1
|
Dorandish S, Williams A, Atali S, Sendo S, Price D, Thompson C, Guthrie J, Heyl D, Evans HG. Regulation of amyloid-β levels by matrix metalloproteinase-2/9 (MMP2/9) in the media of lung cancer cells. Sci Rep 2021; 11:9708. [PMID: 33958632 PMCID: PMC8102533 DOI: 10.1038/s41598-021-88574-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
In this study, we set out to identify regulators of intact amyloid-β40/42 (Aβ) levels in A549 (p53 wild-type) and H1299 (p53-null) lung cancer cell media. Higher Aβ levels were detected in the media of A549 than H1299 cells without or with treatment with 4-methylumbelliferone (4-MU) and/or the anti-CD44 antibody (5F12). Using inhibitors, we found that PI3K, AKT, and NFκB are likely involved in regulating Aβ levels in the media. However, increased Aβ levels that more closely resembled those found upon 4-MU co-treatment resulted from MMP2/9 inhibition, suggesting that MMP2/9 maybe the main contributors to regulation of Aβ levels in the media. Differences in Aβ levels might be accounted for, in part, by p53 since blocking p53 function in A549 cells resulted in decreased Aβ levels, increased MMP2/9 levels, increased PI3K/AKT activities and the phospho/total NFκB ratio. Using siRNA targeted against MMP2 or MMP9, we found increased Aβ levels in the media, however, MMP2 knockdown led to Aβ levels closely mimicking those detected by co-treatment with 4-MU. Cell viability or apoptosis upon treatment with either MMP2 or MMP9 siRNA along with Aβ immunodepletion, showed that MMP2 is the predominant regulator of the cytotoxic effects induced by Aβ in lung cancer cells.
Collapse
Affiliation(s)
- Sadaf Dorandish
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Asana Williams
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Sarah Atali
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Sophia Sendo
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Deanna Price
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Colton Thompson
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Jeffrey Guthrie
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Deborah Heyl
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Hedeel Guy Evans
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA.
| |
Collapse
|
2
|
Abstract
SummaryOocyte-secreted factors (OSFs) play an important role in the acquisition of oocyte developmental competence through bidirectional cross-talk between oocyte and cumulus cells via gap junctions. Thus, the present study was designed to investigate the effect of two OSFs, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), on the developmental competence of buffalo oocytes derived from two different follicle sizes. Cumulus–oocyte complexes (COCs) from large follicles (LF, >6 mm) or small follicles (SF, <6 mm) were collected and matured in vitro either in the presence of GDF9 or BMP15, or both, or with the denuded oocytes (DOs) as a source of native OSFs. Cleavage and blastocyst rates were significantly (P < 0.05) higher in LF-derived than SF-derived oocytes. Cleavage and blastocyst rates were significantly higher (P < 0.05) in the DOs and the combination groups compared with the control, GDF9 alone and BMP15 alone groups, both in LF-derived and SF-derived oocytes, although the cleavage and blastocyst rates did not differ significantly (P > 0.05) between DOs and combination groups. Relative mRNA analysis revealed significantly higher (P > 0.05) expression of the cumulus cell marker genes EGFR, HAS2, and CD44 in LF-derived than SF-derived oocyte; the expression of these markers was significantly higher (P > 0.05) in DOs and combination groups, irrespective of the follicle size. These results suggested that LF-derived oocytes have a higher developmental competence than SF-derived oocytes and that supplementation of GDF9 and BMP15 modulates the developmental competence of buffalo oocytes by increasing the relative abundance of cumulus-enabling factors and thereby increasing cleavage and the quality of blastocyst production.
Collapse
|
3
|
Worku T, Rehman ZU, Talpur HS, Bhattarai D, Ullah F, Malobi N, Kebede T, Yang L. MicroRNAs: New Insight in Modulating Follicular Atresia: A Review. Int J Mol Sci 2017; 18:ijms18020333. [PMID: 28208755 PMCID: PMC5343868 DOI: 10.3390/ijms18020333] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/13/2017] [Accepted: 01/23/2017] [Indexed: 01/12/2023] Open
Abstract
Our understanding of the post-transcriptional mechanisms involved in follicular atresia is limited; however, an important development has been made in understanding the biological regulatory networks responsible for mediating follicular atresia. MicroRNAs have come to be seen as a key regulatory actor in determining cell fate in a wide range of tissues in normal and pathological processes. Profiling studies of miRNAs during follicular atresia and development have identified several putative miRNAs enriched in apoptosis signaling pathways. Subsequent in vitro and/or in vivo studies of granulosa cells have elucidated the functional role of some miRNAs along with their molecular pathways. In particular, the regulatory roles of some miRNAs have been consistently observed during studies of follicular cellular apoptosis. Continued work should gradually lead to better understanding of the role of miRNAs in this field. Ultimately, we expect this understanding will have substantial benefits for fertility management at both the in vivo or/and in vitro levels. The stable nature of miRNA holds remarkable promise in clinical use as a diagnostic tool and in reproductive medicine to solve the ever-increasing fertility problem. In this review, we summarize current knowledge of the involvement of miRNAs in follicular atresia, discuss the challenges for further work and pinpoint areas for future research.
Collapse
Affiliation(s)
- Tesfaye Worku
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- School of Veterinary Medicine, Wollega University, P.O. Box 395, Nekemte, Ethiopia.
| | - Zia Ur Rehman
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hira Sajjad Talpur
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dinesh Bhattarai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Farman Ullah
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ngabu Malobi
- State Key Laboratory of Agricultural Microbiology, Education Ministry of China, College of Veterinary Medicine Huazhong Agricultural University, Wuhan 430070, China.
| | - Tesfaye Kebede
- Departments of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway.
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Palmerini MG, Nottola SA, Tunjung WAS, Kadowaki A, Bianchi S, Cecconi S, Sato E, Macchiarelli G. EGF-FSH supplementation reduces apoptosis of pig granulosa cells in co-culture with cumulus-oocyte complexes. Biochem Biophys Res Commun 2016; 481:159-164. [PMID: 27816448 DOI: 10.1016/j.bbrc.2016.10.151] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/31/2016] [Indexed: 11/28/2022]
Abstract
In cattle breeding, co-culture with granulosa cells (GCs) is one of the strategies to improve oocyte maturation and fertilization potential, but yields are still suboptimal due to GC apoptosis. We previously set up an in vitro co-culture system of cumulus-oocyte-complexes (COCs) anchored to GC multilayers adhering to the basal lamina (COCGs), in which GC apoptosis was inhibited by FSH supplementation. Here, we assessed the antiapoptotic effect of EGF (5 ng/ml-EGF5) alone or in synergism to FSH (50mU/ml-FSH50) on pig COCGs. COCG morphology, apoptotic rate, procaspase-8 and-9 expression levels and surface ultrastructure were determined. Results showed an increased % of apoptotic GCs in control and EGF5 (≈80%) respect to sampling (≈3%) and caspase-8 and -9 activation. In contrast, apoptotic cells were significantly reduced by FSH50 (≈35%) supplementation, with inactive Procaspase-8 and -9 highly expressed. The pro-survival effect of FSH was strengthened by EGF (EGF5+FSH50), as evidenced by a significant reduction of apoptosis (≈15%) and high expression levels of Procaspase-8 and -9. Ultrastructural analysis revealed that GC multilayers were characterized by round-to-ovoid cells connected each other and to the basal lamina by cytoplasmic projections. Microvilli shortening/thickening/reduction, cytoplasmic projection rarefaction, blebbing of apoptotic bodies and degenerating/atresic GCs were observed in control and EGF5 groups. FSH50 induced the formation of an abundant mucinous matrix, due to granulosa expansion. Blebs and atresic areas were rarely observed. In EGF5+FSH50 group, GCs were well-preserved, richly covered by microvilli and connected by numerous cytoplasmic projections. Degenerative phenomena were rarely observed. In conclusion, EGF in synergism with FSH seems to better counteract GC apoptosis in a co-culture of pig GC multilayers.
Collapse
Affiliation(s)
- Maria Grazia Palmerini
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Stefania Annarita Nottola
- Dept. of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University, Rome, Italy
| | - Woro Anidito Sri Tunjung
- Laboratory of Biochemistry, Faculty of Biology, Universitas Gadjah Mada Indonesia, Indonesia; Laboratory of Animal Reproduction, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan
| | - Akane Kadowaki
- Laboratory of Animal Reproduction, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan
| | - Serena Bianchi
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sandra Cecconi
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Eimei Sato
- Laboratory of Animal Reproduction, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan
| | - Guido Macchiarelli
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
5
|
Zhang H, Tian S, Klausen C, Zhu H, Liu R, Leung PCK. Differential activation of noncanonical SMAD2/SMAD3 signaling by bone morphogenetic proteins causes disproportionate induction of hyaluronan production in immortalized human granulosa cells. Mol Cell Endocrinol 2016; 428:17-27. [PMID: 26992562 DOI: 10.1016/j.mce.2016.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/12/2016] [Accepted: 03/12/2016] [Indexed: 02/06/2023]
Abstract
Successful fertilization depends upon proper cumulus-oocyte complex (COC) expansion. Synthesized by hyaluronan synthases (HASs), hyaluronan forms the backbone of the COC matrix and plays a critical role in COC expansion. This study investigated the effects and mechanisms of ovarian BMPs on HAS expression and hyaluronan production in human granulosa cells. Treatment with BMP4, BMP6, BMP7 or BMP15 induced differing levels of noncanonical SMAD2/3, but equal levels of canonical SMAD1/5/8, phosphorylation which were mirrored by differing levels of HAS2 up-regulation and hyaluronan production. The effects of BMP4 and BMP15 on HAS2 mRNA were partially reversed by knockdown of SMAD3, and blocked by knockdown of SMAD2+SMAD3 or SMAD4. BMP4-induced SMAD2/3 phosphorylation and HAS2 mRNA up-regulation were mediated by both BMP and activin/transforming growth factor-β type I receptors. Our results suggest differential activation of noncanonical SMAD2/SMAD3 signaling by BMPs causes disproportionate induction of HAS2 expression and hyaluronan production in immortalized human granulosa cells.
Collapse
Affiliation(s)
- Han Zhang
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada; Center for Reproductive Medicine, The First Bethune Hospital, Jilin University, Changchun, Jilin, 130021, China
| | - Shen Tian
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada; Department of Reproductive Medicine, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Ruizhi Liu
- Center for Reproductive Medicine, The First Bethune Hospital, Jilin University, Changchun, Jilin, 130021, China.
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada.
| |
Collapse
|
6
|
Liu J, Tu F, Yao W, Li X, Xie Z, Liu H, Li Q, Pan Z. Conserved miR-26b enhances ovarian granulosa cell apoptosis through HAS2-HA-CD44-Caspase-3 pathway by targeting HAS2. Sci Rep 2016; 6:21197. [PMID: 26887530 PMCID: PMC4758074 DOI: 10.1038/srep21197] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/19/2016] [Indexed: 12/17/2022] Open
Abstract
The hyaluronan synthase 2 (HAS2)-hyaluronic acid (HA)-CD44-Caspase-3 pathway is involved in ovarian granulosa cell (GC) functions in mammals. HAS2 is a key enzyme required for HA synthesis and is the key factor in this pathway. However, the regulation of HAS2 and the HAS2-mediated pathway by microRNAs in GCs is poorly understood. Here, we report that miR-26b regulates porcine GC (pGC) apoptosis through the HAS2-HA-CD44-Caspase-3 pathway by binding directly to the 3′- untranslated region of HAS2 mRNA. Knockdown of miR-26b reduced pGC apoptosis. Luciferase reporter assays demonstrated that HAS2 is a direct target of miR-26b in pGCs. Knockdown and overexpression of miR-26b increased and decreased, respectively, HA content, and HAS2 and CD44 expression in pGCs. At the same time, inhibition and overexpression of miR-26b decreased and increased the expression of Caspase-3, a downstream factor in the HAS2-HA-CD44 pathway. Moreover, knockdown of HAS2 enhanced pGC apoptosis, reduced the inhibitory effects of a miR-26b inhibitor on pGC apoptosis, repressed HA content and CD44 expression, and promoted Caspase-3 expression. In addition, overexpression of HAS2 has a opposite effect. Collectively, miR-26b positively regulates pGC apoptosis via a novel HAS2-HA-CD44-Caspase-3 pathway by targeting the HAS2 gene.
Collapse
Affiliation(s)
- Jiying Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Fei Tu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xinyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhuang Xie
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
7
|
Di Giacomo M, Camaioni A, Klinger FG, Bonfiglio R, Salustri A. Cyclic AMP-elevating Agents Promote Cumulus Cell Survival and Hyaluronan Matrix Stability, Thereby Prolonging the Time of Mouse Oocyte Fertilizability. J Biol Chem 2015; 291:3821-36. [PMID: 26694612 DOI: 10.1074/jbc.m115.680983] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Indexed: 01/08/2023] Open
Abstract
Cumulus cells sustain the development and fertilization of the mammalian oocyte. These cells are retained around the oocyte by a hyaluronan-rich extracellular matrix synthesized before ovulation, a process called cumulus cell-oocyte complex (COC) expansion. Hyaluronan release and dispersion of the cumulus cells progressively occur after ovulation, paralleling the decline of oocyte fertilization. We show here that, in mice, postovulatory changes of matrix are temporally correlated to cumulus cell death. Cumulus cell apoptosis and matrix disassembly also occurred in ovulated COCs cultured in vitro. COCs expanded in vitro with FSH or EGF underwent the same changes, whereas those expanded with 8-bromo-adenosine-3',5'-cyclic monophosphate (8-Br-cAMP) maintained integrity for a longer time. It is noteworthy that 8-Br-cAMP treatment was also effective on ovulated COCs cultured in vitro, prolonging the vitality of the cumulus cells and the stability of the matrix from a few hours to >2 days. Stimulation of endogenous adenylate cyclase with forskolin or inhibition of phosphodiesterase with rolipram produced similar effects. The treatment with selective cAMP analogues suggests that the effects of cAMP elevation are exerted through an EPAC-independent, PKA type II-dependent signaling pathway, probably acting at the post-transcriptional level. Finally, overnight culture of ovulated COCs with 8-Br-cAMP significantly counteracted the decrease of fertilization rate, doubling the number of fertilized oocytes compared with control conditions. In conclusion, these studies suggest that cAMP-elevating agents prevent cumulus cell senescence and allow them to continue to exert beneficial effects on oocyte and sperm, thereby extending in vitro the time frame of oocyte fertilizability.
Collapse
Affiliation(s)
- Monica Di Giacomo
- From the Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Antonella Camaioni
- From the Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Francesca G Klinger
- From the Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Rita Bonfiglio
- From the Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Antonietta Salustri
- From the Department of Biomedicine and Prevention, Section of Histology and Embryology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
8
|
Endogenously produced hydrogen sulfide is involved in porcine oocyte maturation in vitro. Nitric Oxide 2015; 51:24-35. [PMID: 26456342 DOI: 10.1016/j.niox.2015.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/12/2015] [Accepted: 09/29/2015] [Indexed: 11/22/2022]
Abstract
Hydrogen sulfide, one of three known gasotransmitters, is involved in physiological processes, including reproductive functions. Oocyte maturation and surrounding cumulus cell expansion play an essential role in female reproduction and subsequent embryonic development. Although the positive effects of exogenous hydrogen sulfide on maturing oocytes are well known, the role of endogenous hydrogen sulfide, which is physiologically released by enzymes, has not yet been described in oocytes. In this study, we observed the presence of Cystathionine β-Synthase (CBS), Cystathionine γ-Lyase (CTH) and 3-Mercaptopyruvate Sulfurtransferase (3-MPST), hydrogen sulfide-releasing enzymes, in porcine oocytes. Endogenous hydrogen sulfide production was detected in immature and matured oocytes as well as its requirement for meiotic maturation. Individual hydrogen sulfide-releasing enzymes seem to be capable of substituting for each other in hydrogen sulfide production. However, meiosis suppression by inhibition of all hydrogen sulfide-releasing enzymes is not irreversible and this effect is a result of M-Phase/Maturation Promoting Factor (MPF) and Mitogen-Activated Protein Kinase (MAPK) activity inhibition. Futhermore, cumulus expansion expressed by hyaluronic acid (HA) production is affected by the inhibition of hydrogen sulfide production. Moreover, quality changes of the expanded cumuli are indicated. These results demonstrate hydrogen sulfide involvement in oocyte maturation as well as cumulus expansion. As such, hydrogen sulfide appears to be an important cell messenger during mammalian oocyte meiosis and adequate cumulus expansion.
Collapse
|
9
|
Hyaluronic acid prevents immunosuppressive drug-induced ovarian damage via up-regulating PGRMC1 expression. Sci Rep 2015; 5:7647. [PMID: 25558795 PMCID: PMC4284510 DOI: 10.1038/srep07647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/04/2014] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy treatment in women can frequently cause damage to the ovaries, which may lead to primary ovarian insufficiency (POI). In this study, we assessed the preventative effects of hyaluronic acid (HA) in immunosuppressive drug-induced POI-like rat models and investigated the possible mechanisms. We found that HA, which was reduced in primary and immunosuppressant-induced POI patients, could protect the immunosuppressant-induced damage to granulosa cells (GCs) in vitro. Then we found that HA blocked the tripterygium glycosides (TG) induced POI-like presentations in rats, including delayed or irregular estrous cycles, reduced 17 beta-estradiol(E2) concentration, decreased number of follicles, destruction of follicle structure, and damage of reproductive ability. Furthermore, we investigated the mechanisms of HA prevention effects on POI, which was associated with promotion of GC proliferation and PGRMC1 expression. In conclusion, HA prevents chemotherapy-induced ovarian damage by promoting PGRMC1 in GCs. This study may provide a new strategy for prevention and treatment of POI.
Collapse
|
10
|
Zhao G, Zhou X, Fang T, Hou Y, Hu Y. Hyaluronic acid promotes the expression of progesterone receptor membrane component 1 via epigenetic silencing of miR-139-5p in human and rat granulosa cells. Biol Reprod 2014; 91:116. [PMID: 25232020 DOI: 10.1095/biolreprod.114.120295] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Primary ovarian insufficiency (POI) is a serious reproductive dysfunction in which the follicle pool is reduced and depleted. Abnormal apoptosis of ovarian granulosa cells (GCs) is believed to result in follicle loss. Progesterone receptor membrane component 1 (PGRMC1), which is critical for GC survival, was reported to be reduced in POI patients, but the mechanism is unknown. In the present study, we found that PGRMC1 expression was correlated with the level of hyaluronic acid (HA) in POI patients. HA up-regulated PGRMC1 expression in GCs via suppression of miR-139-5p, which was proven by Western blotting and luciferase reporter assays to target PGRMC1. Consistent with these findings, levels of miR-139-5p were significantly increased and presented an inverse correlation with PGRMC1 in POI patients. Noticeably, HA inhibited CD44-mediated miR-139-5p expression but had no effect on luciferase activity after insertion of miR-139 promoter into luciferase plasmid. Interestingly, miR-139-5p was significantly up-regulated in KGN cells (GC tumor cell line) by the histone deacetylase inhibitor trichostatin A, indicating that HA down-regulated miR-139-5p expression via histone deacetylation. Taken together, we report an unrecognized mechanism of HA in the promotion of PGRMC1 expression, suggesting that HA may be a potential molecule for the prevention and treatment of POI.
Collapse
Affiliation(s)
- Guangfeng Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xue Zhou
- Immunology and Reproductive Biology Laboratory, Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Ting Fang
- Immunology and Reproductive Biology Laboratory, Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yayi Hou
- Immunology and Reproductive Biology Laboratory, Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
11
|
Dumaresq-Doiron K, Edjekouane L, Orimoto AM, Yoffou PH, Gushulak L, Triggs-Raine B, Carmona E. Hyal-1 but not Hyal-3 deficiency has an impact on ovarian folliculogenesis and female fertility by altering the follistatin/activin/Smad3 pathway and the apoptotic process. J Cell Physiol 2012; 227:1911-22. [PMID: 21732362 DOI: 10.1002/jcp.22919] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ovarian follicle development is a process regulated by various endocrine, paracrine and autocrine factors that act coordinately to promote follicle growth. However, the vast majority of follicles does not reach the pre-ovulatory stage but instead, undergo atresia by apoptosis. We have recently described a role for the somatic hyaluronidases (Hyal-1, Hyal-2, and Hyal-3) in ovarian follicular atresia and induction of granulosa cell apoptosis. Herein, we show that Hyal-1 but not Hyal-3 null mice have decreased apoptotic granulosa cells after the induction of atresia and an increased number of retrieved oocytes after stimulation of ovulation. Furthermore, young Hyal-1 null mice had a significantly higher number of primordial follicles than age matched wild-type animals. Recruitment of these follicles at puberty resulted in an increased number of primary and healthy preantral follicles in Hyal-1 null mice. Consequently, older Hyal-1 deficient female mice have prolonged fertility. At the molecular level, immature Hyal-1 null mice have decreased mRNA expression of follistatin and higher levels of phospho-Smad3 protein, resulting in increased levels of phospho-Akt in pubertal mice. Hyal-1 null ovarian follicles did not exhibit hyaluronan accumulation. For Hyal-3 null mice, compensation by Hyal-1 or Hyal-2 might be related to the lack of an ovarian phenotype. In conclusion, our results demonstrate that Hyal-1 plays a key role in the early phases of folliculogenesis by negatively regulating ovarian follicle growth and survival. Our findings add Hyal-1 as an ovarian regulator factor for follicle development, showing for the first time an interrelationship between this enzyme and the follistatin/activin/Smad3 pathway.
Collapse
|
12
|
Abstract
Glycosaminoglycans (GAGs) are basic building blocks of the ground substance of the extracellular matrix and present at the cellular level as an important component of the glycocalyx covering the cell membrane. In addition to the general role of GAGs in maintaining the integrity of the cell and extracellular matrix by retaining water, certain GAGs exhibit anticoagulant and neuroprotective properties and serve as cell-surface receptors for various molecules. Although heparin, a highly sulfated GAG, has been used as a drug for more than 70 years due to its anticoagulant attributes, the neuroprotective properties of GAGs came into focus only in recent years. The discovery of some of the roles GAGs play in the pathomechanism of numerous neurodegenerative disorders as well as shedding light on the neuroprotective properties of these compounds in animal studies raised the possibility that GAGs may provide an entirely new avenue in the treatment of neurodegenerative diseases. Indeed, some GAGs were successfully used to improve the cognitive function of patients with various neurodegenerative conditions (Ban et al. (1991, 1992); Conti et al. (1989a, b); Passeri and Cucinotta, (1989); Santini (1989). Although the mechanism by which the GAGs exhibit neuroprotective properties is not entirely clear, there is a general consensus that the major factors of the neuroprotective attributes of GAGs include the impact of GAGs on amyloidogenesis and the regulatory action of GAGs in the apoptotic pathway.
Collapse
Affiliation(s)
- B Dudas
- Neuroendocrine Organization Laboratory, Lake Erie College of Osteopathic Medicine, PA 1509, USA.
| | | |
Collapse
|