1
|
Gao S, Zhang K, Zhou C, Song J, Gu Y, Cao F, Wang J, Xie E, Yu C, Qiu J. HSPB6 Deficiency Promotes the Development of Aortic Dissection and Rupture. J Transl Med 2024; 104:100326. [PMID: 38237739 DOI: 10.1016/j.labinv.2024.100326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/04/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
To better understand the pathogenesis of acute type A aortic dissection, high-sensitivity liquid chromatography-tandem mass spectrometry/mass spectrometry (LC-MS/MS)-based proteomics and phosphoproteomics approaches were used to identify differential proteins. Heat shock protein family B (small) member 6 (HSPB6) in aortic dissection was significantly reduced in human and mouse aortic dissection samples by real-time PCR, western blotting, and immunohistochemical staining techniques. Using an HSPB6-knockout mouse, we investigated the potential role of HSPB6 in β-aminopropionitrile monofumarate-induced aortic dissection. We found increased mortality and increased probability of ascending aortic dissection after HSPB6 knockout compared with wild-type mice. Mechanistically, our data suggest that HSPB6 deletion promoted vascular smooth muscle cell apoptosis. More importantly, HSPB6 deletion attenuated cofilin activity, leading to excessive smooth muscle cell stiffness and eventually resulting in the development of aortic dissection and rupture. Our data suggest that excessive stiffness of vascular smooth muscle cells caused by HSPB6 deficiency is a new pathogenetic mechanism leading to aortic dissection.
Collapse
Affiliation(s)
- Shiqi Gao
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Zhang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenyu Zhou
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Song
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China
| | - Yuanrui Gu
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangfang Cao
- Department of Surgical Intensive Care Unit, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Ji Wang
- Department of Surgical Intensive Care Unit, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Enzehua Xie
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Cuntao Yu
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Juntao Qiu
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Tan Q, Hu J, Zhou Y, Wan Y, Zhang C, Liu X, Long X, Tan F, Zhao X. Inhibitory Effect of Lactococcus lactis subsp. lactis HFY14 on Diphenoxylate-Induced Constipation in Mice by Regulating the VIP-cAMP-PKA-AQP3 Signaling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1971-1980. [PMID: 34007157 PMCID: PMC8123977 DOI: 10.2147/dddt.s309675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/24/2021] [Indexed: 12/26/2022]
Abstract
Aim The naturally fermented yak yogurt of pastoralists in the Tibetan Plateau, China, because of its unique geographical environment and the unique lifestyle of Tibetan pastoralists, is very different from other kinds of sour milk, and the microorganisms it contains are special. Lactococcus lactis subsp. lactis HFY14 (LLSL-HFY14) is a new lactic acid bacterium isolated from naturally fermented yak yogurt. The purpose of this study was to study the inhibitory effect of the bacterium on constipation. Methods Constipation was induced in ICR mice with diphenoxylate, and the constipated mice were treated with LLSL-HFY14. The weight and feces of the mice were visually detected. Colonic tissues were observed on hematoxylin and eosin-stained sections. Serum indices were detected with kits. mRNA expression in the colon was determined by quantitative polymerase chain reaction assay. Results Constipation caused weight loss, the number of defecation granules, defecation weight, fecal water content decreased, and the first black stool excretion time increased. LLSL-HFY14 alleviated these symptoms, and the effects were similar to those of lactulose (drug). The pathological examination revealed that constipation caused pathological changes in the colon, and LLSL-HFY14 effectively alleviated the disease. LLSL-HFY14 increased serum levels of motilin, gastrin, endothelin, substance P, acetylcholinesterase, and vasoactive intestinal peptide (VIP) and decreased serum levels of somatostatin in constipated mice. In addition, LLSL-HFY14 upregulated VIP, cAMP, protein kinase A, and aquaporin 3 expression in colonic tissues of constipated mice in a dose-dependent manner. Conclusion LLSL-HFY14 inhibited constipation, similar to lactulose, and has the potential to become a biological agent.
Collapse
Affiliation(s)
- Qian Tan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Jing Hu
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Yujing Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Yunxiao Wan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Chuanlan Zhang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Xin Liu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,Department of Food Science and Biotechnology, Cha University, Seongnam, 13488, South Korea
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, 838 Valenzuela, Philippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| |
Collapse
|
3
|
Ullah M, Liu DD, Rai S, Dadhania A, Jonnakuti S, Concepcion W, Thakor AS. Reversing Acute Kidney Injury Using Pulsed Focused Ultrasound and MSC Therapy: A Role for HSP-Mediated PI3K/AKT Signaling. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:683-694. [PMID: 32346546 PMCID: PMC7177168 DOI: 10.1016/j.omtm.2020.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Acute kidney injury (AKI) is characterized by a sudden failure of renal function, but despite increasing worldwide prevalence, current treatments are largely supportive, with no curative therapies. Mesenchymal stromal cell (MSC) therapy has been shown to have a promising regenerative effect in AKI but is limited by the ability of cells to home to damaged tissue. Pulsed focused ultrasound (pFUS), wherein target tissues are sonicated by short bursts of sound waves, has been reported to enhance MSC homing by upregulating local homing signals. However, the exact mechanism by which pFUS enhances MSC therapy remains insufficiently explored. In this study, we studied the effect of bone marrow-derived MSCs (BM-MSCs), in conjunction with pFUS, in a mouse model of cisplatin-induced AKI. Here, BM-MSCs improved kidney function, reduced histological markers of kidney injury, decreased inflammation and apoptosis, and promoted cellular proliferation. Surprisingly, whereas pFUS did not upregulate local cytokine expression or improve BM-MSC homing, it did potentiate the effect of MSC treatment in AKI. Further analysis linked this effect to the upregulation of heat shock protein (HSP)20/HSP40 and subsequent phosphatidylinositol 3-kinase (PI3K)/Akt signaling. In summary, our results suggest that pFUS and BM-MSCs have independent as well as synergistic therapeutic effects in the context of AKI.
Collapse
Affiliation(s)
- Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Daniel D Liu
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Sravanthi Rai
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Arya Dadhania
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Sriya Jonnakuti
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Waldo Concepcion
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
4
|
Sin YY, Edwards HV, Li X, Day JP, Christian F, Dunlop AJ, Adams DR, Zaccolo M, Houslay MD, Baillie GS. Disruption of the cyclic AMP phosphodiesterase-4 (PDE4)-HSP20 complex attenuates the β-agonist induced hypertrophic response in cardiac myocytes. J Mol Cell Cardiol 2011; 50:872-83. [PMID: 21334344 DOI: 10.1016/j.yjmcc.2011.02.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/10/2011] [Accepted: 02/10/2011] [Indexed: 01/06/2023]
Abstract
The small heat shock protein HSP20 is known to be cardioprotective during times of stress and the mechanism underlying its protective abilities depends on its phosphorylation on Ser16 by PKA (protein kinase A). Although the external stimuli that trigger Ser16 phosphorylation have been well studied, the events that modulate spatial and temporal control of this modification remain to be clarified. Here, we report that inhibition of cAMP phosphodiesterase-4 (PDE4) induces the phosphorylation of HSP20 in resting cardiac myocytes and augments its phosphorylation by PKA following β-adrenergic stimulation. Moreover, using peptide array technology, in vitro binding studies, co-immunoprecipitation techniques and immunocytochemistry, we show that HSP20 binds directly to PDE4 within a region of the conserved catalytic domain. We also show that FRET-based, genetically-encoded cAMP reporters anchored to HSP20 exhibit a larger response to PDE4 inhibition compared to free cytosolic cAMP reporters, suggesting that the interaction with PDE4 is crucial in modulating the highly localised pool of cAMP to which HSP20 is exposed. Using information gleaned from peptide array analyses, we developed a cell-permeable peptide that serves to inhibit the interaction of PDE4 with HSP20. Disruption of the HSP20-PDE4 complex, using this peptide, suffices to induce phosphorylation of HSP20 by PKA and to protect against the hypertrophic response measured in neonatal cardiac myocytes following chronic β-adrenergic stimulation.
Collapse
Affiliation(s)
- Y Y Sin
- Molecular Pharmacology Group, Wolfson Link and Davidson Buildings, Institute for Psychology and Neurosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Raghavan S, Lam MT, Foster LL, Gilmont RR, Somara S, Takayama S, Bitar KN. Bioengineered three-dimensional physiological model of colonic longitudinal smooth muscle in vitro. Tissue Eng Part C Methods 2011; 16:999-1009. [PMID: 20001822 DOI: 10.1089/ten.tec.2009.0394] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The objective of this study was to develop a physiological model of longitudinal smooth muscle tissue from isolated longitudinal smooth muscle cells arranged in the longitudinal axis. METHODS Longitudinal smooth muscle cells from rabbit sigmoid colon were isolated and expanded in culture. Cells were seeded at high densities onto laminin-coated Sylgard surfaces with defined wavy microtopographies. A highly aligned cell sheet was formed, to which addition of fibrin resulted in delamination. RESULTS (1) Acetylcholine (ACh) induced a dose-dependent, rapid, and sustained force generation. (2) Absence of extracellular calcium attenuated the magnitude and sustainability of ACh-induced force by 50% and 60%, respectively. (3) Vasoactive intestinal peptide also attenuated the magnitude and sustainability of ACh-induced force by 40% and 60%, respectively. These data were similar to force generated by longitudinal tissue. (4) Bioengineered constructs also maintained smooth muscle phenotype and calcium-dependence characteristics. SUMMARY This is a novel physiologically relevant in vitro three-dimensional model of colonic longitudinal smooth muscle tissue. Bioengineered three-dimensional longitudinal smooth muscle presents the ability to generate force, and respond to contractile agonists and relaxant peptides similar to native longitudinal tissue. This model has potential applications to investigate the underlying pathophysiology of dysfunctional colonic motility. It also presents as a readily implantable band-aid colonic longitudinal muscle tissue.
Collapse
Affiliation(s)
- Shreya Raghavan
- Department of Pediatrics-Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0658, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Somara S, Gilmont RR, Varadarajan S, Bitar KN. Phosphorylated HSP20 modulates the association of thin-filament binding proteins: caldesmon with tropomyosin in colonic smooth muscle. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1164-76. [PMID: 20829522 PMCID: PMC2993172 DOI: 10.1152/ajpgi.00479.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Small heat shock proteins HSP27 and HSP20 have been implicated in regulation of contraction and relaxation in smooth muscle. Activation of PKC-α promotes contraction by phosphorylation of HSP27 whereas activation of PKA promotes relaxation by phosphorylation of HSP20 in colonic smooth muscle cells (CSMC). We propose that the balance between the phosphorylation states of HSP27 and HSP20 represents a molecular signaling switch for contraction and relaxation. This molecular signaling switch acts downstream on a molecular mechanical switch [tropomyosin (TM)] regulating thin-filament dynamics. We have examined the role of phosphorylation state(s) of HSP20 on HSP27-mediated thin-filament regulation in CSMC. CSMC were transfected with different HSP20 phosphomutants. These transfections had no effect on the integrity of actin cytoskeleton. Cells transfected with 16D-HSP20 (phosphomimic) exhibited inhibition of acetylcholine (ACh)-induced contraction whereas cells transfected with 16A-HSP20 (nonphosphorylatable) had no effect on ACh-induced contraction. CSMC transfected with 16D-HSP20 cDNA showed significant decreases in 1) phosphorylation of HSP27 (ser78); 2) phosphorylation of PKC-α (ser657); 3) phosphorylation of TM and CaD (ser789); 4) ACh-induced phosphorylation of myosin light chain; 5) ACh-induced association of TM with HSP27; and 6) ACh-induced dissociation of TM from caldesmon (CaD). We thus propose the crucial physiological relevance of molecular signaling switch (phosphorylation state of HSP27 and HSP20), which dictates 1) the phosphorylation states of TM and CaD and 2) their dissociations from each other.
Collapse
Affiliation(s)
- Sita Somara
- Gastrointestinal Molecular Motors Laboratory, Department of Pediatrics, Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Robert R. Gilmont
- Gastrointestinal Molecular Motors Laboratory, Department of Pediatrics, Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Saranyaraajan Varadarajan
- Gastrointestinal Molecular Motors Laboratory, Department of Pediatrics, Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Khalil N. Bitar
- Gastrointestinal Molecular Motors Laboratory, Department of Pediatrics, Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan
| |
Collapse
|
7
|
Fan GC, Kranias EG. Small heat shock protein 20 (HspB6) in cardiac hypertrophy and failure. J Mol Cell Cardiol 2010; 51:574-7. [PMID: 20869365 DOI: 10.1016/j.yjmcc.2010.09.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/07/2010] [Accepted: 09/14/2010] [Indexed: 01/27/2023]
Abstract
Hsp20, referred to as HspB6, is constitutively expressed in various tissues. Specifically, HspB6 is most highly expressed in different types of muscle including vascular, airway, colonic, bladder, and uterine smooth muscle; cardiac muscle; and skeletal muscle. It can be phosphorylated at Ser-16 by both cAMP- and cGMP-dependent protein kinases (PKA/PKG). Recently, Hsp20 and its phosphorylation have been implicated in multiple physiological and pathophysiological processes including smooth muscle relaxation, platelet aggregation, exercise training, myocardial infarction, atherosclerosis, insulin resistance and Alzheimer's disease. In the heart, key advances have been made in elucidating the significance of Hsp20 in contractile function and cardioprotection over the last decade. This mini-review highlights exciting findings in animal models and human patients, with special emphasis on the potential salutary effects of Hsp20 in heart disease. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
Affiliation(s)
- Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0575, USA.
| | | |
Collapse
|
8
|
Raghavan S, Miyasaka EA, Hashish M, Somara S, Gilmont RR, Teitelbaum DH, Bitar KN. Successful implantation of physiologically functional bioengineered mouse internal anal sphincter. Am J Physiol Gastrointest Liver Physiol 2010; 299:G430-9. [PMID: 20558766 PMCID: PMC2928530 DOI: 10.1152/ajpgi.00269.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 06/09/2010] [Indexed: 01/31/2023]
Abstract
We have previously developed bioengineered three-dimensional internal anal sphincter (IAS) rings from circular smooth muscle cells isolated from rabbit and human IAS. We provide proof of concept that bioengineered mouse IAS rings are neovascularized upon implantation into mice of the same strain and maintain concentric smooth muscle alignment, phenotype, and IAS functionality. Rings were bioengineered by using smooth muscle cells from the IAS of C57BL/6J mice. Bioengineered mouse IAS rings were implanted subcutaneously on the dorsum of C57BL/6J mice along with a microosmotic pump delivering fibroblast growth factor-2. The mice remained healthy during the period of implantation, showing no external signs of rejection. Mice were killed 28 days postsurgery and implanted IAS rings were harvested. IAS rings showed muscle attachment, neovascularization, healthy color, and no external signs of infection or inflammation. Assessment of force generation on harvested IAS rings showed the following: 1) spontaneous basal tone was generated in the absence of external stimulation; 2) basal tone was relaxed by vasoactive intestinal peptide, nitric oxide donor, and nifedipine; 3) acetylcholine and phorbol dibutyrate elicited rapid-rising, dose-dependent, sustained contractions repeatedly over 30 min without signs of muscle fatigue; and 4) magnitudes of potassium chloride-induced contractions were 100% of peak maximal agonist-induced contractions. Our preliminary results confirm the proof of concept that bioengineered rings are neovascularized upon implantation. Harvested rings maintain smooth muscle alignment and phenotype. Our physiological studies confirm that implanted rings maintain 1) overall IAS physiology and develop basal tone, 2) integrity of membrane ionic characteristics, and 3) integrity of membrane associated intracellular signaling transduction pathways for contraction and relaxation by responding to cholinergic, nitrergic, and VIP-ergic stimulation. IAS smooth muscle tissue could thus be bioengineered for the purpose of implantation to serve as a potential graft therapy for dysfunctional internal anal sphincter in fecal incontinence.
Collapse
Affiliation(s)
- Shreya Raghavan
- Department of Pediatrics-Gastroenterology, University of Michigan Medical School, Ann Arbor, 48109-0658, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Dreiza CM, Komalavilas P, Furnish EJ, Flynn CR, Sheller MR, Smoke CC, Lopes LB, Brophy CM. The small heat shock protein, HSPB6, in muscle function and disease. Cell Stress Chaperones 2010; 15:1-11. [PMID: 19568960 PMCID: PMC2866971 DOI: 10.1007/s12192-009-0127-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022] Open
Abstract
The small heat shock protein, HSPB6, is a 17-kDa protein that belongs to the small heat shock protein family. HSPB6 was identified in the mid-1990s when it was recognized as a by-product of the purification of HSPB1 and HSPB5. HSPB6 is highly and constitutively expressed in smooth, cardiac, and skeletal muscle and plays a role in muscle function. This review will focus on the physiologic and biochemical properties of HSPB6 in smooth, cardiac, and skeletal muscle; the putative mechanisms of action; and therapeutic implications.
Collapse
|
10
|
Somara S, Gilmont R, Bitar KN. Role of thin-filament regulatory proteins in relaxation of colonic smooth muscle contraction. Am J Physiol Gastrointest Liver Physiol 2009; 297:G958-66. [PMID: 20501443 PMCID: PMC2777455 DOI: 10.1152/ajpgi.00201.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Coordinated regulation of smooth muscle contraction and relaxation is required for colonic motility. Contraction is associated with phosphorylation of myosin light chain (MLC(20)) and interaction of actin with myosin. Thin-filament regulation of actomyosin interaction is modulated by two actin-binding regulatory proteins: tropomyosin (TM) and caldesmon (CaD). TM and CaD are known to play crucial role in actomyosin interaction promoting contraction. Contraction is associated with phosphorylation of the small heat shock protein HSP27, concomitant with the phosphorylation of TM and CaD. Phosphorylation of HSP27 is attributed as being the prime modulator of thin-filament regulation of contraction. Preincubation of colonic smooth muscle cells (CSMC) with the relaxant neurotransmitter vasoactive intestinal peptide (VIP) showed inhibition in phosphorylation of HSP27 (ser78). Attenuation of HSP27 phosphorylation can result in modulation of thin-filament-mediated regulation of contraction leading to relaxation; thus the role of thin-filament regulatory proteins in a relaxation milieu was investigated. Preincubation of CSMC with VIP exhibited a decrease in phosphorylation of TM and CaD. Furthermore, CSMC preincubated with VIP showed a reduced association of TM with HSP27 and with phospho-HSP27 (ser78) whereas there was reduced dissociation of TM from CaD and from phospho-CaD. We thus propose that, in addition to alteration in phosphorylation of MLC(20), relaxation is associated with alterations in thin-filament-mediated regulation that results in termination of contraction.
Collapse
Affiliation(s)
- Sita Somara
- Department of Pediatrics-Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Robert Gilmont
- Department of Pediatrics-Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Khalil N. Bitar
- Department of Pediatrics-Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan
| |
Collapse
|