserved sequence motifs originating from all three subunits. The essential fifth motif lies in a flexible C-terminal arm which becomes ordered during catalysis and is disordered in most crystal structures. Previously, it has been shown that the two Bacillus subtilis dUTPases, YncF and YosS, differ from their orthologues in the position in the sequence of the essential Phe-lid residue, which stacks against the uracil base, and in the conformation of the general base aspartate, which points away from the active site. Here, three structures of the complex of YncF with dU-PPi-Mg(2+) and the structure of YosS complexed with dUMP are reported. dU-PPi-Mg(2+) triggers the ordering of both the C-terminal arm and a loop (residues 18-26) which is uniquely disordered in the Bacillus dUTPases. The dUMP complex suggests two stages in substrate release. Limited proteolysis experiments allowed those complexes in which C-terminal cleavage is hindered and those in which it can be assumed to be ordered to be identified. The results lead to the suggestion that dUpNHpp is not a perfect substrate mimic, at least for the B. subtilis enzymes, and provide new insights into the mechanism of these two dUTPases in comparison to their orthologues. The enzyme mechanism is reviewed using the present and previous crystal structures as snapshots along the reaction coordinate.
Collapse
Affiliation(s)
- Javier García-Nafría
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | | | | | | | | |
Collapse
|
39
|
Nagy GN, Marton L, Krámos B, Oláh J, Révész Á, Vékey K, Delsuc F, Hunyadi-Gulyás É, Medzihradszky KF, Lavigne M, Vial H, Cerdan R, Vértessy BG. Evolutionary and mechanistic insights into substrate and product accommodation of CTP:phosphocholine cytidylyltransferase from Plasmodium falciparum. FEBS J 2013; 280:3132-48. [PMID: 23578277 DOI: 10.1111/febs.12282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/08/2013] [Accepted: 03/26/2013] [Indexed: 12/31/2022]
Abstract
The enzyme CTP:phosphocholine cytidylyltransferase (CCT) is essential in the lipid biosynthesis of Plasmodia (Haemosporida), presenting a promising antimalarial target. Here, we identified two independent gene duplication events of CCT within Apicomplexa and characterized a truncated construct of Plasmodium falciparum CCT that forms a dimer resembling the molecular architecture of CCT enzymes from other sources. Based on biophysical and enzyme kinetics methods, our data show that the CDP-choline product of the CCT enzymatic reaction binds to the enzyme considerably stronger than either substrate (CTP or choline phosphate). Interestingly, in the presence of Mg²⁺ , considered to be a cofactor of the enzyme, the binding of the CTP substrate is attenuated by a factor of 5. The weaker binding of CTP:Mg²⁺ , similarly to the related enzyme family of aminoacyl tRNA synthetases, suggests that, with lack of Mg²⁺ , positively charged side chain(s) of CCT may contribute to CTP accommodation. Thermodynamic investigations by isothermal titration calorimetry and fluorescent spectroscopy studies indicate that accommodation of the choline phosphate moiety in the CCT active site is different when it appears on its own as one of the substrates or when it is linked to the CDP-choline product. A tryptophan residue within the active site is identified as a useful internal fluorescence sensor of enzyme-ligand binding. Results indicate that the catalytic mechanism of Plasmodium falciparum CCT may involve conformational changes affecting the choline subsite of the enzyme.
Collapse
Affiliation(s)
- Gergely N Nagy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Horváth A, Békési A, Muha V, Erdélyi M, Vértessy BG. Expanding the DNA alphabet in the fruit fly: uracil enrichment in genomic DNA. Fly (Austin) 2012; 7:23-7. [PMID: 23238493 DOI: 10.4161/fly.23192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DNA integrity is under the control of multiple pathways of nucleotide metabolism and DNA damage recognition and repair. Unusual sets of protein factors involved in these control mechanisms may result in tolerance and accumulation of non-canonical bases within the DNA. We investigate the presence of uracil in genomic DNA of Drosophila melanogaster. Results indicate a developmental pattern and strong correlations between uracil-DNA levels, dUTPase expression and developmental fate of different tissues. The intriguing lack of the catalytically most efficient uracil-DNA glycosylase in Drosophila melanogaster may be a general attribute of Holometabola and is suggested to be involved in the specific characteristics of uracil-DNA metabolism in these insects.
Collapse
Affiliation(s)
- András Horváth
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | |
Collapse
|
41
|
Pecsi I, Hirmondo R, Brown AC, Lopata A, Parish T, Vertessy BG, Tóth J. The dUTPase enzyme is essential in Mycobacterium smegmatis. PLoS One 2012; 7:e37461. [PMID: 22655049 PMCID: PMC3360063 DOI: 10.1371/journal.pone.0037461] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/20/2012] [Indexed: 02/06/2023] Open
Abstract
Thymidine biosynthesis is essential in all cells. Inhibitors of the enzymes involved in this pathway (e.g. methotrexate) are thus frequently used as cytostatics. Due to its pivotal role in mycobacterial thymidylate synthesis dUTPase, which hydrolyzes dUTP into the dTTP precursor dUMP, has been suggested as a target for new antitubercular agents. All mycobacterial genomes encode dUTPase with a mycobacteria-specific surface loop absent in the human dUTPase. Using Mycobacterium smegmatis as a fast growing model for Mycobacterium tuberculosis, we demonstrate that dUTPase knock-out results in lethality that can be reverted by complementation with wild-type dUTPase. Interestingly, a mutant dUTPase gene lacking the genus-specific loop was unable to complement the knock-out phenotype. We also show that deletion of the mycobacteria-specific loop has no major effect on dUTPase enzymatic properties in vitro and thus a yet to be identified loop-specific function seems to be essential within the bacterial cell context. In addition, here we demonstrated that Mycobacterium tuberculosis dUTPase is fully functional in Mycobacterium smegmatis as it rescues the lethal knock-out phenotype. Our results indicate the potential of dUTPase as a target for antitubercular drugs and identify a genus-specific surface loop on the enzyme as a selective target.
Collapse
Affiliation(s)
- Ildiko Pecsi
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Rita Hirmondo
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
| | - Amanda C. Brown
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Anna Lopata
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tanya Parish
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Beata G. Vertessy
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, Hungary
- * E-mail: (BGV); (JT)
| | - Judit Tóth
- Institute of Enzymology, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail: (BGV); (JT)
| |
Collapse
|
42
|
Horváti K, Bacsa B, Szabó N, Dávid S, Mező G, Grolmusz V, Vértessy B, Hudecz F, Bősze S. Enhanced cellular uptake of a new, in silico identified antitubercular candidate by peptide conjugation. Bioconjug Chem 2012; 23:900-7. [PMID: 22515329 DOI: 10.1021/bc200221t] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mycobacterium tuberculosis is a successful pathogen, and it can survive in infected macrophages in dormant phase for years and decades. The therapy of tuberculosis takes at least six months, and the slow-growing bacterium is resistant to many antibiotics. The development of novel antimicrobials to counter the emergence of bacteria resistant to current therapies is urgently needed. In silico docking methods and structure-based drug design are useful bioinformatics tools for identifying new agents. A docking experiment to M. tuberculosis dUTPase enzyme, which plays a key role in the bacterial metabolism, has resulted in 10 new antitubercular drug candidates. The uptake of antituberculars by infected macrophages is limited by extracellular diffusion. The optimization of the cellular uptake by drug delivery systems can decrease the used dosages and the length of the therapy, and it can also enhance the bioavailability of the drug molecule. In this study, improved in vitro efficacy was achieved by attaching the TB5 antitubercular drug candidate to peptide carriers. As drug delivery components, (i) an antimicrobial granulysin peptide and (ii) a receptor specific tuftsin peptide were used. An efficient synthetic approach was developed to conjugate the in silico identified TB5 coumarone derivative to the carrier peptides. The compounds were effective on M. tuberculosis H37Rv culture in vitro; the chemical linkage did not affect the antimycobacterial activity. Here, we show that the OT20 tuftsin and GranF2 granulysin peptide conjugates have dramatically enhanced uptake into human MonoMac6 cells. The TB5-OT20 tuftsin conjugate exhibited significant antimycobacterial activity on M. tuberculosis H37Rv infected MonoMac6 cells and inhibited intracellular bacteria.
Collapse
Affiliation(s)
- Kata Horváti
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös L. University , Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Merényi G, Kovári J, Tóth J, Takács E, Zagyva I, Erdei A, Vértessy BG. Cellular response to efficient dUTPase RNAi silencing in stable HeLa cell lines perturbs expression levels of genes involved in thymidylate metabolism. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 30:369-90. [PMID: 21780905 DOI: 10.1080/15257770.2011.582849] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
dUTPase is involved in preserving DNA integrity in cells. We report an efficient dUTPase silencing by RNAi-based system in stable human cell line. Repression of dUTPase induced specific expression level increments for thymidylate kinase and thymidine kinase, and also an increased sensitization to 5-fluoro-2'-deoxyuridine and 5-fluoro-uracil. The catalytic mechanism of dUTPase was investigated for 5-fluoro-dUTP. The 5F-substitution on the uracil ring of the substrate did not change the kinetic mechanism of dUTP hydrolysis by dUTPase. Results indicate that RNAi silencing of dUTPase induces a complex cellular response wherein sensitivity towards fluoropyrimidines and gene expression levels of related enzymes are both modulated.
Collapse
Affiliation(s)
- Gábor Merényi
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
44
|
Leveles I, Róna G, Zagyva I, Bendes Á, Harmat V, Vértessy BG. Crystallization and preliminary crystallographic analysis of dUTPase from the φ11 helper phage of Staphylococcus aureus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1411-3. [PMID: 22102244 PMCID: PMC3212463 DOI: 10.1107/s1744309111034580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/22/2011] [Indexed: 11/10/2022]
Abstract
Staphylococcus aureus superantigen-carrying pathogenicity islands (SaPIs) play a determinant role in spreading virulence genes among bacterial populations that constitute a major health hazard. Repressor (Stl) proteins are responsible for the transcriptional regulation of pathogenicity island genes. Recently, a derepressing interaction between the repressor Stl SaPIbov1 and dUTPase from the φ11 helper phage has been suggested [Tormo-Más et al. (2010), Nature (London), 465, 779-782]. Towards elucidation of the molecular mechanism of this interaction, this study reports the expression, purification and X-ray analysis of φ11 dUTPase, which contains a phage-specific polypeptide segment that is not present in other dUTPases. Crystals were obtained using the hanging-drop vapour-diffusion method at room temperature. Data were collected to 2.98 Å resolution from one type of crystal. The crystal of φ11 dUTPase belonged to the cubic space group I23, with unit-cell parameters a = 98.16 Å, α = β = γ = 90.00°.
Collapse
Affiliation(s)
- Ibolya Leveles
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Róna
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Imre Zagyva
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ábris Bendes
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Veronika Harmat
- Hungarian Academy of Sciences–Eötvös Loránd University Protein Modeling Research Group, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Beáta G. Vértessy
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
- Hungarian Academy of Sciences–Eötvös Loránd University Protein Modeling Research Group, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
- Department of Applied Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
45
|
Nucleotide pyrophosphatase employs a P-loop-like motif to enhance catalytic power and NDP/NTP discrimination. Proc Natl Acad Sci U S A 2011; 108:14437-42. [PMID: 21831832 DOI: 10.1073/pnas.1013872108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the potential (d)NDP/(d)NTP discrimination mechanisms in nucleotide pyrophosphatases. Here, we report that dUTPase, an essential nucleotide pyrophosphatase, uses a C-terminal P-loop-like sequence in a unique mechanism for substrate discrimination and efficient hydrolysis. Our spectroscopy and transient kinetics results on human dUTPase mutants combined with previous structural studies indicate that (i) H-bond interactions between the γ-phosphate and the P-loop-like motif V promote the catalytically competent conformation of the reaction center at the α-phosphate group; (ii) these interactions accelerate the chemical step of the kinetic cycle and that (iii) hydrolysis occurs very slowly or not at all in the absence of the γ-phosphate--motif V interactions, i.e., in dUDP, dUDP.BeFx, or in the motif V-deleted mutant. The physiological role of dUTPase is to set cellular dUTPdTTP ratios and prevent injurious uracil incorporation into DNA. Based upon comparison with related pyrophosphate generating (d)NTPases, we propose that the unusual use of a P-loop-like motif enables dUTPases to achieve efficient catalysis of dUTP hydrolysis and efficient discrimination against dUDP at the same time. These specifics might have been advantageous on the appearance of uracil-DNA repair. The similarities and differences between dUTPase motif V and the P-loop (or Walker A sequence) commonly featured by ATP- and GTPases offer insight into functional adaptation to various nucleotide hydrolysis tasks.
Collapse
|
46
|
Bozóky Z, Róna G, Klement É, Medzihradszky KF, Merényi G, Vértessy BG, Friedrich P. Calpain-catalyzed proteolysis of human dUTPase specifically removes the nuclear localization signal peptide. PLoS One 2011; 6:e19546. [PMID: 21625588 PMCID: PMC3098232 DOI: 10.1371/journal.pone.0019546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Accepted: 04/01/2011] [Indexed: 11/19/2022] Open
Abstract
Background Calpain proteases drive intracellular signal transduction via specific proteolysis of multiple substrates upon Ca2+-induced activation. Recently, dUTPase, an enzyme essential to maintain genomic integrity, was identified as a physiological calpain substrate in Drosophila cells. Here we investigate the potential structural/functional significance of calpain-activated proteolysis of human dUTPase. Methodology/Principal Findings Limited proteolysis of human dUTPase by mammalian m-calpain was investigated in the presence and absence of cognate ligands of either calpain or dUTPase. Significant proteolysis was observed only in the presence of Ca(II) ions, inducing calpain action. The presence or absence of the dUTP-analogue α,β-imido-dUTP did not show any effect on Ca2+-calpain-induced cleavage of human dUTPase. The catalytic rate constant of dUTPase was unaffected by calpain cleavage. Gel electrophoretic analysis showed that Ca2+-calpain-induced cleavage of human dUTPase resulted in several distinctly observable dUTPase fragments. Mass spectrometric identification of the calpain-cleaved fragments identified three calpain cleavage sites (between residues 4SE5; 7TP8; and 31LS32). The cleavage between the 31LS32 peptide bond specifically removes the flexible N-terminal nuclear localization signal, indispensable for cognate localization. Conclusions/Significance Results argue for a mechanism where Ca2+-calpain may regulate nuclear availability and degradation of dUTPase.
Collapse
Affiliation(s)
- Zoltán Bozóky
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Róna
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Éva Klement
- Proteomics Research Group, Biological Research Centre (BRC), Hungarian Academy of Sciences, Szeged, Hungary
| | - Katalin F. Medzihradszky
- Proteomics Research Group, Biological Research Centre (BRC), Hungarian Academy of Sciences, Szeged, Hungary
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Gábor Merényi
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beáta G. Vértessy
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Applied Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
- * E-mail: (BGV); (PF)
| | - Peter Friedrich
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail: (BGV); (PF)
| |
Collapse
|
47
|
García-Nafría J, Burchell L, Takezawa M, Rzechorzek NJ, Fogg MJ, Wilson KS. The structure of the genomic Bacillus subtilis dUTPase: novel features in the Phe-lid. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:953-61. [PMID: 20823546 DOI: 10.1107/s0907444910026272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 07/04/2010] [Indexed: 11/11/2022]
Abstract
dUTPases are a ubiquitous family of enzymes that are essential for all organisms and catalyse the breakdown of 2-deoxyuridine triphosphate (dUTP). In Bacillus subtilis there are two homotrimeric dUTPases: a genomic and a prophage form. Here, the structures of the genomic dUTPase and of its complex with the substrate analogue dUpNHpp and calcium are described, both at 1.85 A resolution. The overall fold resembles that of previously solved trimeric dUTPases. The C-terminus, which contains one of the conserved sequence motifs, is disordered in both structures. The crystal of the complex contains six independent protomers which accommodate six dUpNHpp molecules, with three triphosphates in the trans conformation and the other three in the active gauche conformation. The structure of the complex confirms the role of several key residues that are involved in ligand binding and the position of the catalytic water. Asp82, which has previously been proposed to act as a general base, points away from the active site. In the complex Ser64 reorients in order to hydrogen bond the phosphate chain of the substrate. A novel feature has been identified: the position in the sequence of the ;Phe-lid', which packs against the uracil moiety, is adjacent to motif III, whereas in all other dUTPase structures the lid is in a conserved position in motif V of the flexible C-terminal arm. This requires a reconsideration of some aspects of the accepted mechanism.
Collapse
|
48
|
Pecsi I, Leveles I, Harmat V, Vertessy BG, Toth J. Aromatic stacking between nucleobase and enzyme promotes phosphate ester hydrolysis in dUTPase. Nucleic Acids Res 2010; 38:7179-86. [PMID: 20601405 PMCID: PMC2978360 DOI: 10.1093/nar/gkq584] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aromatic interactions are well-known players in molecular recognition but their catalytic role in biological systems is less documented. Here, we report that a conserved aromatic stacking interaction between dUTPase and its nucleotide substrate largely contributes to the stabilization of the associative type transition state of the nucleotide hydrolysis reaction. The effect of the aromatic stacking on catalysis is peculiar in that uracil, the aromatic moiety influenced by the aromatic interaction is relatively distant from the site of hydrolysis at the alpha-phosphate group. Using crystallographic, kinetics, optical spectroscopy and thermodynamics calculation approaches we delineate a possible mechanism by which rate acceleration is achieved through the remote π–π interaction. The abundance of similarly positioned aromatic interactions in various nucleotide hydrolyzing enzymes (e.g. most families of ATPases) raises the possibility of the reported phenomenon being a general component of the enzymatic catalysis of phosphate ester hydrolysis.
Collapse
Affiliation(s)
- Ildiko Pecsi
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | |
Collapse
|
49
|
Takács E, Nagy G, Leveles I, Harmat V, Lopata A, Tóth J, Vértessy BG. Direct contacts between conserved motifs of different subunits provide major contribution to active site organization in human and mycobacterial dUTPases. FEBS Lett 2010; 584:3047-54. [PMID: 20493855 DOI: 10.1016/j.febslet.2010.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 05/12/2010] [Accepted: 05/13/2010] [Indexed: 10/19/2022]
Abstract
dUTP pyrophosphatases (dUTPases) are essential for genome integrity. Recent results allowed characterization of the role of conserved residues. Here we analyzed the Asp/Asn mutation within conserved Motif I of human and mycobacterial dUTPases, wherein the Asp residue was previously implicated in Mg(2+)-coordination. Our results on transient/steady-state kinetics, ligand binding and a 1.80 A resolution structure of the mutant mycobacterial enzyme, in comparison with wild type and C-terminally truncated structures, argue that this residue has a major role in providing intra- and intersubunit contacts, but is not essential for Mg(2+) accommodation. We conclude that in addition to the role of conserved motifs in substrate accommodation, direct subunit interaction between protein atoms of active site residues from different conserved motifs are crucial for enzyme function.
Collapse
Affiliation(s)
- Eniko Takács
- Institute of Enzymology, BRC, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
50
|
Moonlighting bacteriophage proteins derepress staphylococcal pathogenicity islands. Nature 2010; 465:779-82. [PMID: 20473284 DOI: 10.1038/nature09065] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 04/01/2010] [Indexed: 11/09/2022]
Abstract
Staphylococcal superantigen-carrying pathogenicity islands (SaPIs) are discrete, chromosomally integrated units of approximately 15 kilobases that are induced by helper phages to excise and replicate. SaPI DNA is then efficiently encapsidated in phage-like infectious particles, leading to extremely high frequencies of intra- as well as intergeneric transfer. In the absence of helper phage lytic growth, the island is maintained in a quiescent prophage-like state by a global repressor, Stl, which controls expression of most of the SaPI genes. Here we show that SaPI derepression is effected by a specific, non-essential phage protein that binds to Stl, disrupting the Stl-DNA complex and thereby initiating the excision-replication-packaging cycle of the island. Because SaPIs require phage proteins to be packaged, this strategy assures that SaPIs will be transferred once induced. Several different SaPIs are induced by helper phage 80alpha and, in each case, the SaPI commandeers a different non-essential phage protein for its derepression. The highly specific interactions between different SaPI repressors and helper-phage-encoded antirepressors represent a remarkable evolutionary adaptation involved in pathogenicity island mobilization.
Collapse
|