1
|
Liao TT, Chen YH, Li ZY, Hsiao AC, Huang YL, Hao RX, Tai SK, Chu PY, Shih JW, Kung HJ, Yang MH. Hypoxia-Induced Long Noncoding RNA HIF1A-AS2 Regulates Stability of MHC Class I Protein in Head and Neck Cancer. Cancer Immunol Res 2024; 12:1468-1484. [PMID: 38920249 PMCID: PMC11443317 DOI: 10.1158/2326-6066.cir-23-0622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/14/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Intratumoral hypoxia not only promotes angiogenesis and invasiveness of cancer cells but also creates an immunosuppressive microenvironment that facilitates tumor progression. However, the mechanisms by which hypoxic tumor cells disseminate immunosuppressive signals remain unclear. In this study, we demonstrate that a hypoxia-induced long noncoding RNA HIF1A Antisense RNA 2 (HIF1A-AS2) is upregulated in hypoxic tumor cells and hypoxic tumor-derived exosomes in head and neck squamous cell carcinoma (HNSCC). Hypoxia-inducible factor 1 alpha (HIF1α) was found to directly bind to the regulatory region of HIF1A-AS2 to enhance its expression. HIF1A-AS2 reduced the protein stability of major histocompatibility complex class I (MHC-I) by promoting the interaction between the autophagy cargo receptor neighbor of BRCA1 gene 1 (NBR1) protein and MHC-I, thereby increasing the autophagic degradation of MHC-I. In HNSCC samples, the expression of HIF1A-AS2 was found to correlate with hypoxic signatures and advanced clinical stages. Patients with high HIF1α and low HLA-ABC expression showed reduced infiltration of CD8+ T cells. These findings define a mechanism of hypoxia-mediated immune evasion in HNSCC through downregulation of antigen-presenting machinery via intracellular or externalized hypoxia-induced long noncoding RNA.
Collapse
Affiliation(s)
- Tsai-Tsen Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Cancer Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Yu-Hsien Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Zih-Yu Li
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - An-Ching Hsiao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ya-Li Huang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ruo-Xin Hao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Shyh-Kuan Tai
- Department of Otolaryngology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Pen-Yuan Chu
- Department of Otolaryngology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Jing-Wen Shih
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Hsing-Jien Kung
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan.
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, California.
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Cancer and Immunology Research Center, National Yang Ming Chiao University, Taipei, Taiwan.
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.
- Department of Research and Education, Taipei City Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Cui Z, Cong M, Yin S, Li Y, Ye Y, Liu X, Tang J. Role of protein degradation systems in colorectal cancer. Cell Death Discov 2024; 10:141. [PMID: 38485957 PMCID: PMC10940631 DOI: 10.1038/s41420-023-01781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 03/18/2024] Open
Abstract
Protein degradation is essential for maintaining protein homeostasis. The ubiquitin‒proteasome system (UPS) and autophagy-lysosome system are the two primary pathways responsible for protein degradation and directly related to cell survival. In malignant tumors, the UPS plays a critical role in managing the excessive protein load caused by cancer cells hyperproliferation. In this review, we provide a comprehensive overview of the dual roles played by the UPS and autolysosome system in colorectal cancer (CRC), elucidating their impact on the initiation and progression of this disease while also highlighting their compensatory relationship. Simultaneously targeting both protein degradation pathways offers new promise for enhancing treatment efficacy against CRC. Additionally, apoptosis is closely linked to ubiquitination and autophagy, and caspases degrade proteins. A thorough comprehension of the interplay between various protein degradation pathways is highly important for clarifying the mechanism underlying the onset and progression of CRC.
Collapse
Affiliation(s)
- Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Mingqi Cong
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Shengjie Yin
- Department of Oncology, Chifeng City Hospital, Chifeng, 024000, China
| | - Yuqi Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Yuguang Ye
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Xi Liu
- Cardiovascular Center, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, 010017, China.
| | - Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
3
|
Bednarczyk M, Muc-Wierzgoń M, Dzięgielewska-Gęsiak S, Waniczek D. Relationship between the Ubiquitin-Proteasome System and Autophagy in Colorectal Cancer Tissue. Biomedicines 2023; 11:3011. [PMID: 38002011 PMCID: PMC10669458 DOI: 10.3390/biomedicines11113011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Dysregulation of the autophagy process via ubiquitin is associated with the occurrence of a number of diseases, including cancer. The present study analyzed the changes in the transcriptional activity of autophagy-related genes and the ubiquitination process (UPS) in colorectal cancer tissue. (2) Methods: The process of measuring the transcriptional activity of autophagy-related genes was analyzed by comparing colorectal cancer samples from four clinical stages I-IV (CS I-IV) of adenocarcinoma to the control (C). The transcriptional activity of genes associated with the UPS pathway was determined via the microarray technique (HG-U133A, Affymetrix). (3) Results: Of the selected genes, only PTEN-induced kinase 1 (PINK1) indicated statistical significance for all groups of colon cancer tissue transcriptome compared to the control. The transcriptional activity of the protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene increased in all stages of the cancer, but the p-value was only less than 0.05 in CSIV vs. C. Forkhead box O1 (FOXO 1) and ubiquitin B (UBB) are statistically overexpressed in CSI. (4) Conclusions: The pathological expression changes in the studied proteins observed especially in the early stages of colorectal cancer suggest that the dysregulation of ubiquitination and autophagy processes occur during early neoplastic transformation. Stopping or slowing down the processes of removal of damaged proteins and their accumulation may contribute to tumor progression and poor prognosis.
Collapse
Affiliation(s)
- Martyna Bednarczyk
- Department of Hematology and Cancer Prevention, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Małgorzata Muc-Wierzgoń
- Department of Preventive Medicine, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | | | - Dariusz Waniczek
- Department of Surgical Nursing and Propaedeutics of Surgery, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| |
Collapse
|
4
|
Anand U, Dey A, Chandel AKS, Sanyal R, Mishra A, Pandey DK, De Falco V, Upadhyay A, Kandimalla R, Chaudhary A, Dhanjal JK, Dewanjee S, Vallamkondu J, Pérez de la Lastra JM. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis 2023; 10:1367-1401. [PMID: 37397557 PMCID: PMC10310991 DOI: 10.1016/j.gendis.2022.02.007] [Citation(s) in RCA: 269] [Impact Index Per Article: 269.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022] Open
Abstract
Cancer is an abnormal state of cells where they undergo uncontrolled proliferation and produce aggressive malignancies that causes millions of deaths every year. With the new understanding of the molecular mechanism(s) of disease progression, our knowledge about the disease is snowballing, leading to the evolution of many new therapeutic regimes and their successive trials. In the past few decades, various combinations of therapies have been proposed and are presently employed in the treatment of diverse cancers. Targeted drug therapy, immunotherapy, and personalized medicines are now largely being employed, which were not common a few years back. The field of cancer discoveries and therapeutics are evolving fast as cancer type-specific biomarkers are progressively being identified and several types of cancers are nowadays undergoing systematic therapies, extending patients' disease-free survival thereafter. Although growing evidence shows that a systematic and targeted approach could be the future of cancer medicine, chemotherapy remains a largely opted therapeutic option despite its known side effects on the patient's physical and psychological health. Chemotherapeutic agents/pharmaceuticals served a great purpose over the past few decades and have remained the frontline choice for advanced-stage malignancies where surgery and/or radiation therapy cannot be prescribed due to specific reasons. The present report succinctly reviews the existing and contemporary advancements in chemotherapy and assesses the status of the enrolled drugs/pharmaceuticals; it also comprehensively discusses the emerging role of specific/targeted therapeutic strategies that are presently being employed to achieve better clinical success/survival rate in cancer patients.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Arvind K. Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Rupa Sanyal
- Department of Botany, Bhairab Ganguly College (affiliated to West Bengal State University), Kolkata, West Bengal 700056, India
| | - Amarnath Mishra
- Faculty of Science and Technology, Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida 201313, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Valentina De Falco
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Naples 80131, Italy
| | - Arun Upadhyay
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandar Sindari, Kishangarh Ajmer, Rajasthan 305817, India
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana 506007, India
| | - Anupama Chaudhary
- Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal, Haryana 132001, India
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-D), Okhla Industrial Estate, Phase III, New Delhi 110020, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Jayalakshmi Vallamkondu
- Department of Physics, National Institute of Technology-Warangal, Warangal, Telangana 506004, India
| | - José M. Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, IPNA-CSIC, San Cristóbal de La Laguna 38206, Tenerife, Spain
| |
Collapse
|
5
|
Kohler V, Andréasson C. Reversible protein assemblies in the proteostasis network in health and disease. Front Mol Biosci 2023; 10:1155521. [PMID: 37021114 PMCID: PMC10067754 DOI: 10.3389/fmolb.2023.1155521] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
While proteins populating their native conformations constitute the functional entities of cells, protein aggregates are traditionally associated with cellular dysfunction, stress and disease. During recent years, it has become clear that large aggregate-like protein condensates formed via liquid-liquid phase separation age into more solid aggregate-like particles that harbor misfolded proteins and are decorated by protein quality control factors. The constituent proteins of the condensates/aggregates are disentangled by protein disaggregation systems mainly based on Hsp70 and AAA ATPase Hsp100 chaperones prior to their handover to refolding and degradation systems. Here, we discuss the functional roles that condensate formation/aggregation and disaggregation play in protein quality control to maintain proteostasis and why it matters for understanding health and disease.
Collapse
Affiliation(s)
- Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Claes Andréasson
- Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
6
|
Diab R, Pilotto F, Saxena S. Autophagy and neurodegeneration: Unraveling the role of C9ORF72 in the regulation of autophagy and its relationship to ALS-FTD pathology. Front Cell Neurosci 2023; 17:1086895. [PMID: 37006471 PMCID: PMC10060823 DOI: 10.3389/fncel.2023.1086895] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
The proper functioning of the cell clearance machinery is critical for neuronal health within the central nervous system (CNS). In normal physiological conditions, the cell clearance machinery is actively involved in the elimination of misfolded and toxic proteins throughout the lifetime of an organism. The highly conserved and regulated pathway of autophagy is one of the important processes involved in preventing and neutralizing pathogenic buildup of toxic proteins that could eventually lead to the development of neurodegenerative diseases (NDs) such as Alzheimer’s disease or Amyotrophic lateral sclerosis (ALS). The most common genetic cause of ALS and frontotemporal dementia (FTD) is a hexanucleotide expansion consisting of GGGGCC (G4C2) repeats in the chromosome 9 open reading frame 72 gene (C9ORF72). These abnormally expanded repeats have been implicated in leading to three main modes of disease pathology: loss of function of the C9ORF72 protein, the generation of RNA foci, and the production of dipeptide repeat proteins (DPRs). In this review, we discuss the normal physiological role of C9ORF72 in the autophagy-lysosome pathway (ALP), and present recent research deciphering how dysfunction of the ALP synergizes with C9ORF72 haploinsufficiency, which together with the gain of toxic mechanisms involving hexanucleotide repeat expansions and DPRs, drive the disease process. This review delves further into the interactions of C9ORF72 with RAB proteins involved in endosomal/lysosomal trafficking, and their role in regulating various steps in autophagy and lysosomal pathways. Lastly, the review aims to provide a framework for further investigations of neuronal autophagy in C9ORF72-linked ALS-FTD as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rim Diab
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Federica Pilotto
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- *Correspondence: Smita Saxena,
| |
Collapse
|
7
|
Pouyo R, Chung K, Delacroix L, Malgrange B. The ubiquitin-proteasome system in normal hearing and deafness. Hear Res 2022; 426:108366. [PMID: 34645583 DOI: 10.1016/j.heares.2021.108366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/03/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022]
Abstract
Post-translational modifications of proteins are essential for the proper development and function of many tissues and organs, including the inner ear. Ubiquitination is a highly selective post-translational modification that involves the covalent conjugation of ubiquitin to a substrate protein. The most common outcome of protein ubiquitination is degradation by the ubiquitin-proteasome system (UPS), preventing the accumulation of misfolded, damaged, and excess proteins. In addition to proteasomal degradation, ubiquitination regulates other cellular processes, such as transcription, translation, endocytosis, receptor activity, and subcellular localization. All of these processes are essential for cochlear development and maintenance, as several studies link impairment of UPS with altered cochlear development and hearing loss. In this review, we provide insight into the well-oiled machinery of UPS with a focus on its confirmed role in normal hearing and deafness and potential therapeutic strategies to prevent and treat UPS-associated hearing loss.
Collapse
Affiliation(s)
- Ronald Pouyo
- GIGA-Stem Cells, Developmental Neurobiology Unit, University of Liege, Avenue hippocrate 15, B36 1st Floor B, Liege 4000, Belgium
| | - Keshi Chung
- GIGA-Stem Cells, Developmental Neurobiology Unit, University of Liege, Avenue hippocrate 15, B36 1st Floor B, Liege 4000, Belgium
| | - Laurence Delacroix
- GIGA-Stem Cells, Developmental Neurobiology Unit, University of Liege, Avenue hippocrate 15, B36 1st Floor B, Liege 4000, Belgium
| | - Brigitte Malgrange
- GIGA-Stem Cells, Developmental Neurobiology Unit, University of Liege, Avenue hippocrate 15, B36 1st Floor B, Liege 4000, Belgium.
| |
Collapse
|
8
|
Ubiquitination-Proteasome System (UPS) and Autophagy Two Main Protein Degradation Machineries in Response to Cell Stress. Cells 2022; 11:cells11050851. [PMID: 35269473 PMCID: PMC8909305 DOI: 10.3390/cells11050851] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
In response to environmental stimuli, cells make a series of adaptive changes to combat the injury, repair the damage, and increase the tolerance to the stress. However, once the damage is too serious to repair, the cells will undergo apoptosis to protect the overall cells through suicidal behavior. Upon external stimulation, some intracellular proteins turn into unfolded or misfolded protein, exposing their hydrophobic regions to form protein aggregation, which may ultimately produce serious damage to the cells. Ubiquitin plays an important role in the degradation of these unnatural proteins by tagging with ubiquitin chains in the ubiquitin-proteasome or autophagy system. If the two processes fail to eliminate the abnormal protein aggregates, the cells will move to apoptosis and death. Dysregulation of ubiquitin-proteasome system (UPS) and autophagy may result in the development of numerous diseases. This review focuses on the molecular mechanisms of UPS and autophagy in clearance of intracellular protein aggregates, and the relationship between dysregulation of ubiquitin network and diseases.
Collapse
|
9
|
Hadfield JD, Sokhi S, Chan GK. Cell Synchronization Techniques for Studying Mitosis. Methods Mol Biol 2022; 2579:73-86. [PMID: 36045199 DOI: 10.1007/978-1-0716-2736-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell synchronization allows the examination of cell cycle progression. Nocodazole and other microtubule poisons have been used extensively to interfere with microtubule function and arrest cells in mitosis. Since microtubules are important for many cellular functions, alternative cell cycle synchronization techniques independent of microtubule inhibition are also used for synchronizing cells in mitosis. Here we describe using nocodazole, STLC, and combining thymidine block with MG132 to synchronize cells in mitosis. These inhibitors are reversible and mitotic cells can be released into the G1 phase synchronously. These techniques can be applied to both Western blot and timelapse imaging to study mitotic progression.
Collapse
Affiliation(s)
- Joanne D Hadfield
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Sargun Sokhi
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Gordon K Chan
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada.
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
10
|
Ma C, Zhang X, Zhao X, Zhang N, Zhou S, Zhang Y, Li P. Predicting the Survival and Immune Landscape of Colorectal Cancer Patients Using an Immune-Related lncRNA Pair Model. Front Genet 2021; 12:690530. [PMID: 34552614 PMCID: PMC8451271 DOI: 10.3389/fgene.2021.690530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background Accumulating evidence has demonstrated that immune-related long non-coding ribonucleic acids (irlncRNAs) can be used as prognostic indicators of overall survival (OS) in patients with colorectal cancer (CRC). Our aim in this research, therefore, was to construct a risk model using irlncRNA pairs with no requirement for a specific expression level, in hope of reliably predicting the prognosis and immune landscape of CRC patients. Methods Clinical and transcriptome profiling data of CRC patients downloaded from the Cancer Genome Atlas (TCGA) database were analyzed to identify differentially expressed (DE) irlncRNAs. The irlncRNA pairs significantly correlated with the prognosis of patients were screened out by univariable Cox regression analysis and a prognostic model was constructed by Lasso and multivariate Cox regression analyses. A receiver operating characteristic (ROC) curve was then plotted, with the area under the curve calculated to confirm the reliability of the model. Based on the optimal cutoff value, CRC patients in the high- or low-risk groups were distinguished, laying the ground for evaluating the risk model from the following perspectives: survival, clinicopathological traits, tumor-infiltrating immune cells (TIICs), antitumor drug efficacy, kinase inhibitor efficacy, and molecules related to immune checkpoints. Results A prognostic model consisting of 15 irlncRNA pairs was constructed, which was found to have a high correlation with patient prognosis in a cohort from the TCGA (p < 0.001, HR = 1.089, 95% CI [1.067-1.112]). According to both univariate and multivariate Cox analyses, this model could be used as an independent prognostic indicator in the TCGA cohort (p < 0.001). Effective differentiation between high- and low-risk patients was also accomplished, on the basis of aggressive clinicopathological characteristics, sensitivity to antitumor drugs, and kinase inhibitors, the tumor immune infiltration status, and the expression levels of specific molecules related to immune checkpoints. Conclusion The prognostic model established with irlncRNA pairs is a promising indicator for prognosis prediction in CRC patients.
Collapse
Affiliation(s)
- Chao Ma
- Medical School of Chinese PLA, Beijing, China.,Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Proteomics Beijing Proteome Research Center National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xudong Zhao
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Nan Zhang
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Sixin Zhou
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yonghui Zhang
- Medical School of Chinese PLA, Beijing, China.,Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Peiyu Li
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Saffari-Chaleshtori J, Asadi-Samani M, Rasouli M, Shafiee SM. Autophagy and Ubiquitination as Two Major Players in Colorectal Cancer: A Review on Recent Patents. Recent Pat Anticancer Drug Discov 2021; 15:143-153. [PMID: 32603286 DOI: 10.2174/1574892815666200630103626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND As one of the most commonly diagnosed cancers among men and women, Colorectal Cancer (CRC) leads to high rates of morbidity and mortality across the globe. Recent anti- CRC therapies are now targeting specific signaling pathways involved in colorectal carcinogenesis. Ubiquitin Proteasome System (UPS) and autophagy are two main protein quality control systems, which play major roles in the carcinogenesis of colorectal cancer. A balanced function of these two pathways is necessary for the regulation of cell proliferation and cell death. OBJECTIVE In this systematic review, we discuss the available evidence regarding the roles of autophagy and ubiquitination in progression and inhibition of CRC. METHODS The search terms "colorectal cancer" or "colon cancer" or "colorectal carcinoma" or "colon carcinoma" in combination with "ubiquitin proteasome" and "autophagy" were searched in PubMed, Web of Science, and Scopus databases, and also Google Patents (https://patents.google .com) from January 2000 to Feb 2020. RESULTS The most important factors involved in UPS and autophagy have been investigated. There are many important factors involved in UPS and autophagy but this systematic review shows the studies that have mostly focused on the role of ATG, 20s proteasome and mTOR in CRC, and the more important factors such as ATG8, FIP200, and TIGAR factors that are effective in the regulation of autophagy in CRC cells have not been yet investigated. CONCLUSION The most important factors involved in UPS and autophagy such as ATG, 20s proteasome and mTOR, ATG8, FIP200, and TIGAR can be considered in drug therapy for controlling or activating autophagy.
Collapse
Affiliation(s)
- Javad Saffari-Chaleshtori
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Majid Asadi-Samani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Rasouli
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Hanamata S, Kurusu T, Kuchitsu K. Cell Cycle-Dependence of Autophagic Activity and Inhibition of Autophagosome Formation at M Phase in Tobacco BY-2 Cells. Int J Mol Sci 2020; 21:E9166. [PMID: 33271936 PMCID: PMC7730373 DOI: 10.3390/ijms21239166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 11/29/2022] Open
Abstract
Autophagy is ubiquitous in eukaryotic cells and plays an essential role in stress adaptation and development by recycling nutrients and maintaining cellular homeostasis. However, the dynamics and regulatory mechanisms of autophagosome formation during the cell cycle in plant cells remain poorly elucidated. We here analyzed the number of autophagosomes during cell cycle progression in synchronized tobacco BY-2 cells expressing YFP-NtATG8a as a marker for the autophagosomes. Autophagosomes were abundant in the G2 and G1 phases of interphase, though they were much less abundant in the M and S phases. Autophagosomes drastically decreased during the G2/M transition, and the CDK inhibitor roscovitine inhibited the G2/M transition and the decrease in autophagosomes. Autophagosomes were rapidly increased by a proteasome inhibitor, MG-132. MG-132-induced autophagosome formation was also markedly lower in the M phases than during interphase. These results indicate that the activity of autophagosome formation is differently regulated at each cell cycle stage, which is strongly suppressed during mitosis.
Collapse
Affiliation(s)
- Shigeru Hanamata
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan;
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata, Nishi-ku 950-2181, Japan
| | - Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan;
- Department of Mechanical and Electrical Engineering, Suwa University of Science, 5000-1 Toyohira, Chino, Nagano 391-0292, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan;
| |
Collapse
|
13
|
The dialogue between the ubiquitin-proteasome system and autophagy: Implications in ageing. Ageing Res Rev 2020; 64:101203. [PMID: 33130248 DOI: 10.1016/j.arr.2020.101203] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/09/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Dysregulated proteostasis is one of the hallmarks of ageing. Damaged proteins may impair cellular function and their accumulation may lead to tissue dysfunction and disease. This is why protective mechanisms to safeguard the cell proteome have evolved. These mechanisms consist of cellular machineries involved in protein quality control, including regulators of protein translation, folding, trafficking and degradation. In eukaryotic cells, protein degradation occurs via two main pathways: the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway. Although distinct pathways, they are not isolated systems and have a complementary nature, as evidenced by recent studies. These findings raise the question of how autophagy and the proteasome crosstalk. In this review we address how the two degradation pathways impact each other, thereby adding a new layer of regulation to protein degradation. We also analyze the implications of the UPS and autophagy in ageing.
Collapse
|
14
|
Homma T, Fujii J. Emerging connections between oxidative stress, defective proteolysis, and metabolic diseases. Free Radic Res 2020; 54:931-946. [DOI: 10.1080/10715762.2020.1734588] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
15
|
Park SY, Koh HC. FUNDC1 regulates receptor-mediated mitophagy independently of the PINK1/Parkin-dependent pathway in rotenone-treated SH-SY5Y cells. Food Chem Toxicol 2020; 137:111163. [PMID: 32001317 DOI: 10.1016/j.fct.2020.111163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/23/2020] [Indexed: 12/21/2022]
Abstract
Upon mitochondrial stress, PINK1 and Parkin cooperatively mediate a response that removes damaged mitochondria. In addition to the PINK1/Parkin pathway, the FUNDC1, mitophagy receptor regulates mitochondrial clearance. It is not clear whether these systems coordinate to mediate mitophagy in response to stress. Rotenone caused an increase in LC3II expression, and FUNDC1-knocked down cells showed remarkably reduced LC3 expression compared to control cells. In addition, treatment of cells with autophagy flux inhibitor, chloroquine, induced further accumulation of LC3-II, suggesting that mitophagy induced by rotenone is due to involvement of mitochondrial FUNDC1. Rotenone treatment resulted in PINK1 stabilization on the outer mitochondrial membrane and a subsequent increase in recruitment of Parkin from the cytosol to the abnormal mitochondria, as well as physical interaction of PINK1 with Parkin in the mitochondria of rotenone-treated cells. Interestingly, knockdown of FUNDC1 did not alter PINK1/Parkin expression in the mitochondrial fraction of rotenone-treated cells. Our findings indicate that FUNDC1 involves in receptor-mediated mitophagy separately from PINK1/Parkin-dependent mitophagy. Furthermore, inhibiting mitophagy by FUNDC1 or PINK1 knockdown accelerated rotenone-induced cytotoxicity. Taken together, our findings suggest that rotenone can be induced both receptor-mediated and PINK1/Parkin-dependent mitophagy for mitochondrial clearance, and that mitophagy by removing damaged mitochondria, has cytoprotective effects.
Collapse
Affiliation(s)
- Si Yeon Park
- Department of Pharmacology, College of Medicine, Hanyang University, Sungdong-Gu, Haengdang-Dong 17, 133-79, Seoul, Republic of Korea; Hanyang Biomedical Research Institute, Sungdong-Gu, Haengdang-Dong 17, 133-79, Seoul, Republic of Korea
| | - Hyun Chul Koh
- Department of Pharmacology, College of Medicine, Hanyang University, Sungdong-Gu, Haengdang-Dong 17, 133-79, Seoul, Republic of Korea; Graduate School of Biomedical Science and Engineering, Hanyang University, Sungdong-Gu, Haengdang-Dong 17, 133-79, Seoul, Republic of Korea; Hanyang Biomedical Research Institute, Sungdong-Gu, Haengdang-Dong 17, 133-79, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Papaevgeniou N, Hoehn A, Tur JA, Klotz LO, Grune T, Chondrogianni N. Sugar-derived AGEs accelerate pharyngeal pumping rate and increase the lifespan of Caenorhabditis elegans. Free Radic Res 2019; 53:1056-1067. [DOI: 10.1080/10715762.2019.1661403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nikoletta Papaevgeniou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich Schiller University of Jena, Jena, Germany
| | - Annika Hoehn
- Department of Molecular Toxicology, German Institute of Human Nutrition, Nuthetal, Germany
- German Center for Diabetes Research, München, Germany
| | - Josep A. Tur
- Research Group on Nutrition and Oxidative Stress, University of the Balearic Islands and CIBEROBN (Physiopathology of Obesity and Nutrition), Palma de Mallorca, Spain
| | - Lars-Oliver Klotz
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich Schiller University of Jena, Jena, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition, Nuthetal, Germany
- German Center for Diabetes Research, München, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
17
|
Zhang L, Wei PF, Song YH, Dong L, Wu YD, Hao ZY, Fan S, Tai S, Meng JL, Lu Y, Xue J, Liang CZ, Wen LP. MnFe2O4 nanoparticles accelerate the clearance of mutant huntingtin selectively through ubiquitin-proteasome system. Biomaterials 2019; 216:119248. [DOI: 10.1016/j.biomaterials.2019.119248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/20/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023]
|
18
|
Autophagy: A Player in response to Oxidative Stress and DNA Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5692958. [PMID: 31467633 PMCID: PMC6701339 DOI: 10.1155/2019/5692958] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/07/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Abstract
Autophagy is a catabolic pathway activated in response to different cellular stressors, such as damaged organelles, accumulation of misfolded or unfolded proteins, ER stress, accumulation of reactive oxygen species, and DNA damage. Some DNA damage sensors like FOXO3a, ATM, ATR, and p53 are known to be important autophagy regulators, and autophagy seems therefore to have a role in DNA damage response (DDR). Recent studies have partly clarified the pathways that induce autophagy during DDR, but its precise role is still not well known. Previous studies have shown that autophagy alterations induce an increase in DNA damage and in the occurrence of tumor and neurodegenerative diseases, highlighting its fundamental role in the maintenance of genomic stability. During DDR, autophagy could act as a source of energy to maintain cell cycle arrest and to sustain DNA repair activities. In addition, autophagy seems to play a role in the degradation of components involved in the repair machinery. In this paper, molecules which are able to induce oxidative stress and/or DNA damage have been selected and their toxic and genotoxic effects on the U937 cell line have been assessed in the presence of the single compounds and in concurrence with an inhibitor (chloroquine) or an inducer (rapamycin) of autophagy. Our data seem to corroborate the fundamental role of this pathway in response to direct and indirect DNA-damaging agents. The inhibition of autophagy through chloroquine had no effect on the genotoxicity induced by the tested compounds, but it led to a high increase of cytotoxicity. The induction of autophagy, through cotreatment with rapamycin, reduced the genotoxic activity of the compounds. The present study confirms the cytoprotective role of autophagy during DDR; its inhibition can sensitize cancer cells to DNA-damaging agents. The modulation of this pathway could therefore be an innovative approach able to reduce the toxicity of many compounds and to enhance the activity of others, including anticancer drugs.
Collapse
|
19
|
Wiegering A, Rüther U, Gerhardt C. The Role of Primary Cilia in the Crosstalk between the Ubiquitin⁻Proteasome System and Autophagy. Cells 2019; 8:cells8030241. [PMID: 30875746 PMCID: PMC6468794 DOI: 10.3390/cells8030241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
Protein degradation is a pivotal process for eukaryotic development and homeostasis. The majority of proteins are degraded by the ubiquitin⁻proteasome system and by autophagy. Recent studies describe a crosstalk between these two main eukaryotic degradation systems which allows for establishing a kind of safety mechanism. If one of these degradation systems is hampered, the other compensates for this defect. The mechanism behind this crosstalk is poorly understood. Novel studies suggest that primary cilia, little cellular protrusions, are involved in the regulation of the crosstalk between the two degradation systems. In this review article, we summarise the current knowledge about the association between cilia, the ubiquitin⁻proteasome system and autophagy.
Collapse
Affiliation(s)
- Antonia Wiegering
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
20
|
Wang D, Xu Q, Yuan Q, Jia M, Niu H, Liu X, Zhang J, Young CY, Yuan H. Proteasome inhibition boosts autophagic degradation of ubiquitinated-AGR2 and enhances the antitumor efficiency of bevacizumab. Oncogene 2019; 38:3458-3474. [PMID: 30647455 PMCID: PMC6756021 DOI: 10.1038/s41388-019-0675-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/24/2018] [Accepted: 12/21/2018] [Indexed: 11/09/2022]
Abstract
Anterior gradient 2 (AGR2), a protein belonging to the protein disulfide isomerase (PDI) family, is overexpressed in multiple cancers and promotes angiogenesis to drive cancer progression. The mechanisms controlling AGR2 abundance in cancer remain largely unknown. Here, we observed that AGR2 expression is significantly suppressed by proteasome inhibitor MG132/bortezomib at mRNA and protein levels in lung cancer cells. MG132-mediated repression of AGR2 transcription was independent of ROS generation and ER stress induction, but partially resulted from the downregulated E2F1. Further investigation revealed that MG132 facilitated polyubiquitinated AGR2 degradation through activation of autophagy, as evidenced by predominant restoration of AGR2 level in cells genetic depletion of Atg5 and Atg7, or by autophagy inhibitors. Activation of autophagy by rapamycin noticeably reduced the AGR2 protein in cells and in the mouse tissue samples administrated with bortezomib. We also provided evidence identifying the K48-linked polyubiquitin chains conjugating onto K89 of AGR2 by an E3 ligase UBR5. In addition, an autophagy receptor NBR1 was demonstrated to be important in polyubiquitinated AGR2 clearance in response to MG132 or bortezomib. Importantly, downregulation of AGR2 by proteasome inhibition significantly enhanced antitumor activity of bevacizumab, highlighting the importance of AGR2 as a predictive marker for selection of subgroup patients in chemotherapy.
Collapse
Affiliation(s)
- Dawei Wang
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Qingqing Xu
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Quan Yuan
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Mengqi Jia
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Huanmin Niu
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Xiaofei Liu
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Jinsan Zhang
- Department of Urology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Charles Yf Young
- Department of Urology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Huiqing Yuan
- Key Laboratory of Experimental Teratology of the Ministry of Education, Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China.
| |
Collapse
|
21
|
Kocaturk NM, Gozuacik D. Crosstalk Between Mammalian Autophagy and the Ubiquitin-Proteasome System. Front Cell Dev Biol 2018; 6:128. [PMID: 30333975 PMCID: PMC6175981 DOI: 10.3389/fcell.2018.00128] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022] Open
Abstract
Autophagy and the ubiquitin-proteasome system (UPS) are the two major intracellular quality control and recycling mechanisms that are responsible for cellular homeostasis in eukaryotes. Ubiquitylation is utilized as a degradation signal by both systems, yet, different mechanisms are in play. The UPS is responsible for the degradation of short-lived proteins and soluble misfolded proteins whereas autophagy eliminates long-lived proteins, insoluble protein aggregates and even whole organelles (e.g., mitochondria, peroxisomes) and intracellular parasites (e.g., bacteria). Both the UPS and selective autophagy recognize their targets through their ubiquitin tags. In addition to an indirect connection between the two systems through ubiquitylated proteins, recent data indicate the presence of connections and reciprocal regulation mechanisms between these degradation pathways. In this review, we summarize these direct and indirect interactions and crosstalks between autophagy and the UPS, and their implications for cellular stress responses and homeostasis.
Collapse
Affiliation(s)
- Nur Mehpare Kocaturk
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Devrim Gozuacik
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul, Turkey
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
| |
Collapse
|
22
|
Schwarze K, Kribben A, Ritter O, Müller GA, Patschan D. Autophagy activation in circulating proangiogenic cells aggravates AKI in type I diabetes mellitus. Am J Physiol Renal Physiol 2018; 315:F1139-F1148. [PMID: 29897281 DOI: 10.1152/ajprenal.00502.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) occurs frequently in hospitals worldwide, but the therapeutic options are limited. Diabetes mellitus (DM) affects more and more people around the globe. The disease worsens the prognosis of AKI even further. In recent years, cell-based therapies have increasingly been applied in experimental AKI. The aim of the study was to utilize two established autophagy inducers for pharmacological preconditioning of so-called proangiogenic cells (PACs) in PAC treatment of diabetic AKI. Insulin-dependent DM was induced in male C57/Bl6N mice by intraperitoneal injections of streptozotocine. Six weeks later, animals underwent bilateral renal ischemia for 45 min, followed by intravenous injections of either native or zVAD (benzyloxycarbonyl-Val-Ala-Asp-fluoro-methylketone)- or Z-Leu-Leu-Leu-al (MG132)-pretreated syngeneic murine PACs. Mice were analyzed 48 h (short term) and 6 wk (long term) later, respectively. DM worsened postischemic AKI, and PAC preconditioning with zVAD and MG132 resulted in a further decline of excretory kidney function. Injection of native PACs reduced fibrosis in nondiabetic mice, but cell preconditioning promoted interstitial matrix accumulation significantly. Both substances aggravated endothelial-to-mesenchymal transition (EndoMT) under diabetic conditions; these effects occurred either exclusively in the short (zVAD) or in the short and long term (MG132). Preconditioned cells stimulated the autophagocytic flux in intrarenal endothelial cells, and all experimental groups displayed increased endothelial abundances of senescence-associated β-galactosidase, a marker of premature cell senescence. Pharmacological autophagy activation may not serve as an effective strategy for improving PAC competence in diabetic AKI in general. On the contrary, several outcome parameters (excretory function, fibrosis, EndoMT) may even be worsened.
Collapse
Affiliation(s)
- K Schwarze
- Clinic of Nephrology and Rheumatology, University Hospital of Göttingen , Göttingen , Germany
| | - A Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen , Essen , Germany
| | - O Ritter
- Department of Cardiology, Pulmology, Angiology, and Nephrology, Brandenburg Medical School, University Hospital Brandenburg , Brandenburg , Germany
| | - G A Müller
- Clinic of Nephrology and Rheumatology, University Hospital of Göttingen , Göttingen , Germany
| | - D Patschan
- Department of Cardiology, Pulmology, Angiology, and Nephrology, Brandenburg Medical School, University Hospital Brandenburg , Brandenburg , Germany
| |
Collapse
|
23
|
Targeting of cathepsin C induces autophagic dysregulation that directs ER stress mediated cellular cytotoxicity in colorectal cancer cells. Cell Signal 2018; 46:92-102. [PMID: 29501728 DOI: 10.1016/j.cellsig.2018.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 12/14/2022]
Abstract
As Autophagy is a pivotal mechanism of cancer cell survival and the development of chemotherapeutic resistance; therefore, new approaches are warranted for its targeting which may be fulfilled by cathepsins regulation. Amongst cathepsins, cathepsin C (CTSC) is highly expressed in various cancers and possesses significant therapeutic potential in autoimmune disorders; however, its role in colorectal cancer has not been explored. Herein, we aimed to investigate the role of CTSC in autophagy regulation mediated colorectal carcinoma cell proliferation. Cathepsin C targeting through inhibitors/siRNA leads to the accumulation of light chain 3 II and p62 without affecting the lysosomal integrity, revealed dysfunctional autolysosomal degradation which is also substantiated by proteolytic studies. Cathepsin C inhibition showed comparable autophagy blockade with E64d and augmented the autophagy blockade mediated by bafilomycin. Loss of CTSC function also induced ER stress-mediated JNK phosphorylation accompanied by the translocation of mitochondrial cyt c followed by apoptotic cell death in colorectal carcinoma cells. Taken together, the study reveals that CTSC targeting plays a key role in the regulation of autophagy mediated colorectal cancer cell proliferation. Further investigations are required to determine the functional role of CTSC in other tumors also which may have implications for the therapeutic prevention of cancer in the future.
Collapse
|
24
|
Glucosyltransferase Activity of Clostridium difficile Toxin B Triggers Autophagy-mediated Cell Growth Arrest. Sci Rep 2017; 7:10532. [PMID: 28874882 PMCID: PMC5585374 DOI: 10.1038/s41598-017-11336-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/04/2017] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a bulk cell-degradation process that occurs through the lysosomal machinery, and many reports have shown that it participates in microbial pathogenicity. However, the role of autophagy in Clostridium difficile infection (CDI), the leading cause of antibiotics-associated diarrhea, pseudomembranous colitis and even death in severe cases, is not clear. Here we report that the major virulent factor toxin B (TcdB) of Clostridium difficile elicits a strong autophagy response in host cells through its glucosyltransferase activity. Using a variety of autophagy-deficient cell lines, i.e. HeLa/ATG7−/−, MEF/atg7−/−, MEF/tsc2−/−, we demonstrate that toxin-triggered autophagy inhibits host cell proliferation, which contributes to TcdB-caused cytopathic biological effects. We further show that both the PI3K complex and mTOR pathway play important roles in this autophagy induction process and consequent cytopathic event. Although the glucosyltransferase activity of TcdB is responsible for inducing both cell rounding and autophagy, there is no evidence suggesting the causal relationship between these two events. Taken together, our data demonstrate for the first time that the glucosyltransferase enzymatic activity of a pathogenic bacteria is responsible for host autophagy induction and the following cell growth arrest, providing a new paradigm for the role of autophagy in host defense mechanisms upon pathogenic infection.
Collapse
|
25
|
Stengel S, Messner B, Falk-Paulsen M, Sommer N, Rosenstiel P. Regulated proteolysis as an element of ER stress and autophagy: Implications for intestinal inflammation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2183-2190. [PMID: 28736290 DOI: 10.1016/j.bbamcr.2017.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023]
Abstract
Endoplasmic reticulum (ER) stress and autophagy are tightly controlled cellular processes, which are responsible for maintaining protein homeostasis in a cell. Impairment of the interlinking pathways have been implicated in a number of human diseases, prominently in inflammatory bowel disease, where genetic variants in several independent autophagy and ER stress related loci have been associated to increased disease risk. Autophagy is a selective quality control process, which governs the integrity of the cell by removal of aged organelles and proteins via the lysosome, but recently has been shown to actively license the outcome of other signaling pathways by guiding the proteolytic removal of signaling protein complexes (adaptophagy). In this review, we summarize our knowledge on regulated proteolytic events involved in ER stress responses and autophagy, their interplay and potential regulatory effects with a particular focus on intestinal inflammation. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Stephanie Stengel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
| | - Berith Messner
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
| | - Nina Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany.
| |
Collapse
|
26
|
Park JK, Peng H, Katsnelson J, Yang W, Kaplan N, Dong Y, Rappoport JZ, He C, Lavker RM. MicroRNAs-103/107 coordinately regulate macropinocytosis and autophagy. J Cell Biol 2016; 215:667-685. [PMID: 27872138 PMCID: PMC5146999 DOI: 10.1083/jcb.201604032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/29/2016] [Accepted: 11/01/2016] [Indexed: 11/28/2022] Open
Abstract
The miR-103/107 family is preferentially expressed in the stem cell–enriched limbal epithelium and regulates multiple characteristics associated with stem cells. Park et al. show that miR-103/107 also contribute to limbal epithelial homeostasis by suppressing macropinocytosis and preserving end-stage autophagy. Macropinocytosis, by which cells ingest large amounts of fluid, and autophagy, the lysosome-based catabolic process, involve vesicular biogenesis (early stage) and turnover (end stage). Much is known about early-stage events; however, our understanding of how the end stages of these processes are governed is incomplete. Here we demonstrate that the microRNA-103/107(miR-103/107) family, which is preferentially expressed in the stem cell–enriched limbal epithelium, coordinately regulates aspects of both these activities. Loss of miR-103/107 causes dysregulation of macropinocytosis with the formation of large vacuoles, primarily through up-regulation of Src, Ras, and Ankfy1. Vacuole accumulation is not a malfunction of early-stage autophagy; rather, miR-103/107 ensure proper end-stage autophagy by regulating diacylglycerol/protein kinase C and cyclin-dependent kinase 5 signaling, which enables dynamin to function in vacuole clearance. Our findings unveil a key biological function for miR-103/107 in coordinately suppressing macropinocytosis and preserving end-stage autophagy, thereby contributing to maintenance of a stem cell–enriched epithelium.
Collapse
Affiliation(s)
- Jong Kook Park
- Department of Dermatology, Northwestern University, Chicago, IL 60611
| | - Han Peng
- Department of Dermatology, Northwestern University, Chicago, IL 60611
| | | | - Wending Yang
- Department of Dermatology, Northwestern University, Chicago, IL 60611
| | - Nihal Kaplan
- Department of Dermatology, Northwestern University, Chicago, IL 60611
| | - Ying Dong
- Department of Dermatology, Northwestern University, Chicago, IL 60611.,Department of Ophthalmology, The First Affiliated Hospital, Chinese PLA General Hospital, Beijing 100048, China
| | - Joshua Z Rappoport
- Center for Advanced Microscopy and Nikon Imaging Center, Northwestern University, Chicago, IL 60611
| | - CongCong He
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611
| | - Robert M Lavker
- Department of Dermatology, Northwestern University, Chicago, IL 60611
| |
Collapse
|
27
|
Xi G, Wang M, Sun B, Shaikh AS, Liu Y, Wang W, Lou H, Yuan H. Targeting autophagy augments the activity of DHA-E3 to overcome p-gp mediated multi-drug resistance. Biomed Pharmacother 2016; 84:1610-1616. [PMID: 27825801 DOI: 10.1016/j.biopha.2016.10.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/14/2016] [Accepted: 10/21/2016] [Indexed: 12/19/2022] Open
Abstract
Multidrug resistance (MDR) is a major obstacle for successful chemotherapy treatment. Searching for effective MDR modulators and combining them with anticancer drug therapies has been a promising strategy against clinical MDR. In our previous study, we have found that DHA-E3, a synthetic derivative of DHA, has the ability to modulate the function of P-glycoprotein (P-gp) and reverse MDR in cancer cells. In this study, we further evaluated the reversal effect of DHA-E3 on MDR and explored its mechanism of action in vitro. Our findings showed that DHA-E3 significantly potentiated the cytotoxicity of vincristine(VCR) and adriamycin(ADR) in the P-gp over-expressing KB/VCR and A02 cells. The mechanistic study found that DHA-E3 increased the intracellular accumulation of ADR and rhodamine-123 by directly inhibiting the drug-transport activity of P-gp. In the present study, we found that DHA-E3 not only reversed MDR, but also induced autophagy in MDR cancer cells. To determine whether DHA-E3-induced autophagy is an adaptive survival response or contributes to cell death, we manipulated autophagic activity using autophagy inhibitor 3-MA or siRNA targeting Beclin1. We found that the reversal activity of DHA-E3 was significantly exacerbated in the presence of 3-MA or blocking the expression of Beclin1. These results suggest that DHA-E3 is capable of reversing MDR, induction of autophagy represents a defense mechanism and inhibiting this process may be an effective strategy to augment the reversal activity of reversal agents.
Collapse
Affiliation(s)
- Guangmin Xi
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China; College of Life Science, Qi Lu Normal University, Jinan, Shandong 250012, China
| | - Ming Wang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China
| | - Bing Sun
- Department of Natural Product Chemistry, Shandong University School of Pharmaceutical Sciences, Jinan 250012, China
| | - Abdul Sami Shaikh
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, China
| | - Yongqing Liu
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China
| | - Wei Wang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Shandong University School of Pharmaceutical Sciences, Jinan 250012, China
| | - Huiqing Yuan
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan 250012, China.
| |
Collapse
|
28
|
Translational and post-translational regulation of mouse cation transport regulator homolog 1. Sci Rep 2016; 6:28016. [PMID: 27302742 PMCID: PMC4908420 DOI: 10.1038/srep28016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/27/2016] [Indexed: 01/15/2023] Open
Abstract
Cation transport regulator homolog 1 (Chac1) is an endoplasmic reticulum (ER) stress inducible gene that has a function as a γ-glutamyl cyclotransferase involved in the degradation of glutathione. To characterize the translation and stability of Chac1, we found that the Kozak-like sequence present in the 5′ untranslated region (5′UTR) of the Chac1 mRNA was responsible for Chac1 translation. In addition, the short form (ΔChac1), which translated from the second ATG codon, was generated in the absence of the 5′UTR. The proteasome pathway predominantly participated in the stability of the Chac1 protein; however, its expression was remarkably up-regulated by co-transfection with ubiquitin genes. Using an immunoprecipitation assay, we revealed that ubiquitin molecule was directly conjugated to Chac1, and that mutated Chac1 with all lysine residues replaced by arginine was also ubiquitinated. Finally, we showed that WT Chac1 but not ΔChac1 reduced the intracellular level of glutathione. Taken together, our results suggest that the Chac1 protein expression is regulated in translational and post-translational fashion due to the Kozak-like sequence in the 5′UTR and the ubiquitin-mediated pathways. The bidirectional roles of ubiquitination in regulating Chac1 stabilization might give us a new insight into understanding the homeostasis of glutathione under pathophysiological conditions.
Collapse
|
29
|
p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration. Cell Death Differ 2016; 23:1515-28. [PMID: 27104929 DOI: 10.1038/cdd.2016.37] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/11/2016] [Accepted: 03/19/2016] [Indexed: 12/25/2022] Open
Abstract
Bidirectional interactions between astrocytes and neurons have physiological roles in the central nervous system and an altered state or dysfunction of such interactions may be associated with neurodegenerative diseases, such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Astrocytes exert structural, metabolic and functional effects on neurons, which can be either neurotoxic or neuroprotective. Their neurotoxic effect is mediated via the senescence-associated secretory phenotype (SASP) involving pro-inflammatory cytokines (e.g., IL-6), while their neuroprotective effect is attributed to neurotrophic growth factors (e.g., NGF). We here demonstrate that the p53 isoforms Δ133p53 and p53β are expressed in astrocytes and regulate their toxic and protective effects on neurons. Primary human astrocytes undergoing cellular senescence upon serial passaging in vitro showed diminished expression of Δ133p53 and increased p53β, which were attributed to the autophagic degradation and the SRSF3-mediated alternative RNA splicing, respectively. Early-passage astrocytes with Δ133p53 knockdown or p53β overexpression were induced to show SASP and to exert neurotoxicity in co-culture with neurons. Restored expression of Δ133p53 in near-senescent, otherwise neurotoxic astrocytes conferred them with neuroprotective activity through repression of SASP and induction of neurotrophic growth factors. Brain tissues from AD and ALS patients possessed increased numbers of senescent astrocytes and, like senescent astrocytes in vitro, showed decreased Δ133p53 and increased p53β expression, supporting that our in vitro findings recapitulate in vivo pathology of these neurodegenerative diseases. Our finding that Δ133p53 enhances the neuroprotective function of aged and senescent astrocytes suggests that the p53 isoforms and their regulatory mechanisms are potential targets for therapeutic intervention in neurodegenerative diseases.
Collapse
|
30
|
Kuang XL, Liu Y, Chang Y, Zhou J, Zhang H, Li Y, Qu J, Wu S. Inhibition of store-operated calcium entry by sub-lethal levels of proteasome inhibition is associated with STIM1/STIM2 degradation. Cell Calcium 2016; 59:172-80. [DOI: 10.1016/j.ceca.2016.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 12/21/2022]
|
31
|
Pandey S. Aldose Reductase Inhibitor Fidarestat as a Promising Drug Targeting Autophagy in Colorectal Carcinoma: a Pilot Study. Asian Pac J Cancer Prev 2015; 16:4981-5. [PMID: 26163626 DOI: 10.7314/apjcp.2015.16.12.4981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of morbidity and mortality worldwide. Targeting autophagic cell death is emerging as a novel strategy in cancer chemotherapy. Aldose reductase (AR) catalyzes the rate limiting step of the polyol pathway of glucose metabolism; besides reducing glucose to sorbitol, AR reduces lipid peroxidation-derived aldehydes and their glutathione conjugates. A complex interplay between autophagic cell death and/or survival may in turn govern tumor metastasis. This exploratory study aimed to investigate the potential role of AR inhibition using a novel inhibitor Fidarestat in the regulation of autophagy in CRC cells. MATERIALS AND METHODS For glucose depletion (GD), HT-29 and SW480 CRC cells were rinsed with glucose-free RPMI-1640, followed by incubation in GD medium+/-Fidarestat (10μM). Proteins were extracted by a RIPA-method followed by Western blotting (35-50 μg of protein; n=3). RESULTS Autophagic regulatory markers, primarily, microtubule associated protein light chain (LC) 3, autophagy-related gene (ATG) 5, ATG 7 and Beclin-1 were expressed in CRC cells; glyceraldehyde-3 phosphate dehydrogenase (GAPDH) was used as an internal reference. LC3 II (14 kDa) expression was relatively high compared to LC3A/B I levels in both CRC cell lines, suggesting occurrence of autophagy. Expression of non-autophagic markers, high mobility group box (HMG)-1 and Bcl-2, was comparatively low. CONCLUSIONS GD+/-ARI induced autophagy in HT-29 and SW-480 cells, thereby implicating Fidarestat as a promising therapeutic agent for colorectal cancer; future studies with more potent ARIs are warranted to fully dissect the molecular regulatory networks for autophagy in colorectal carcinoma.
Collapse
Affiliation(s)
- Saumya Pandey
- Research Cell, Department of Research, Amity University Uttar Pradesh, Lucknow, India; University of Texas Medical Branch, Galveston, TX, USA E-mail : ;
| |
Collapse
|
32
|
Vignot S, Lefebvre C, Frampton GM, Meurice G, Yelensky R, Palmer G, Capron F, Lazar V, Hannoun L, Miller VA, André F, Stephens PJ, Soria JC, Spano JP. Comparative analysis of primary tumour and matched metastases in colorectal cancer patients: evaluation of concordance between genomic and transcriptional profiles. Eur J Cancer 2015; 51:791-9. [PMID: 25797355 DOI: 10.1016/j.ejca.2015.02.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/12/2015] [Accepted: 02/19/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE Focal and temporal tumour heterogeneity can represent a major challenge for biology-guided therapies. This study proposes to investigative molecular discrepancies between primary colorectal cancer (CRC) samples and matched metastases. EXPERIMENTAL DESIGN Surgical samples from primary and matched metastatic tissues from 13 CRC patients along with their adjacent normal tissue were evaluated. A mutational analysis was performed using a targeted Next Generation Sequencing assay (Foundation Medicine) with a focus on known recurrent somatic mutations as surrogate of key oncogenic events. Gene expression analysis was also performed to investigate transcriptional discrepancies. RESULTS Among the 26 samples, 191 mutations were identified including mutations in APC (13 pts), TP53 (11 pts), and KRAS (7 pts). Global concordance rate for mutations was 78% between primary and metastatic tumours and raised to 90% for 12 known recurrent mutations in CRC. Differential gene expression analysis revealed a low number of significantly variant transcripts between primary and metastatic tumours once the tissue effect was taken into account. Only two pathways (ST_ADRENERGIC, PID_REELINPATHWAY) were differentially up-regulated in metastases among 17 variant pathways. A common profile in primary and metastatic tumours revealed conserved pathways mostly involved in cell cycle regulation. Only two pathways were significantly down regulated compared to normal control, including regulation of autophagy (KEGG_REGULATION_OF_AUTOPHAGY). CONCLUSION These results suggest that profiles of primary tumour can identify key alterations present in matched CRC metastases at first metastatic progression. Gene expression analysis identified mainly conserved pathways between primary tumour and matched liver metastases.
Collapse
Affiliation(s)
- Stéphane Vignot
- Oncologie Hématologie, Hôpitaux de Chartres, Chartres Le Coudray, France; INSERM U981, Gustave Roussy, Villejuif Grand Paris, France
| | | | | | - Guillaume Meurice
- Unité de Génomique Fonctionnelle, Gustave Roussy, Villejuif Grand Paris, France
| | | | | | | | - Vladimir Lazar
- Unité de Génomique Fonctionnelle, Gustave Roussy, Villejuif Grand Paris, France
| | | | | | - Fabrice André
- INSERM U981, Gustave Roussy, Villejuif Grand Paris, France
| | | | | | | |
Collapse
|
33
|
Wang XJ, Yu J, Wong SH, Cheng ASL, Chan FKL, Ng SSM, Cho CH, Sung JJY, Wu WKK. A novel crosstalk between two major protein degradation systems. Autophagy 2014; 9:1500-8. [DOI: 10.4161/auto.25573] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
34
|
Martin-Antonio B, Najjar A, Robinson SN, Chew C, Li S, Yvon E, Thomas MW, Mc Niece I, Orlowski R, Muñoz-Pinedo C, Bueno C, Menendez P, Fernández de Larrea C, Urbano-Ispizua A, Shpall EJ, Shah N. Transmissible cytotoxicity of multiple myeloma cells by cord blood-derived NK cells is mediated by vesicle trafficking. Cell Death Differ 2014; 22:96-107. [PMID: 25168239 DOI: 10.1038/cdd.2014.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 07/02/2014] [Accepted: 07/09/2014] [Indexed: 12/11/2022] Open
Abstract
Natural killer cells (NK) are important effectors of anti-tumor immunity, activated either by the downregulation of HLA-I molecules on tumor cells and/or the interaction of NK-activating receptors with ligands that are overexpressed on target cells upon tumor transformation (including NKG2D and NKP30). NK kill target cells by the vesicular delivery of cytolytic molecules such as Granzyme-B and Granulysin activating different cell death pathways, which can be Caspase-3 dependent or Caspase-3 independent. Multiple myeloma (MM) remains an incurable neoplastic plasma-cell disorder. However, we previously reported the encouraging observation that cord blood-derived NK (CB-NK), a new source of NK, showed anti-tumor activity in an in vivo murine model of MM and confirmed a correlation between high levels of NKG2D expression by MM cells and increased efficacy of CB-NK in reducing tumor burden. We aimed to characterize the mechanism of CB-NK-mediated cytotoxicity against MM cells. We show a Caspase-3- and Granzyme-B-independent cell death, and we reveal a mechanism of transmissible cell death between cells, which involves lipid-protein vesicle transfer from CB-NK to MM cells. These vesicles are secondarily transferred from recipient MM cells to neighboring MM cells amplifying the initial CB-NK cytotoxicity achieved. This indirect cytotoxicity involves the transfer of NKG2D and NKP30 and leads to lysosomal cell death and decreased levels of reactive oxygen species in MM cells. These findings suggest a novel and unique mechanism of CB-NK cytotoxicity against MM cells and highlight the importance of lipids and lipid transfer in this process. Further, these data provide a rationale for the development of CB-NK-based cellular therapies in the treatment of MM.
Collapse
Affiliation(s)
- B Martin-Antonio
- 1] Department of Stem Cell Transplantation and Cellular Therapy, The University of Texs M.D. Anderson Cancer Center, Houston, TX, USA [2] Department of Hematology, Hospital Clinic, IDIBAPS, Josep Carreras Leukaemia Research Institute/University of Barcelona, Barcelona, Spain
| | - A Najjar
- Department of Cancer Systems Imaging, The University of Texs M.D. Anderson Cancer Center, Houston, TX, USA
| | - S N Robinson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texs M.D. Anderson Cancer Center, Houston, TX, USA
| | - C Chew
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texs M.D. Anderson Cancer Center, Houston, TX, USA
| | - S Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texs M.D. Anderson Cancer Center, Houston, TX, USA
| | - E Yvon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texs M.D. Anderson Cancer Center, Houston, TX, USA
| | - M W Thomas
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texs M.D. Anderson Cancer Center, Houston, TX, USA
| | - I Mc Niece
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texs M.D. Anderson Cancer Center, Houston, TX, USA
| | - R Orlowski
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - C Muñoz-Pinedo
- Cell Death Regulation Group, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - C Bueno
- Josep Carreras Leukemia Research Institute and Cell Therapy Program of the School of Medicine, University of Barcelona, Barcelona, Spain
| | - P Menendez
- 1] Josep Carreras Leukemia Research Institute and Cell Therapy Program of the School of Medicine, University of Barcelona, Barcelona, Spain [2] Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - C Fernández de Larrea
- Department of Hematology, Hospital Clinic, IDIBAPS, Josep Carreras Leukaemia Research Institute/University of Barcelona, Barcelona, Spain
| | - A Urbano-Ispizua
- Department of Hematology, Hospital Clinic, IDIBAPS, Josep Carreras Leukaemia Research Institute/University of Barcelona, Barcelona, Spain
| | - E J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texs M.D. Anderson Cancer Center, Houston, TX, USA
| | - N Shah
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texs M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
35
|
Liou JS, Wu YC, Yen WY, Tang YS, Kakadiya RB, Su TL, Yih LH. Inhibition of autophagy enhances DNA damage-induced apoptosis by disrupting CHK1-dependent S phase arrest. Toxicol Appl Pharmacol 2014; 278:249-58. [PMID: 24823293 DOI: 10.1016/j.taap.2014.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/11/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
DNA damage has been shown to induce autophagy, but the role of autophagy in the DNA damage response and cell fate is not fully understood. BO-1012, a bifunctional alkylating derivative of 3a-aza-cyclopenta[a]indene, is a potent DNA interstrand cross-linking agent with anticancer activity. In this study, BO-1012 was found to reduce DNA synthesis, inhibit S phase progression, and induce phosphorylation of histone H2AX on serine 139 (γH2AX) exclusively in S phase cells. Both CHK1 and CHK2 were phosphorylated in response to BO-1012 treatment, but only depletion of CHK1, but not CHK2, impaired BO-1012-induced S phase arrest and facilitated the entry of γH2AX-positive cells into G2 phase. CHK1 depletion also significantly enhanced BO-1012-induced cell death and apoptosis. These results indicate that BO-1012-induced S phase arrest is a CHK1-dependent pro-survival response. BO-1012 also resulted in marked induction of acidic vesicular organelle (AVO) formation and microtubule-associated protein 1 light chain 3 (LC3) processing and redistribution, features characteristic of autophagy. Depletion of ATG7 or co-treatment of cells with BO-1012 and either 3-methyladenine or bafilomycin A1, two inhibitors of autophagy, not only reduced CHK1 phosphorylation and disrupted S phase arrest, but also increased cleavage of caspase-9 and PARP, and cell death. These results suggest that cells initiate S phase arrest and autophagy as pro-survival responses to BO-1012-induced DNA damage, and that suppression of autophagy enhances BO-1012-induced apoptosis via disruption of CHK1-dependent S phase arrest.
Collapse
Affiliation(s)
- Jong-Shian Liou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Yi-Chen Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Wen-Yen Yen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Yu-Shuan Tang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Rajesh B Kakadiya
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Tsann-Long Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Ling-Huei Yih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, ROC.
| |
Collapse
|
36
|
Tang B, Cai J, Sun L, Li Y, Qu J, Snider BJ, Wu S. Proteasome inhibitors activate autophagy involving inhibition of PI3K-Akt-mTOR pathway as an anti-oxidation defense in human RPE cells. PLoS One 2014; 9:e103364. [PMID: 25062253 PMCID: PMC4111584 DOI: 10.1371/journal.pone.0103364] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 07/01/2014] [Indexed: 11/19/2022] Open
Abstract
The two major intracellular protein degradation systems, the ubiquitin-proteasome system (UPS) and autophagy, work collaboratively in many biological processes including development, apoptosis, aging, and countering oxidative injuries. We report here that, in human retinal pigment epithelial cells (RPE), ARPE-19 cells, proteasome inhibitors, clasto-lactacystinβ-lactone (LA) or epoxomicin (Epo), at non-lethal doses, increased the protein levels of autophagy-specific genes Atg5 and Atg7 and enhanced the conversion of microtubule-associated protein light chain (LC3) from LC3-I to its lipidative form, LC3-II, which was enhanced by co-addition of the saturated concentration of Bafilomycin A1 (Baf). Detection of co-localization for LC3 staining and labeled-lysosome further confirmed autophagic flux induced by LA or Epo. LA or Epo reduced the phosphorylation of the protein kinase B (Akt), a downstream target of phosphatidylinositol-3-kinases (PI3K), and mammalian target of rapamycin (mTOR) in ARPE-19 cells; by contrast, the induced changes of autophagy substrate, p62, showed biphasic pattern. The autophagy inhibitor, Baf, attenuated the reduction in oxidative injury conferred by treatment with low doses of LA and Epo in ARPE-19 cells exposed to menadione (VK3) or 4-hydroxynonenal (4-HNE). Knockdown of Atg7 with siRNA in ARPE-19 cells reduced the protective effects of LA or Epo against VK3. Overall, our results suggest that treatment with low levels of proteasome inhibitors confers resistance to oxidative injury by a pathway involving inhibition of the PI3K-Akt-mTOR pathway and activation of autophagy.
Collapse
Affiliation(s)
- Bingrong Tang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, P.R. China
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang Province, P.R. China
| | - Jingjing Cai
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, P.R. China
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang Province, P.R. China
| | - Lin Sun
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, P.R. China
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang Province, P.R. China
| | - Yiping Li
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, P.R. China
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang Province, P.R. China
| | - Barbara Joy Snider
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, P.R. China
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang Province, P.R. China
| |
Collapse
|
37
|
Zhang L, Chen X, Sharma P, Moon M, Sheftel AD, Dawood F, Nghiem MP, Wu J, Li RK, Gramolini AO, Sorensen PH, Penninger JM, Brumell JH, Liu PP. HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress. Nat Commun 2014; 5:3430. [PMID: 24614889 PMCID: PMC3959209 DOI: 10.1038/ncomms4430] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/11/2014] [Indexed: 01/10/2023] Open
Abstract
The HECT E3 ubiquitin ligase HACE1
is a tumour suppressor known to regulate Rac1 activity under stress conditions. HACE1 is increased in the serum of patients
with heart failure. Here we show that HACE1 protects the heart under pressure stress by controlling
protein degradation. Hace1
deficiency in mice results in accelerated heart failure and increased mortality
under haemodynamic stress. Hearts from Hace1−/− mice
display abnormal cardiac hypertrophy, left ventricular dysfunction, accumulation of
LC3, p62 and ubiquitinated proteins enriched for
cytoskeletal species, indicating impaired autophagy. Our data suggest that
HACE1 mediates p62-dependent selective autophagic turnover
of ubiquitinated proteins by its ankyrin repeat domain through
protein–protein interaction, which is independent of its E3 ligase
activity. This would classify HACE1 as a dual-function E3 ligase. Our finding that
HACE1 has a protective
function in the heart in response to haemodynamic stress suggests that HACE1 may be a potential diagnostic and
therapeutic target for heart disease. HACE1 is an E3 ubiquitin ligase known to regulate various cell
biological processes. Here, Zhang et al. identify HACE1 as a protective factor in
the heart, demonstrating that HACE1 inhibits the development of heart failure in
response to haemodynamic stress by regulating protein degradation pathways.
Collapse
Affiliation(s)
- Liyong Zhang
- 1] University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7 [2] Heart and Stroke/Richard Lewar Centre of Excellent for Cardiovascular Research, University of Toronto and Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada M5G 2C4
| | - Xin Chen
- 1] University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7 [2] Heart and Stroke/Richard Lewar Centre of Excellent for Cardiovascular Research, University of Toronto and Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada M5G 2C4
| | - Parveen Sharma
- Heart and Stroke/Richard Lewar Centre of Excellent for Cardiovascular Research, University of Toronto and Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada M5G 2C4
| | - Mark Moon
- 1] University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7 [2] Heart and Stroke/Richard Lewar Centre of Excellent for Cardiovascular Research, University of Toronto and Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada M5G 2C4
| | - Alex D Sheftel
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7
| | - Fayez Dawood
- 1] University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7 [2] Heart and Stroke/Richard Lewar Centre of Excellent for Cardiovascular Research, University of Toronto and Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada M5G 2C4
| | - Mai P Nghiem
- Heart and Stroke/Richard Lewar Centre of Excellent for Cardiovascular Research, University of Toronto and Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada M5G 2C4
| | - Jun Wu
- Heart and Stroke/Richard Lewar Centre of Excellent for Cardiovascular Research, University of Toronto and Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada M5G 2C4
| | - Ren-Ke Li
- Heart and Stroke/Richard Lewar Centre of Excellent for Cardiovascular Research, University of Toronto and Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada M5G 2C4
| | - Anthony O Gramolini
- 1] Heart and Stroke/Richard Lewar Centre of Excellent for Cardiovascular Research, University of Toronto and Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada M5G 2C4 [2] Department of Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer Research Center, University of British Columbia, Vancouver, British Columbia, Canada V5Z 1L3
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr Bohrgasse 3, A-1030 Vienna, Austria
| | - John H Brumell
- 1] Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 [2] Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 1A8 [3] Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1 × 8
| | - Peter P Liu
- 1] University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7 [2] Heart and Stroke/Richard Lewar Centre of Excellent for Cardiovascular Research, University of Toronto and Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada M5G 2C4 [3] Department of Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 [4] Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
38
|
Kyrychenko VO, Nagibin VS, Tumanovska LV, Pashevin DO, Gurianova VL, Moibenko AA, Dosenko VE, Klionsky DJ. Knockdown of PSMB7 induces autophagy in cardiomyocyte cultures: possible role in endoplasmic reticulum stress. Pathobiology 2013; 81:8-14. [PMID: 23969338 DOI: 10.1159/000350704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 03/11/2013] [Indexed: 11/19/2022] Open
Abstract
Proteasomal and autophagic pathways of protein degradation are two essential, endoplasmic reticulum (ER)-associated proteolytic systems involved in the ER stress response. The functional interaction between them has been shown by proteasome pharmacological inhibition. However, little data have been found concerning autophagy induction using an RNA interference approach due to the multisubunit composition of proteolytic systems. We suggested that silencing of single proteasome subunits can induce massive autophagy. Psmb7-specific small interference RNA added to isolated cardiomyocytes significantly affected mRNA expression of essential ER stress marker proteins, including DDIT3/CHOP and HSPA5/GRP78. mRNA expression of the key autophagy regulator MTOR was also increased. These findings were confirmed by single-cell reverse transcription real-time PCR on individual monodansylcadaverine (MDC)-labeled cardiomyocytes. RNA interference that decreased the levels of non-catalytic PSMB7 subunits of the proteasome had no influence on chymotrypsin- and trypsin-like activities, but significantly decreased peptidyl-glutamyl peptide-hydrolyzing activity. Immunohistochemical analysis showed increased levels of LC3-marked vacuoles in the cytoplasm of Psmb7-knockdown cells, and MDC staining showed significantly increased numbers of neonatal cardiomyocytes with autophagic vacuoles. After anoxia-reoxygenation, the number of cells with signs of autophagy after Psmb7 gene silencing was higher. Our results indicate that Psmb7 knockdown induces ER stress and autophagy in cardiomyocytes, which may be a useful approach to activate specific autophagy.
Collapse
Affiliation(s)
- Victoria O Kyrychenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wu WK, Wang XJ, Cheng AS, Luo MX, Ng SS, To KF, Chan FK, Cho CH, Sung JJ, Yu J. Dysregulation and crosstalk of cellular signaling pathways in colon carcinogenesis. Crit Rev Oncol Hematol 2013; 86:251-77. [DOI: 10.1016/j.critrevonc.2012.11.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 11/07/2012] [Accepted: 11/27/2012] [Indexed: 02/06/2023] Open
|
40
|
Zhang HY, Du ZX, Meng X, Zong ZH, Wang HQ. Beclin 1 enhances proteasome inhibition-mediated cytotoxicity of thyroid cancer cells in macroautophagy-independent manner. J Clin Endocrinol Metab 2013; 98:E217-26. [PMID: 23264393 DOI: 10.1210/jc.2012-2679] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT The ubiquitin-proteasome system and macroautophagy are two major pathways for intracellular protein degradation. Emerging lines of evidence have shown that blockade of ubiquitin-proteasome system by proteasome inhibitors activates macroautophagy. OBJECTIVE The purpose of this study was to determine the involvement of autophagy essential gene Beclin 1 in cytotoxicity of thyroid cancer cells mediated by proteasome inhibitors. DESIGN Autophagy was measured by acidic-trophic dye staining and EGF-LC3 distribution using fluorescence microscopy, as well as LC3-II transition using Western blot. To ascertain the effect of Beclin 1, cells were transfected with Beclin 1 plasmid or shRNA against Beclin 1. Cell viability and apoptotic cells were measured using MTT assay and flow cytometry, respectively. RESULTS Proteasome inhibitors decreased Beclin 1 expression. In addition, treatment with PI3K inhibitors 3-MA or wortmannin, as well as knockdown of Beclin 1 expression, was unable to affect autophagic responses mediated by proteasome inhibitors. Overexpression of Beclin 1 enhanced proteasome inhibitor-mediated cytotoxicity of thyroid cancer cells via suppression of survivin. CONCLUSIONS Proteasome inhibitors cause Beclin 1-independent macroautophagic responses of thyroid cancer cells in a Beclin 1-independent manner. Beclin 1 possesses autophagy-independent antitumoral effects upon exposure of thyroid cancer cells to proteasome inhibitors.
Collapse
Affiliation(s)
- Hai-Yan Zhang
- Department of Geriatrics, the First Affiliated Hospital, China Medical University, Shenyang 110001, China.
| | | | | | | | | |
Collapse
|
41
|
Li JL, Han SL, Fan X. Modulating autophagy: a strategy for cancer therapy. CHINESE JOURNAL OF CANCER 2013; 30:655-68. [PMID: 21959043 PMCID: PMC4012266 DOI: 10.5732/cjc.011.10185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autophagy is a process in which long-lived proteins, damaged cell organelles, and other cellular particles are sequestered and degraded. This process is important for maintaining the cellular microenvironment when the cell is under stress. Many studies have shown that autophagy plays a complex role in human diseases, especially in cancer, where it is known to have paradoxical effects. Namely, autophagy provides the energy for metabolism and tumor growth and leads to cell death that promotes tumor suppression. The link between autophagy and cancer is also evident in that some of the genes that regulate Carcinogenesis, oncogenes and tumor suppressor genes, participate in or impact the autophagy process. Therefore, modulating autophagy will be a valuable topic for cancer therapy. Many studies have shown that autophagy can inhibit the tumor growth when autophagy modulators are combined with radiotherapy and/or chemotherapy. These findings suggest that autophagy may be a potent target for cancer therapy.
Collapse
Affiliation(s)
- Jun-Lin Li
- Department of General Surgery, The Central Hospital of Yongzhou City, Yongzhou, Hunan, People's Republic of China.
| | | | | |
Collapse
|
42
|
Liu C, Yan X, Wang HQ, Gao YY, Liu J, Hu Z, Liu D, Gao J, Lin B. Autophagy-independent enhancing effects of Beclin 1 on cytotoxicity of ovarian cancer cells mediated by proteasome inhibitors. BMC Cancer 2012; 12:622. [PMID: 23270461 PMCID: PMC3553022 DOI: 10.1186/1471-2407-12-622] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 12/17/2012] [Indexed: 01/11/2023] Open
Abstract
Background The ubiquitin-proteasome system and macroautophagy (hereafter referred to autophagy) are two complementary pathways for protein degradation. Emerging evidence suggests that proteasome inhibition might be a promising approach for tumor therapy. Accumulating data suggest that autophagy is activated as a compensatory mechanism upon proteasome activity is impaired. Method Autophagy activation was measured using acridine orange staining and LC3 transition. Cell viability and apoptosis were measured using MTT assay and flow cytometry, respectively. Beclin 1 expression vectors or shRNA against Beclin 1 (shBeclin 1) were transfected to investigate the role of Beclin 1 in autophagy activation and cytotoxicity of ovarian cancer cells induced by proteasome inhibitors. Results Proteasome inhibitors suppressed proliferation and induced autophagy in ovarian cancer cells. Neither phosphoinositide 3-kinase (PI3K) inhibitors nor shRNA against Beclin 1 could abolish the formation of acidic vacuoles and the processing of LC3 induced by proteasome inhibitors. Moreover, Beclin 1 overexpression enhanced anti-proliferative effects of proteasome inhibitors in ovarian cancer cells. Conclusions For the first time, the current study demonstrated that proteasome inhibitors induced PI3K and Beclin 1-independent autophagy in ovarian cancer cells. In addition, this study revealed autophagy-independent tumor suppressive effects of Beclin 1 in ovarian cancer cells.
Collapse
Affiliation(s)
- Chuan Liu
- Department of Obstetrics & Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Desai SD, Reed RE, Babu S, Lorio EA. ISG15 deregulates autophagy in genotoxin-treated ataxia telangiectasia cells. J Biol Chem 2012; 288:2388-402. [PMID: 23212917 DOI: 10.1074/jbc.m112.403832] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ataxia-telangiectasia (A-T) is a cerebellar neurodegenerative disorder; however, the basis for the neurodegeneration in A-T is not well established. Lesions in the ubiquitin and autophagy pathways are speculated to contribute to the neurodegeneration in other neurological diseases and may have a role in A-T neurodegeneration. Our recent studies revealed that the constitutively elevated ISG15 pathway impairs targeted proteasome-mediated protein degradation in A-T cells. Here, we demonstrate that the basal autophagy pathway is activated in the ubiquitin pathway-compromised A-T cells. We also show that genotoxic stress triggers aberrant degradation of the proteasome and autophagy substrates (autophagic flux) in A-T cells. Inhibition of autophagy at an early stage using 3-methyladenine blocked UV-induced autophagic flux in A-T cells. On the other hand, bafilomycin A1, which inhibits autophagy at a late stage, failed to block UV-induced autophagic flux, suggesting that overinduction of autophagy may underlie aberrant autophagic flux in A-T cells. The ISG15-specific shRNA that restored proteasome function restores autophagic function in A-T cells. These findings suggest that autophagy compensates for the ISG15-dependent ablation of proteasome-mediated protein degradation in A-T cells. Genotoxic stress overactivates this compensatory mechanism, triggering aberrant autophagic flux in A-T cells. Supporting the model, we show that autophagy is activated in the brain tissues of human A-T patients. This highlights a plausible causal contribution of a novel "ISG15 proteinopathy" in A-T neuronal cell death.
Collapse
Affiliation(s)
- Shyamal D Desai
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
44
|
Sparks DL, Chatterjee C. Purinergic signaling, dyslipidemia and inflammatory disease. Cell Physiol Biochem 2012; 30:1333-9. [PMID: 23095900 DOI: 10.1159/000343322] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2012] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome is a compound obesity disorder, wherein the abnormal metabolism of glucose and lipid is associated with the development of chronic inflammatory diseases. The prevalence of this disease is increasing in the developed world, but the causative linkage between these metabolic disorders has remained obscure. Metabolic disease may be associated with chronic nucleotide secretion, purinergic signaling and activation of inflammatory pathways. Purinergic signaling has been implicated in impaired glucose metabolism and inflammatory disease and may contribute to dyslipidemia. Our research shows that purinergic signaling disrupts hepatic lipoprotein metabolism by blocking insulin receptor signaling and by activating cellular autophagic pathways. Chronic stimulation of purinergic signaling may therefore be causative to glucose and lipid metabolic disorders and associated with the development of cardiovascular disease.
Collapse
Affiliation(s)
- Daniel L Sparks
- Atherosclerosis, Genetics and Cell Biology Group, University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada.
| | | |
Collapse
|
45
|
Abstract
Lipofectamine 2000 is commonly used for siRNA transfections. However, few studies have examined cellular responses to this delivery system. The purpose of this study is to evaluate the effect of siRNA transfection using Lipofectamine 2000 on cellular autophagy. Huh7.5 cells, stably transfected to express GFP-LC3, were treated with Lipofectamine 2000/negative control siRNA (NC siRNA) complexes. At different time points after treatment, cells were lysed and analyzed by immunoblotting and fluorescence spectroscopy. Cells were also observed using confocal microscopy. An increase of endogenous LC3 lipidation, GFP-LC3 fluorescence, and autophagosomal puncta was observed in cells treated with Lipofectamine 2000/NC siRNA complexes. The kinetics of the increase of GFP-LC3 fluorescence correlated with the concentration of NC siRNA transfected, where 50, 100, and 200 nM NC siRNA caused a significant increase at 72, 48, and 24 h, respectively, after transfection. A similar effect on the GFP-LC3 signal was also observed for cells treated with Lipofectamine 2000 complexed with two other NC siRNAs. The effects were also confirmed in another hepatoma cell line, H4IIE, by immunoblotting. Lipofectamine 2000-mediated transport of NC siRNAs led to an increase of autophagosomes in a dose- and time-dependent manner. Thus, this effect on cells should be taken into consideration when using this approach for intracellular delivery of siRNA.
Collapse
|
46
|
Different degree in proteasome malfunction has various effects on root growth possibly through preventing cell division and promoting autophagic vacuolization. PLoS One 2012; 7:e45673. [PMID: 23029176 PMCID: PMC3448697 DOI: 10.1371/journal.pone.0045673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/20/2012] [Indexed: 01/07/2023] Open
Abstract
The ubiquitin/proteasome pathway plays a vital role in plant development. But the effects of proteasome malfunction on root growth, and the mechanism underlying this involvement remains unclear. In the present study, the effects of proteasome inhibitors on Arabidopsis root growth were studied through the analysis of the root length, and meristem size and cell length in maturation zone using FM4-64, and cell-division potential using GFP fusion cyclin B, and accumulation of ubiquitinated proteins using immunofluorescence labeling, and autophagy activity using LysoTracker and MDC. The results indicated that lower concentration of proteasome inhibitors promoted root growth, whereas higher concentration of inhibitors had the opposite effects. The accumulation of cyclin B was linked to MG132-induced decline in meristem size, indicating that proteasome malfunction prevented cell division. Besides, MG132-induced accumulation of the ubiquitinated proteins was associated with the increasing fluorescence signal of LysoTracker and MDC in the elongation zone, revealing a link between the activation of autophagy and proteasome malfunction. These results suggest that weak proteasome malfunction activates moderate autophagy and promotes cell elongation, which compensates the inhibitor-induced reduction of cell division, resulting in long roots. Whereas strong proteasome malfunction induces severe autophagy and disturbs cell elongation, resulting in short roots.
Collapse
|
47
|
Severe acute respiratory syndrome coronavirus replication is severely impaired by MG132 due to proteasome-independent inhibition of M-calpain. J Virol 2012; 86:10112-22. [PMID: 22787216 DOI: 10.1128/jvi.01001-12] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is involved in the replication of a broad range of viruses. Since replication of the murine hepatitis virus (MHV) is impaired upon proteasomal inhibition, the relevance of the UPS for the replication of the severe acute respiratory syndrome coronavirus (SARS-CoV) was investigated in this study. We demonstrate that the proteasomal inhibitor MG132 strongly inhibits SARS-CoV replication by interfering with early steps of the viral life cycle. Surprisingly, other proteasomal inhibitors (e.g., lactacystin and bortezomib) only marginally affected viral replication, indicating that the effect of MG132 is independent of proteasomal impairment. Induction of autophagy by MG132 treatment was excluded from playing a role, and no changes in SARS-CoV titers were observed during infection of wild-type or autophagy-deficient ATG5(-/-) mouse embryonic fibroblasts overexpressing the human SARS-CoV receptor, angiotensin-converting enzyme 2 (ACE2). Since MG132 also inhibits the cysteine protease m-calpain, we addressed the role of calpains in the early SARS-CoV life cycle using calpain inhibitors III (MDL28170) and VI (SJA6017). In fact, m-calpain inhibition with MDL28170 resulted in an even more pronounced inhibition of SARS-CoV replication (>7 orders of magnitude) than did MG132. Additional m-calpain knockdown experiments confirmed the dependence of SARS-CoV replication on the activity of the cysteine protease m-calpain. Taken together, we provide strong experimental evidence that SARS-CoV has unique replication requirements which are independent of functional UPS or autophagy pathways compared to other coronaviruses. Additionally, this work highlights an important role for m-calpain during early steps of the SARS-CoV life cycle.
Collapse
|
48
|
Peron M, Bonvini P, Rosolen A. Effect of inhibition of the ubiquitin-proteasome system and Hsp90 on growth and survival of rhabdomyosarcoma cells in vitro. BMC Cancer 2012; 12:233. [PMID: 22691173 PMCID: PMC3480867 DOI: 10.1186/1471-2407-12-233] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/21/2012] [Indexed: 01/04/2023] Open
Abstract
Background The ubiquitin-proteasome system (UPS) and the heat shock response (HSR) are two critical regulators of cell homeostasis, as their inhibition affects growth and survival of normal cells, as well as stress response and invasiveness of cancer cells. We evaluated the effects of the proteasome inhibitor Bortezomib and of 17-DMAG, a competitive inhibitor of Hsp90, in rhabdomyosarcoma (RMS) cells, and analyzed the efficacy of single-agent exposures with combination treatments. Methods To assess cytotoxicity induced by Bortezomib and 17-DMAG in RMS cells, viability was measured by MTT assay after 24, 48 and 72 hours. Western blotting and immunofluorescence analyses were carried out to elucidate the mechanisms of action. Apoptosis was measured by FACS with Annexin-V-FITC and Propidium Iodide. Results Bortezomib and 17-DMAG, when combined at single low-toxic concentrations, enhanced growth inhibition of RMS cells, with signs of autophagy that included intensive cytoplasmic vacuolization and conversion of cytosolic LC3-I protein to its autophagosome-associated form. Treatment with lysosomal inhibitor chloroquine facilitates apoptosis, whereas stimulation of autophagy by rapamycin prevents LC3-I conversion and cell death, suggesting that autophagy is a resistance mechanism in RMS cells exposed to proteotoxic drugs. However, combination treatment also causes caspase-dependent apoptosis, PARP cleavage and Annexin V staining, as simultaneous inhibition of both UPS and HSR systems limits cytoprotective autophagy, exacerbating stress resulting from accumulation of misfolded proteins. Conclusion The combination of proteasome inhibitor Bortezomib with Hsp90 inhibitor 17-DMAG, appears to have important therapeutic advantages in the treatment of RMS cells compared with single-agent exposure, because compensatory survival mechanisms that occur as side effects of treatment may be prevented.
Collapse
Affiliation(s)
- Marica Peron
- Clinica di Oncoematologia Pediatrica, Azienda Ospedaliera-Università di Padova, Via Giustiniani 3, Padova 35128, Italy
| | | | | |
Collapse
|
49
|
Cytotoxic effects of bortezomib in myelodysplastic syndrome/acute myeloid leukemia depend on autophagy-mediated lysosomal degradation of TRAF6 and repression of PSMA1. Blood 2012; 120:858-67. [PMID: 22685174 DOI: 10.1182/blood-2012-02-407999] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Bortezomib (Velcade) is used widely for the treatment of various human cancers; however, its mechanisms of action are not fully understood, particularly in myeloid malignancies. Bortezomib is a selective and reversible inhibitor of the proteasome. Paradoxically, we find that bortezomib induces proteasome-independent degradation of the TRAF6 protein, but not mRNA, in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) cell lines and primary cells. The reduction in TRAF6 protein coincides with bortezomib-induced autophagy, and subsequently with apoptosis in MDS/AML cells. RNAi-mediated knockdown of TRAF6 sensitized bortezomib-sensitive and -resistant cell lines, underscoring the importance of TRAF6 in bortezomib-induced cytotoxicity. Bortezomib-resistant cells expressing an shRNA targeting TRAF6 were resensitized to the cytotoxic effects of bortezomib due to down-regulation of the proteasomal subunit α-1 (PSMA1). To determine the molecular consequences of loss of TRAF6 in MDS/AML cells, in the present study, we applied gene-expression profiling and identified an apoptosis gene signature. Knockdown of TRAF6 in MDS/AML cell lines or patient samples resulted in rapid apoptosis and impaired malignant hematopoietic stem/progenitor function. In summary, we describe herein novel mechanisms by which TRAF6 is regulated through bortezomib/autophagy-mediated degradation and by which it alters MDS/AML sensitivity to bortezomib by controlling PSMA1 expression.
Collapse
|
50
|
Dai J, Wang G, Li W, Zhang L, Yang J, Zhao X, Chen X, Xu Y, Li K. High-throughput screening for anti-influenza A virus drugs and study of the mechanism of procyanidin on influenza A virus-induced autophagy. JOURNAL OF BIOMOLECULAR SCREENING 2012; 17:605-17. [PMID: 22286278 DOI: 10.1177/1087057111435236] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this research, we have established a high-throughput screening (HTS) platform based on the influenza A virus (IAV) vRNA promoter. Using this HTS platform, we selected 35 medicinal plants out of 83 examples of traditional Chinese medicine and found that 7 examples had not been reported. After examining many previous reports, we found that Vaccinium angustifolium Ait., Vitis vinifera L, and Cinnamomum cassia Presl had a common active compound, procyanidin, and then determined the anti-IAV effect of procyanidin and explored its mechanism of action. With a plaque inhibition assay and a time-of-addition experiment, we found that procyanidin could inhibit the IAV replication at several stages of the life cycle. In the Western blot and EGFP-LC3 localization assays, we found that procyanidin could inhibit the accumulation of LC3II and the dot-like aggregation of EGFP-LC3. In the RT-PCR and Western blot assays, we found procyanidin could inhibit the expression of Atg7, Atg5, and Atg12. Finally, by the bimolecular fluorescence complementation-fluorescence resonance energy transfer and co-immunoprecipitation assays, we found that procyanidin could inhibit the formation of the Atg5-Atg12/Atg16 heterotrimer and the dissociation of the beclin1/bcl2 heterodimer. In conclusion, we have established an HTS platform and identified procyanidin as a novel and promising anti-IAV agent.
Collapse
Affiliation(s)
- Jianping Dai
- Shantou University Medical College, Shantou, Guangdong, China
| | | | | | | | | | | | | | | | | |
Collapse
|