1
|
Dube NP, Tembu VJ, Nyemba GR, Davison C, Rakodi GH, Kemboi D, de la Mare JA, Siwe-Noundou X, Manicum ALE. In vitro cytotoxic effect of stigmasterol derivatives against breast cancer cells. BMC Complement Med Ther 2023; 23:316. [PMID: 37697361 PMCID: PMC10496295 DOI: 10.1186/s12906-023-04137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Stigmasterol is an unsaturated phytosterol that belong to the class of tetracyclic steroids abundant in Rhoicissus tridentata. Stigmasterol is an important constituent since it has shown impressive pharmacological effects such as anti-osteoarthritis, anticancer, anti-diabetic, anti-inflammatory, antiparasitic, immunomodulatory, antifungal, antioxidant, antibacterial, and neuroprotective activities. Furthermore, due to the presence of π system and hydroxyl group, stigmasterol is readily derivatized through substitution and addition reactions, allowing for the synthesis of a wide variety of stigmasterol derivatives. METHODS Stigmasterol (1) isolated from Rhoicissus tridentata was used as starting material to yield eight bio-active derivatives (2-9) through acetylation, epoxidation, epoxide ring opening, oxidation, and dihydroxylation reactions. The structures of all the compounds were established using spectroscopic techniques, NMR, IR, MS, and melting points. The synthesized stigmasterol derivatives were screened for cytotoxicity against the hormone receptor-positive breast cancer (MCF-7), triple-negative breast cancer (HCC70), and non-tumorigenic mammary epithelial (MCF-12 A) cell lines using the resazurin assay. RESULTS Eight stigmasterol derivatives were successfully synthesized namely; Stigmasterol acetate (2), Stigmasta-5,22-dien-3,7-dione (3), 5,6-Epoxystigmast-22-en-3β-ol (4), 5,6-Epoxystigmasta-3β,22,23-triol (5), Stigmastane-3β,5,6,22,23-pentol (6), Stigmasta-5-en-3,7-dion-22,23-diol (7), Stigmasta-3,7-dion-5,6,22,23-ol (8) and Stigmast-5-ene-3β,22,23-triol (9). This is the first report of Stigmasta-5-en-3,7-dion-22,23-diol (7) and Stigmasta-3,7-dion-5,6,22,23-ol (8). The synthesized stigmasterol analogues showed improved cytotoxic activity overall compared to the stigmasterol (1), which was not toxic to the three cell lines tested (EC50 ˃ 250 µM). In particular, 5,6-Epoxystigmast-22-en-3β-ol (4) and stigmast-5-ene-3β,22,23-triol (9) displayed improved cytotoxicity and selectivity against MCF-7 breast cancer cells (EC50 values of 21.92 and 22.94 µM, respectively), while stigmastane-3β,5,6,22,23-pentol (6) showed improved cytotoxic activity against the HCC70 cell line (EC50: 16.82 µM). CONCLUSION Natural products from Rhoicissus tridentata and their derivatives exhibit a wide range of pharmacological activities, including anticancer activity. The results obtained from this study indicate that molecular modification of stigmasterol functional groups can generate structural analogues with improved anticancer activity. Stigmasterol derivatives have potential as candidates for novel anticancer drugs.
Collapse
Affiliation(s)
- Nondumiso Premilla Dube
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Vuyelwa Jacqueline Tembu
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Getrude R Nyemba
- Department of Biochemistry and Microbiology, Female Cancers Research at Rhodes University (FemCR2U), Makhanda/Grahamstown, 6140, South Africa
| | - Candace Davison
- Department of Biochemistry and Microbiology, Female Cancers Research at Rhodes University (FemCR2U), Makhanda/Grahamstown, 6140, South Africa
| | | | - Douglas Kemboi
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
- Department of Physical Sciences, University of Kabianga, Kericho, 2030, Kenya
| | - Jo-Anne de la Mare
- Department of Biochemistry and Microbiology, Female Cancers Research at Rhodes University (FemCR2U), Makhanda/Grahamstown, 6140, South Africa
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, Sefako Makgatho Health Sciences University, Pretoria, 0204, South Africa
| | - Amanda-Lee Ezra Manicum
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
2
|
Muruthi CW, Ngugi MP, Runo SM, Mwitari PG. In Vitro Antiproliferative Effects and Phytochemical Characterization of Carissa edulis ((Forssk) Vahl) and Pappea capensis (Eckyl and Zeyh) Extracts. J Evid Based Integr Med 2023; 28:2515690X231187711. [PMID: 37489007 PMCID: PMC10387709 DOI: 10.1177/2515690x231187711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 05/30/2023] [Accepted: 06/24/2023] [Indexed: 07/26/2023] Open
Abstract
Cancer mortality is a global concern. The current therapeutic approaches despite showing efficacy are characterized by several limitations. Search for alternatives has led to the use of herbal plants including C. edulis and P. capensis. However, there is limited research on antiproliferative effects of these medicinal plants. The study sought to evaluate antiproliferative effects of the plants against human breast and prostate cancers using cell viability, and gene expression assays to determine modulation of apoptotic genes. Further, Liquid Chromatography Mass Spectrophotometer (LC-MS) and Gas Chromatography Mass Spectrophotometer (GC-MS) analyses were performed to confirm phytocompounds in the extracts. The results indicated that ethylacetate extracts of C. edulis and P. capensis had the highest activity against cancer cells with IC50 values of 2.12 ± 0.02, and 6.57 ± 0.03 μg/ml on HCC 1395 and 2.92 ± 0.17 and 5.00 ± 0.17 μg/ml on DU145, respectively. Moreover, the plants extracts exhibited relatively less cytotoxic activities against Vero cell lines (IC50 > 20 μg/ml). The extracts also exhibit selectivity against the cancer cells (SI > 3). Further, mRNA expression of p53 in the treated HCC 1395 was increased by 7 and 3-fold, whereas by 3 and 2-fold in DU145 cells, upon treatment with ethylacetate extracts of C. edulis and P. capensis, respectively. Similarly, several-fold increases were observed in the number of transcripts of Bax in HCC 1395 and HOXB13 in DU145 cells. Phytochemical analyses detected presence of phytocompounds including flavonoids, phenolics, tocopherols and terpenoids which are associated with anticancer activity. Findings from this study provide a scientific validation for the folklore use of these plants in management of cancer.
Collapse
Affiliation(s)
- Carolyn Wanjira Muruthi
- Department of Biochemistry, Microbiology and Biotechnology-Kenyatta University, Nairobi, Kenya
| | - Mathew Piero Ngugi
- Department of Biochemistry, Microbiology and Biotechnology-Kenyatta University, Nairobi, Kenya
| | - Steven Maina Runo
- Department of Biochemistry, Microbiology and Biotechnology-Kenyatta University, Nairobi, Kenya
| | - Peter Githaiga Mwitari
- Centre for Traditional Medicine and Drug Research-Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| |
Collapse
|
3
|
Bakrim S, Benkhaira N, Bourais I, Benali T, Lee LH, El Omari N, Sheikh RA, Goh KW, Ming LC, Bouyahya A. Health Benefits and Pharmacological Properties of Stigmasterol. Antioxidants (Basel) 2022; 11:1912. [PMID: 36290632 PMCID: PMC9598710 DOI: 10.3390/antiox11101912] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 07/30/2023] Open
Abstract
Stigmasterol is an unsaturated phytosterol belonging to the class of tetracyclic triterpenes. It is one of the most common plant sterols, found in a variety of natural sources, including vegetable fats or oils from many plants. Currently, stigmasterol has been examined via in vitro and in vivo assays and molecular docking for its various biological activities on different metabolic disorders. The findings indicate potent pharmacological effects such as anticancer, anti-osteoarthritis, anti-inflammatory, anti-diabetic, immunomodulatory, antiparasitic, antifungal, antibacterial, antioxidant, and neuroprotective properties. Indeed, stigmasterol from plants and algae is a promising molecule in the development of drugs for cancer therapy by triggering intracellular signaling pathways in numerous cancers. It acts on the Akt/mTOR and JAK/STAT pathways in ovarian and gastric cancers. In addition, stigmasterol markedly disrupted angiogenesis in human cholangiocarcinoma by tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor receptor-2 (VEGFR-2) signaling down-regulation. The association of stigmasterol and sorafenib promoted caspase-3 activity and down-regulated levels of the anti-apoptotic protein Bcl-2 in breast cancer. Antioxidant activities ensuring lipid peroxidation and DNA damage lowering conferred to stigmasterol chemoprotective activities in skin cancer. Reactive oxygen species (ROS) regulation also contributes to the neuroprotective effects of stigmasterol, as well as dopamine depletion and acetylcholinesterase inhibition. The anti-inflammatory properties of phytosterols involve the production of anti-inflammatory cytokines, the decrease in inflammatory mediator release, and the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Stigmasterol exerts anti-diabetic effects by reducing fasting glucose, serum insulin levels, and oral glucose tolerance. Other findings showed the antiparasitic activities of this molecule against certain strains of parasites such as Trypanosoma congolense (in vivo) and on promastigotes and amastigotes of the Leishmania major (in vitro). Some stigmasterol-rich plants were able to inhibit Candida albicans, virusei, and tropicalis at low doses. Accordingly, this review outlines key insights into the pharmacological abilities of stigmasterol and the specific mechanisms of action underlying some of these effects. Additionally, further investigation regarding pharmacodynamics, pharmacokinetics, and toxicology is recommended.
Collapse
Affiliation(s)
- Saad Bakrim
- Molecular Engineering, Biotechnologies and Innovation Team, Geo-Bio-Environment Engineering and Innovation Laboratory, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Nesrine Benkhaira
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Department of Biology, Faculty of Sciences and Techniques, University Sidi Mohamed Ben Abdellah, Fez 1975, Morocco
| | - Ilhame Bourais
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Ryan A. Sheikh
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| |
Collapse
|
4
|
Permixon®, hexane-extracted Serenoa repens, inhibits human prostate and bladder smooth muscle contraction and exerts growth-related functions in human prostate stromal cells. Life Sci 2022; 308:120931. [PMID: 36084760 DOI: 10.1016/j.lfs.2022.120931] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
AIMS Recently, the European Association of Urology recommended hexane-extracted fruit of Serenoa repens (HESr) in their guidelines on management of non-neurogenic male lower urinary tracts symptoms (LUTS). Despite previously lacking recommendations, Permixon® is the most investigated HESr in clinical trials, where it proved effective for male LUTS. In contrast, underlying mechanisms were rarely addressed and are only marginally understood. We therefore investigated effects of Permixon® on human prostate and detrusor smooth muscle contraction and on growth-related functions in prostate stromal cells. MAIN METHODS Permixon® capsules were dissolved using n-hexane. Contractions of human prostate and detrusor tissues were induced in organ bath. Proliferation (EdU assay), growth (colony formation), apoptosis and cell death (flow cytometry), viability (CCK-8) and actin organization (phalloidin staining) were studied in cultured human prostate stromal cells (WPMY-1). KEY FINDINGS Permixon® inhibited α1-adrenergic and thromboxane-induced contractions in prostate tissues, and methacholine-and thromboxane-induced contractions in detrusor tissues. Endothelin-1-induced contractions were not inhibited. Neurogenic contractions were inhibited in both tissues in a concentration-dependent manner. In WPMY-1 cells, Permixon® caused concentration-dependent breakdown of actin polymerization, inhibited colony formation, reduced cell viability, and proliferation, without showing cytotoxic or pro-apoptotic effects. SIGNIFICANCE Our results provide a novel basis that allows, for the first time, to fully explain the ubiquitous beneficial effects of HESr in clinical trials. HESr may inhibit at least neurogenic, α1-adrenergic and thromboxane-induced smooth muscle contraction in the prostate and detrusor, and in parallel, prostate stromal cell growth. Together, this may explain symptom improvements by Permixon® in previous clinical trials.
Collapse
|
5
|
Laskowska AK, Kleczkowska P. Anticancer efficacy of endo- and exogenous potent ligands acting at dopaminergic receptor-expressing cancer cells. Eur J Pharmacol 2022; 932:175230. [PMID: 36027983 DOI: 10.1016/j.ejphar.2022.175230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/27/2022]
Abstract
Cancer is one of the most common and dreaded diseases affecting the vastness of society. Unfortunately, still some people die especially when cancer is not diagnosed and thus caught early enough. On the other hand, using available chemo- or radiotherapy may result in serious side effects. Therefore, cancer-specific medications seem to be the most desired and safe therapy. Knowing that some cancers are characterized by overexpression of specific receptors on the cell surface, target-mediated drugs could serve as a unique and effective form of therapy. In line with this, recently dopaminergic receptors were presented important in cancer therapy as several dopaminergic ligands revealed their efficacy in tumor growth reduction as well as in apoptosis mediation. Unfortunately, the indication of whether DA receptor agonists or antagonists are the best choices in cancer treatment is quite difficult, since both of them may exert either pro- or anticancer effects. In this review, we analyze the therapeutic efficacy of compounds, both of exogenous and endogenous origin, targeting dopaminergic receptor-expressing cancers.
Collapse
Affiliation(s)
- Anna K Laskowska
- Centre for Preclinical Research and Technology (CePT), Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Patrycja Kleczkowska
- Maria Sklodowska-Curie Medical Academy in Warsaw, Solidarnosci 12 Str., 03-411, Warsaw, Poland; Military Institute of Hygiene and Epidemiology, Kozielska 4 Str., 01-163, Warsaw, Poland.
| |
Collapse
|
6
|
Zhao H, Zhang X, Wang M, Lin Y, Zhou S. Stigmasterol Simultaneously Induces Apoptosis and Protective Autophagy by Inhibiting Akt/mTOR Pathway in Gastric Cancer Cells. Front Oncol 2021; 11:629008. [PMID: 33708631 PMCID: PMC7940753 DOI: 10.3389/fonc.2021.629008] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/05/2021] [Indexed: 02/02/2023] Open
Abstract
Background Stigmasterol (SS) has been proven to possess potential anticancer activities in several cancer cell lines, but its molecular mechanism is still unknown. Thus, we investigated whether SS has the capabilities of inducing autophagy and its molecular mechanisms in gastric cancer cells. Methods We used CCK8 assay, clone formation assay, and EdU proliferation assay to assess the effects of SS on cell proliferation in SGC-7901 and MGC-803 cells in vitro, and its inhibition on the tumor growth of gastric cancer was observed in vivo. Apoptosis induced by SS was demonstrated using Hoechst and TUNEL staining, annexin V-FITC/PI assay. Immunofluorescence staining is used to detect the formation of autophagosomes triggered by SS. Apoptosis and autophagy related proteins were analyzed by western blot. Results The results indicated that SS treatment inhibited cell proliferation in SGC-7901 and MGC-803 cells. Furthermore, SS treatment induced apoptosis and autophagy by blocking Akt/mTOR signaling pathway. The pretreatment with the Akt inhibitor MK-2206 could promote apoptosis and autophagy induced by SS, predicting that Akt/mTOR pathway is involved in SS-induced apoptosis and autophagy. In addition, blockade of autophagy with 3-MA (an inhibitor of autophagy) enhanced SS-induced apoptosis in SGC-7901 and MGC-803 cells, implying that autophagy mediated by SS plays a cytoprotective role against apoptosis. Finally, an in vivo study demonstrated that tumor growth of gastric cancer was suppressed by SS in a xenograft model. Conclusion Our findings illustrate for the first time that SS simultaneously induces apoptosis and protective autophagy by inhibiting Akt/mTOR pathway in gastric cancer cells, and SS may become a potential anticancer drug in treating gastric cancer in the future.
Collapse
Affiliation(s)
- Huange Zhao
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Xian Zhang
- Schools of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Min Wang
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Yingying Lin
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Songlin Zhou
- Key Laboratory of Tropical Translational Medicine of the Ministry of Education & Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical University, Haikou, China
| |
Collapse
|
7
|
Stigmasterol Causes Ovarian Cancer Cell Apoptosis by Inducing Endoplasmic Reticulum and Mitochondrial Dysfunction. Pharmaceutics 2020; 12:pharmaceutics12060488. [PMID: 32481565 PMCID: PMC7356731 DOI: 10.3390/pharmaceutics12060488] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Phytosterols have physiological effects and are used as medicines or food supplements. Stigmasterol has shown anticancer effects against various cancers such as hepatoma, cholangiocarcinoma, gall bladder carcinoma, endometrial adenocarcinoma and skin, gastric, breast, prostate, and cervical cancer. However, there are no reports on stigmasterol’s effects on ovarian cancer. Methods: We investigated the effects of stigmasterol on proapoptotic signals, mitochondrial function, reactive oxygen species production, and the cytosolic and mitochondrial calcium levels in human ovarian cancer cells, to understand the mechanisms underlying the effects of stigmasterol on ovarian cancer cells. We also conducted migration assay to confirm whether that stigmasterol inhibits ovarian cancer cell migration. Results: Stigmasterol inhibited development of human ovarian cancer cells. However, it induced cell apoptosis, ROS production, and calcium overload in ES2 and OV90 cells. In addition, stigmasterol stimulated cell death by activating the ER-mitochondrial axis. We confirmed that stigmasterol suppressed cell migration and angiogenesis genes in human ovarian cancer cells. Conclusions: Our findings suggest that stigmasterol can be used as a new treatment for ovarian cancer.
Collapse
|
8
|
Kwon Y. Use of saw palmetto ( Serenoa repens) extract for benign prostatic hyperplasia. Food Sci Biotechnol 2019; 28:1599-1606. [PMID: 31807332 DOI: 10.1007/s10068-019-00605-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/18/2019] [Accepted: 03/19/2019] [Indexed: 12/26/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a noncancerous growth of the prostate. BPH commonly occurs in elderly men. Lower urinary tract symptoms (LUTS) secondary to BPH (LUTS/BPH) have significant impacts on their health. Saw palmetto (Serenoa repens) extract (SPE) has been evaluated for its effectiveness in improvement of LUTS/BPH at preclinical and clinical levels. Potential mechanisms of actions include anti-androgenic, pro-apoptotic, and anti-inflammatory effects. However, SPE efficacy was inconsistent, at least partly due to a lack of a standardized SPE formula. A hexane extract (free fatty acids, > 80%) provided more consistent results. Free fatty acids (lauric acid) were effective in inhibition of 5α-reductase, and phytosterol (β-sitosterol) reduced prostatic inflammation. Multiple actions derived from different constituents may contribute to SPE efficacy. Evaluation of the clinical relevance of these bioactive components is required for standardization of SPE, thereby enabling consistent efficacy and recommendations for the use in the prevention and treatment of BPH.
Collapse
Affiliation(s)
- Youngjoo Kwon
- Department of Food Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| |
Collapse
|
9
|
Zhang H, Liu J, Li G, Wei J, Chen H, Zhang C, Zhao J, Wang Y, Dang S, Li X, Fang X, Liu L, Liu M. Fresh red raspberry phytochemicals suppress the growth of hepatocellular carcinoma cells by PTEN/AKT pathway. Int J Biochem Cell Biol 2018; 104:55-65. [PMID: 30195065 DOI: 10.1016/j.biocel.2018.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/17/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022]
Abstract
The red raspberry (Rubus idaeus L.) is a common fruit worldwide and its extract has been found to inhibit the growth of many types of tumors, mainly because it is rich in bioactive phytochemicals. However, the mechanism underlying its anticancer activity in hepatocellular carcinoma (HCC) is not well understood. Herein, the aim of this study was to determine the effects of red raspberry phytochemicals on the proliferation of hepatocellular carcinoma cells and to elucidate its biochemical and molecular targets. CCK8 and colony formation, as well as flow cytometry assays, were employed to determine the effects of red raspberry extract (RRE) on cell proliferation and cell cycle distribution in HCC cells. Our results showed that RRE significantly inhibited cell proliferation and arrested cell cycle progression at the S phase in HCC cells. RRE increased the expression of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) by reducing the methylation status of the PTEN gene promoter and inhibiting DNMT1 expression and regulated AKT signaling pathway. These findings show that red raspberry phytochemicals inhibit the proliferation of HCC cells by regulating PTEN/AKT signaling pathway, providing evidence that RRE may be used as a potential auxiliary therapy for patients with HCC.
Collapse
Affiliation(s)
- Haopeng Zhang
- Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jiaren Liu
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Guodong Li
- Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jiufeng Wei
- Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hongsheng Chen
- Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Chunpeng Zhang
- Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jinlu Zhao
- Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yunfeng Wang
- Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Shuwei Dang
- Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xinglong Li
- Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xuan Fang
- Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Lianxin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University & Key Laboratory of Hepatosplenic Surgery Ministry of Education, Harbin, 150001, China
| | - Ming Liu
- Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
10
|
Chemopreventive Potential of Ethanolic Extracts of Luobuma Leaves (Apocynum venetum L.) in Androgen Insensitive Prostate Cancer. Nutrients 2017; 9:nu9090948. [PMID: 28846663 PMCID: PMC5622708 DOI: 10.3390/nu9090948] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 01/31/2023] Open
Abstract
Luobuma (Apocynum venetum L. (AVL)) is a popular beverage in Asia and has been reportedly to be associated with the bioactivities such as cardiotonic, diuretic, antioxidative, and antihypertensive. However, its biofunction as chemoprevention activity is seldom addressed. Herein, we aimed to characterize the anti-androgen-insensitive-prostate-cancer (anti-AIPC) bioactive compounds of Luobuma, and to investigate the associated molecular mechanisms. Activity-guided-fractionation (antioxidative activity and cell survivability) of Luobuma ethanolic extracts was performed to isolate and characterize the major bioactive compounds using Ultra Performance Liquid Chromatography (UPLC), Liquid Chromatography-Mass Spectrometry (LC-MS), and Nuclear Magnetic Resonance (NMR). Plant sterols (lupeol, stigamasterol and β-sitosterol) and polyphenolics (isorhamnetin, kaempferol, and quercetin) were identified. Lupeol, a triterpene found in the fraction (F8) eluted by 10% ethyl acetate/90% hexane and accounted for 19.3% (w/w) of F8, inhibited the proliferation of PC3 cells. Both lupeol and F8 induced G2/M arrest, inhibition of β-catenin signaling, regulation of apoptotic signal molecules (cytochrome c, Bcl-2, P53, and caspase 3 and 8), and suppression DNA repair enzyme expression (Uracil-DNA glycosylase (UNG)). To our knowledge, our study is the first report that lupeol inhibited the expression of UNG to elicit the cytotoxicity against androgen-insensitive-prostate-cancer cells. Collectively, Luobuma, which contains several antitumor bioactive compounds, holds the potential to be a dietary chemopreventive agent for prostate cancer.
Collapse
|
11
|
Lee NK, Shin HJ, Kim WS, In G, Han CK. Studies on the Chemical Constituents from the Seeds of Zizyphus jujuba var. inermis. ACTA ACUST UNITED AC 2017. [DOI: 10.20307/nps.2017.23.4.258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nam Kyung Lee
- R&D Headquarters, Korea Ginseng Corp., Daejeon 34128, Republic of Korea
| | - Hyun Jung Shin
- R&D Headquarters, Korea Ginseng Corp., Daejeon 34128, Republic of Korea
| | - Wan-Seok Kim
- R&D Headquarters, Korea Ginseng Corp., Daejeon 34128, Republic of Korea
| | - Gyo In
- R&D Headquarters, Korea Ginseng Corp., Daejeon 34128, Republic of Korea
| | - Chang Kyun Han
- R&D Headquarters, Korea Ginseng Corp., Daejeon 34128, Republic of Korea
| |
Collapse
|
12
|
Cabeza M, Sánchez-Márquez A, Garrido M, Silva A, Bratoeff E. Recent Advances in Drug Design and Drug Discovery for Androgen- Dependent Diseases. Curr Med Chem 2016; 23:792-815. [PMID: 26861003 PMCID: PMC5412001 DOI: 10.2174/0929867323666160210125642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 12/28/2015] [Accepted: 02/09/2016] [Indexed: 11/22/2022]
Abstract
This article summarizes the importance of different targets such as 5α-reductase, 17β-HSD, CYP17A, androgen receptor and protein kinase A for the treatment of prostate cancer and benign prostatic hyperplasia. It is a well known fact that dihydrotestosterone (DHT) is associated with the development of androgen-dependent afflictions. At the present time, several research groups are attempting to develop new steroidal and non-steroidal molecules with the purpose of inhibiting the synthesis and biological response of DHT. This review also discusses the most recent studies reported in the literature that describe the therapeutic potential of novel compounds, as well as the new drugs, principally inhibitors of 5α-reductase.
Collapse
Affiliation(s)
- Marisa Cabeza
- Departamento De Sistemas Biológicos, Universidad Autónoma Metropolitana- Xochimilco Calzada Del Hueso No. 1100, México, D.F., C.P. 04960, México.
| | | | | | | | | |
Collapse
|
13
|
Effect of Saw Palmetto Supplements on Androgen-Sensitive LNCaP Human Prostate Cancer Cell Number and Syrian Hamster Flank Organ Growth. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8135135. [PMID: 27272436 PMCID: PMC4870347 DOI: 10.1155/2016/8135135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/17/2022]
Abstract
Saw palmetto supplements (SPS) are commonly consumed by men with prostate cancer. We investigated whether SPS fatty acids and phytosterols concentrations determine their growth-inhibitory action in androgen-sensitive LNCaP cells and hamster flank organs. High long-chain fatty acids-low phytosterols (HLLP) SPS ≥ 750 nM with testosterone significantly increased and ≥500 nM with dihydrotestosterone significantly decreased LNCaP cell number. High long-chain fatty acids-high phytosterols (HLHP) SPS ≥ 500 nM with dihydrotestosterone and high medium-chain fatty acids-low phytosterols (HMLP) SPS ≥ 750 nM or with androgens significantly decreased LNCaP cell number (n = 3; p < 0.05). Five- to six-week-old, castrated male Syrian hamsters were randomized to control (n = 4), HLLP, HLHP, and HMLP SPS (n = 6) groups. Testosterone or dihydrotestosterone was applied topically daily for 21 days to the right flank organ; the left flank organ was treated with ethanol and served as the control. Thirty minutes later, SPS or ethanol was applied to each flank organ in treatment and control groups, respectively. SPS treatments caused a notable but nonsignificant reduction in the difference between left and right flank organ growth in testosterone-treated SPS groups compared to the control. The same level of inhibition was not seen in dihydrotestosterone-treated SPS groups (p < 0.05). Results may suggest that SPS inhibit 5α-reductase thereby preventing hamster flank organ growth.
Collapse
|
14
|
Dołowy M, Pyka A. Evaluation of the Stability of the Chromatographic Bands in the TLC-Densitometric Analysis of Selected Pharmaceutical Important Phytosterols and α-tocopherols. J LIQ CHROMATOGR R T 2015. [DOI: 10.1080/10826076.2015.1028293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Małgorzata Dołowy
- Institute of Analytical Chemistry, School of Pharmacy and the Division of Laboratory Medicine, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Alina Pyka
- Institute of Analytical Chemistry, School of Pharmacy and the Division of Laboratory Medicine, Medical University of Silesia in Katowice, Sosnowiec, Poland
| |
Collapse
|
15
|
What do we know about phytotherapy of benign prostatic hyperplasia? Life Sci 2015; 126:42-56. [DOI: 10.1016/j.lfs.2015.01.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/22/2014] [Accepted: 01/21/2015] [Indexed: 02/08/2023]
|
16
|
Lomenick B, Shi H, Huang J, Chen C. Identification and characterization of β-sitosterol target proteins. Bioorg Med Chem Lett 2015; 25:4976-4979. [PMID: 25804720 DOI: 10.1016/j.bmcl.2015.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 11/27/2022]
Abstract
β-Sitosterol is the most abundant plant sterol in the human diet. It is also the major component of several traditional medicines, including saw palmetto and devil's claw. Although β-sitosterol is effective against enlarged prostate in human clinical trials and has anti-cancer and anti-inflammatory activities, the mechanisms of action are poorly understood. Here, we report the identification of two new binding proteins for β-sitosterol that may underlie its beneficial effects.
Collapse
Affiliation(s)
- Brett Lomenick
- Department of Molecular and Medical Pharmacology, 23-231 Center for Health Sciences, 650 Charles E Young Dr. South, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Heping Shi
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jing Huang
- Department of Molecular and Medical Pharmacology, 23-231 Center for Health Sciences, 650 Charles E Young Dr. South, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Chuo Chen
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
17
|
Wang R, Kobayashi Y, Lin Y, Rauwald HW, Fang L, Qiao H, Kuchta K. A phytosterol enriched refined extract of Brassica campestris L. pollen significantly improves benign prostatic hyperplasia (BPH) in a rat model as compared to the classical TCM pollen preparation Qianlie Kang Pule'an Tablets. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:145-152. [PMID: 25636883 DOI: 10.1016/j.phymed.2014.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/22/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
In Qinghai Province, the Brassica campestris L. pollen preparation Qianlie Kang Pule'an Tablet (QKPT) is traditionally used for BPH therapy. However, in QKPT the content of supposedly active phytosterols is relatively low at 2.59%, necessitating high doses for successful therapy. Therefore, a phytosterol enriched (4.54%) refined extract of B. campestris pollen (PE) was developed and compared with QKPT in a BPH rat model. Six groups of rats (n=8 each), namely sham-operated distilled water control, castrated distilled water control, castrated QKPT 2.0g/kg, castrated PE 0.1g/kg, castrated PE 0.2g/kg, and castrated PE 0.4g/kg, were intragastrically treated with the respective daily doses. Testosterone propionate (0.3mg/day) was administered to all castrated rats, while the sham-operated group received placebo injections. After 30 days, the animals were sacrificed and prostates as well as seminal vesicles excised and weighted in order to calculate prostate volume index (PVI) as well as prostate index (PI) and seminal vesicle index (SVI), defined as organ weight in g per 100g body weight. Compared with sham-operated controls, PI (p<0.01), PVI (p<0.01), and SVI (p<0.01) were all significantly increased in all castrated, testosterone treated rats. After treatment with PE at 0.4 and 0.2g/kg or QKPT at 2.0g/kg per day, both indices were significantly reduced (p<0.01) as compared to the castrated distilled water control. For PE at 0.1g/kg per day only PI was significantly reduced (p<0.05). At the highest PE concentration of 0.4g/kg per day both PI and SVI were also significantly reduced when compared to the QKPT group (p<0.05). Both PE and QKPT demonstrated curative effects against BPH in the applied animal model. In its highest dose at 0.4g/kg per day, PE was clearly superior to QKPT.
Collapse
Affiliation(s)
- Ruwei Wang
- Zhejiang CONBA Pharmaceutical & Drug Research Development Corporation, Hangzhou 310052, PR China; Zhejiang Key Laboratory for Traditional Chinese Medicine, Pharmaceutical Technology, Hangzhou 310052, PR China
| | - Yuta Kobayashi
- Faculty of Medicine, Shimane University, 693-8501 Izumo, Enya 89-1, Japan
| | - Yu Lin
- Medical Corporation Soujikai, 541-0046 Osaka, Chuo-ku, Hirano 2-2-2, Japan
| | - Hans Wilhelm Rauwald
- Department of Pharmaceutical Biology, Leipzig University, Johannisallee 23, 04103 Leipzig, Germany
| | - Ling Fang
- Zhejiang CONBA Pharmaceutical & Drug Research Development Corporation, Hangzhou 310052, PR China; Zhejiang Key Laboratory for Traditional Chinese Medicine, Pharmaceutical Technology, Hangzhou 310052, PR China
| | - Hongxiang Qiao
- Zhejiang CONBA Pharmaceutical & Drug Research Development Corporation, Hangzhou 310052, PR China; Zhejiang Key Laboratory for Traditional Chinese Medicine, Pharmaceutical Technology, Hangzhou 310052, PR China
| | - Kenny Kuchta
- Department of Pharmaceutical Biology, Leipzig University, Johannisallee 23, 04103 Leipzig, Germany; Natural Products Chemistry Research, Department of Food and Nutrition, Sanyo Gakuen University-College, 703-8501 Okayama, Naka-ku, Hirai 1-14-1, Japan.
| |
Collapse
|
18
|
Zhou B, Yi H, Tan J, Wu Y, Liu G, Qiu Z. Anti-proliferative effects of polyphenols from pomegranate rind (Punica granatum L.) on EJ bladder cancer cells via regulation of p53/miR-34a axis. Phytother Res 2015; 29:415-22. [PMID: 25572695 DOI: 10.1002/ptr.5267] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/20/2014] [Accepted: 11/17/2014] [Indexed: 12/11/2022]
Abstract
miRNAs and their validated miRNA targets appear as novel effectors in biological activities of plant polyphenols; however, limited information is available on miR-34a mediated cytotoxicity of pomegranate rind polyphenols in cancer cell lines. For this purpose, cell viability assay, Realtime quantitative PCR for mRNA quantification, western blot for essential protein expression, p53 silencing by shRNA and miR-34a knockdown were performed in the present study. EJ cell treatment with 100 µg (GAE)/mL PRE for 48 h evoked poor cell viability and caspase-dependent pro-apoptosis appearance. PRE also elevated p53 protein and triggered miR-34a expression. The c-Myc and CD44 were confirmed as direct targets of miR-34a in EJ cell apoptosis induced by PRE. Our results provide sufficient evidence that polyphenols in PRE can be potential molecular clusters to suppress bladder cancer cell EJ proliferation via p53/miR-34a axis.
Collapse
Affiliation(s)
- Benhong Zhou
- Department of Pharmacy, Renmin Hospital, Wuhan University, Wuhan, 430060, People's Republic of China
| | | | | | | | | | | |
Collapse
|
19
|
Chang SN, Han J, Abdelkader TS, Kim TH, Lee JM, Song J, Kim KS, Park JH, Park JH. High animal fat intake enhances prostate cancer progression and reduces glutathione peroxidase 3 expression in early stages of TRAMP mice. Prostate 2014; 74:1266-77. [PMID: 25053105 DOI: 10.1002/pros.22843] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 06/03/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Prostate cancer is the most frequently diagnosed cancer in Western men, and more men have been diagnosed at younger ages in recent years. A high-fat Western-style diet is a known risk factor for prostate cancer and increases oxidative stress. METHODS We evaluated the association between dietary animal fat and expression of antioxidant enzymes, particularly glutathione peroxidase 3 (GPx3), in the early stages of transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. Six-week-old male nontransgenic and TRAMP mice were placed on high animal fat (45% Kcal fat) or control (10% Kcal fat) diets and sacrificed after 5 or 10 weeks. RESULTS The histopathological score increased with age and high-fat diet consumption. The histopathological scores in dorsal and lateral lobes increased in the 10-week high-fat diet group (6.2±0.2 and 6.2±0.4, respectively) versus the 10-week control diet group (5.3±0.3 and 5.2±0.2, respectively). GPx3 decreased both at the mRNA and protein levels in mouse prostate. GPx3 mRNA expression decreased (∼36.27% and ∼23.91%, respectively) in the anterior and dorsolateral prostate of TRAMP mice fed a high-fat diet compared to TRAMP mice fed a control diet. Cholesterol treatment increased PC-3 human prostate cancer cell proliferation, decreased GPx3 mRNA and protein levels, and increased H2 O2 levels in culture medium. Moreover, increasing GPx3 mRNA expression by troglitazone in PC-3 cells decreased cell proliferation and lowered H2 O2 levels. CONCLUSIONS Dietary fat enhances prostate cancer progression, possibly by suppressing GPx3 expression and increasing proliferation of prostate intraepithelial neoplasia (PIN) epithelial cells.
Collapse
Affiliation(s)
- Seo-Na Chang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Modern extraction techniques and their impact on the pharmacological profile of Serenoa repens extracts for the treatment of lower urinary tract symptoms. BMC Urol 2014; 14:63. [PMID: 25112532 PMCID: PMC4136420 DOI: 10.1186/1471-2490-14-63] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 07/28/2014] [Indexed: 12/27/2022] Open
Abstract
Background Bioactive compounds from plants (i.e., Serenoa repens) are often used in medicine in the treatment of several pathologies, among which benign prostatic hyperplasia (BPH) associated to lower urinary tract symptoms (LUTS). Discussion There are different techniques of extraction, also used in combination, with the aim of enhancing the amount of the target molecules, gaining time and reducing waste of solvents. However, the qualitative and quantitative composition of the bioactives depends on the extractive process, and so the brands of the recovered products from the same plant are different in terms of clinical efficacy (no product interchangeability among different commercial brands). Summary In this review, we report on several and recent extraction techniques and their impact on the composition/biological activity of S. repens-based available products.
Collapse
|
21
|
|
22
|
Fatty acid and phytosterol content of commercial saw palmetto supplements. Nutrients 2013; 5:3617-33. [PMID: 24067389 PMCID: PMC3798925 DOI: 10.3390/nu5093617] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/16/2013] [Accepted: 08/20/2013] [Indexed: 12/01/2022] Open
Abstract
Saw palmetto supplements are one of the most commonly consumed supplements by men with prostate cancer and/or benign prostatic hyperplasia (BPH). Some studies have found significant improvements in BPH and lower urinary tract symptoms (LUTS) with saw palmetto supplementation, whereas others found no benefits. The variation in the efficacy in these trials may be a result of differences in the putative active components, fatty acids and phytosterols, of the saw palmetto supplements. To this end, we quantified the major fatty acids (laurate, myristate, palmitate, stearate, oleate, linoleate) and phytosterols (campesterol, stigmasterol, β-sitosterol) in 20 commercially available saw palmetto supplements using GC-FID and GC-MS, respectively. Samples were classified into liquids, powders, dried berries, and tinctures. Liquid saw palmetto supplements contained significantly higher (p < 0.05) concentrations of total fatty acids (908.5 mg/g), individual fatty acids, total phytosterols (2.04 mg/g), and individual phytosterols, than the other supplement categories. Powders contained significantly higher (p < 0.05) concentrations of total fatty acids than tinctures, which contain negligible amounts of fatty acids (46.3 mg/g) and phytosterols (0.10 mg/g). Our findings suggest that liquid saw palmetto supplements may be the best choice for individuals who want to take a saw palmetto supplement with the highest concentrations of both fatty acids and phytosterols.
Collapse
|
23
|
Savietto JP, Furlan CM, Motta LB, Salatino MLF, Carvalho JE, Ruiz ALT, Salatino A, Santos DYA. Antiproliferative activity of methanol extracts of four species of Croton on different human cell lines. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2013. [DOI: 10.1590/s0102-695x2013005000058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Villaverde N, Galvis A, Marcano A, Priestap HA, Bennett BC, Barbieri MA. Saw palmetto ethanol extract inhibits adipocyte differentiation. J Nat Med 2012. [PMID: 23179316 DOI: 10.1007/s11418-012-0723-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The fruits of saw palmetto have been used for the treatment of a variety of urinary and reproductive system problems. In this study we investigated whether the fruit extracts affect in vitro adipogenesis. Saw palmetto ethanol extract inhibited the lipid droplet accumulation by induction media in a dose-dependent manner, and it also attenuated the protein expressions of C-EBPα and PPARγ. Phosphorylation of Erk1/2 and Akt1 were also decreased by saw palmetto ethanol extract. This report suggests that saw palmetto extracts selectively affect the adipocyte differentiation through the modulation of several key factors that play a critical role during adipogenesis.
Collapse
Affiliation(s)
- Nicole Villaverde
- Department of Biological Sciences, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | | | | | | | | | | |
Collapse
|
25
|
Shakeel M, Trinidade A, Ah-See KW. Complementary and alternative medicine use by otolaryngology patients: a paradigm for practitioners in all surgical specialties. Eur Arch Otorhinolaryngol 2009; 267:961-71. [PMID: 19771443 DOI: 10.1007/s00405-009-1098-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 09/03/2009] [Indexed: 12/18/2022]
Abstract
There is growing interest in complementary and alternative medicine (CAM) amongst the general population. Little information is available on CAM use in otolaryngology patients in the UK. Despite concerns over safety, efficacy and cost-effectiveness, CAM use is common amongst ENT patients. Patients perceive these medications as possible boosters to their immune system. It is becoming increasingly important that health care providers in all specialties ask their patients about CAM use and are aware of the implications it carries. The objective is to study the prevalence and pattern of CAM use among adult and paediatric ENT patients in a UK teaching hospital. A cross-sectional study was done by sending anonymous questionnaire to all outpatient and elective inpatients over a 3-month period. Response rate was 73% (1,789/2,440). Prominent demographics: female, married, over-50 s. Sixty percent had used CAM, 35% in last year. Most common herbs: cod liver oil (n = 481), garlic (n = 255), cranberry (n = 224); non-herbal: massage (n = 287), acupuncture (n = 233), aromatherapy (n = 170). Most commonly cited reasons for using CAM: general health, enhanced immunity and prevention/treatment of common illnesses like the common cold, asthma and bodily aches and pains.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Department of Otolaryngology-Head and Neck Surgery, Aberdeen Royal Infirmary, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZN, Scotland, UK.
| | | | | |
Collapse
|
26
|
Comparing the mechanical influence of vinculin, focal adhesion kinase and p53 in mouse embryonic fibroblasts. Biochem Biophys Res Commun 2009; 379:799-801. [PMID: 19126403 DOI: 10.1016/j.bbrc.2008.12.124] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Accepted: 12/23/2008] [Indexed: 11/21/2022]
Abstract
Cytoskeletal reorganization is an ongoing process when cells adhere, move or invade extracellular substrates. The cellular force generation and transmission are determined by the intactness of the actomyosin-(focal adhesion complex)-integrin connection. We investigated the intracellular course of action in mouse embryonic fibroblasts deficient in the focal adhesion proteins vinculin and focal adhesion kinase (FAK) and the nuclear matrix protein p53 using magnetic tweezer and nanoparticle tracking techniques. Results show that the lack of these proteins decrease cellular stiffness and affect cell rheological behavior. The decrease in cellular binding strength was higher in FAK- to vinculin-deficient cells, whilst p53-deficient cells showed no effect compared to wildtype cells. The intracellular cytoskeletal activity was lowest in wildtype cells, but increased in the following order when cells lacked FAK+p53>p53>vinculin. In summary, cell mechanical processes are differently affected by the focal adhesion proteins vinculin and FAK than by the nuclear matrix protein, p53.
Collapse
|