1
|
Nakashima S, Iwamoto T, Takanashi M, Ogawara KI, Maruyama M, Higaki K. Effect of Excessive Serotonin on Pharmacokinetics of Cephalexin after Oral Administration: Studies with Serotonin-Excessive Model Rats. Pharm Res 2022; 39:2163-2178. [PMID: 35799082 DOI: 10.1007/s11095-022-03325-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Serotonin (5-HT) is important for gastrointestinal functions, but its role in drug absorption remains to be clarified. Therefore, the pharmacokinetics and oral absorption of cephalexin (CEX) were examined under 5-HT-excessive condition to understand the role of 5-HT. METHODS 5-HT-excessive rats were prepared by multiple intraperitoneal dosing of 5-HT and clorgyline, an inhibitor for 5-HT metabolism, and utilized to examine the pharmacokinetics, absorption behavior and the intestinal permeability for CEX. RESULTS Higher levels of 5-HT in brain, plasma and small intestines were recognized in 5-HT-excessive rats, where the oral bioavailability of CEX was significantly enhanced. The intestinal mucosal transport via passive diffusion of CEX was significantly increased, while its transport via PEPT1 was markedly decreased specifically in the jejunal segment, which was supported by the decrease in PEPT1 expression on brush border membrane (BBM) of intestinal epithelial cells. Since no change in antipyrine permeability and significant increase in FITC dextran-4 permeability were observed in 5-HT-excessive rats, the enhanced permeability for CEX would be attributed to the opening of tight junction, which was supported by the significant decrease in transmucosal electrical resistance. In 5-HT-excessive rats, furthermore, total body clearance of CEX tended to be larger and the decrease in PEPT2 expression on BBM in kidneys was suggested to be one of the reasons for it. CONCLUSIONS 5-HT-excessive condition enhanced the oral bioavailability of CEX in rats, which would be attributed to the enhanced permeability across the intestinal mucosa via passive diffusion through the paracellular route even though the transport via PEPT1 was decreased.
Collapse
Affiliation(s)
- Shun Nakashima
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.,Global CMC Regulatory Office, Regulatory Affairs Department, Otsuka Pharmaceutical Co. Ltd., 3-2-27 Otedori Chuo-ku, Osaka, 540-10021, Japan
| | - Takeharu Iwamoto
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.,Scientific Crime Laboratory, Kanagawa Prefectural Police Head Quarter, 155-1 Yamashita-cho, Naka-ku, Yokohama, Kanagawa, 231-0023, Japan
| | - Masashi Takanashi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.,Central Hyogo Area, Hanshin Dispensing Pharmacy, I & H Co., Ltd., 1-18 Ohmasu-cho, Ashiya, Hyogo, 659-0066, Japan
| | - Ken-Ichi Ogawara
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.,Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1, Motoyamakita, Higashinada-ku, Kobe, Hyogo, 658-8558, Japan
| | - Masato Maruyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Kazutaka Higaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
2
|
Nikolovska K, Seidler UE, Stock C. The Role of Plasma Membrane Sodium/Hydrogen Exchangers in Gastrointestinal Functions: Proliferation and Differentiation, Fluid/Electrolyte Transport and Barrier Integrity. Front Physiol 2022; 13:899286. [PMID: 35665228 PMCID: PMC9159811 DOI: 10.3389/fphys.2022.899286] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
The five plasma membrane Na+/H+ exchanger (NHE) isoforms in the gastrointestinal tract are characterized by distinct cellular localization, tissue distribution, inhibitor sensitivities, and physiological regulation. NHE1 (Slc9a1) is ubiquitously expressed along the gastrointestinal tract in the basolateral membrane of enterocytes, but so far, an exclusive role for NHE1 in enterocyte physiology has remained elusive. NHE2 (Slc9a2) and NHE8 (Slc9a8) are apically expressed isoforms with ubiquitous distribution along the colonic crypt axis. They are involved in pHi regulation of intestinal epithelial cells. Combined use of a knockout mouse model, intestinal organoid technology, and specific inhibitors revealed previously unrecognized actions of NHE2 and NHE8 in enterocyte proliferation and differentiation. NHE3 (Slc9a3), expressed in the apical membrane of differentiated intestinal epithelial cells, functions as the predominant nutrient-independent Na+ absorptive mechanism in the gut. The new selective NHE3 inhibitor (Tenapanor) allowed discovery of novel pathophysiological and drug-targetable NHE3 functions in cystic-fibrosis associated intestinal obstructions. NHE4, expressed in the basolateral membrane of parietal cells, is essential for parietal cell integrity and acid secretory function, through its role in cell volume regulation. This review focuses on the expression, regulation and activity of the five plasma membrane Na+/H+ exchangers in the gastrointestinal tract, emphasizing their role in maintaining intestinal homeostasis, or their impact on disease pathogenesis. We point to major open questions in identifying NHE interacting partners in central cellular pathways and processes and the necessity of determining their physiological role in a system where their endogenous expression/activity is maintained, such as organoids derived from different parts of the gastrointestinal tract.
Collapse
|
3
|
Manzella CR, Jayawardena D, Pagani W, Li Y, Alrefai WA, Bauer J, Jung B, Weber CR, Gill RK. Serum Serotonin Differentiates Between Disease Activity States in Crohn's Patients. Inflamm Bowel Dis 2020; 26:1607-1618. [PMID: 32844174 PMCID: PMC7500525 DOI: 10.1093/ibd/izaa208] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diagnosis and monitoring of inflammatory bowel diseases (IBDs) utilize invasive methods including endoscopy and tissue biopsy, with blood tests being less specific for IBDs. Substantial evidence has implicated involvement of the neurohormone serotonin (5-hydroxytryptamine, 5-HT) in the pathophysiology of IBDs. The current study investigated whether serum 5-HT is elevated in patients with active ulcerative colitis (UC) or Crohn's disease (CD). METHODS Serum samples were obtained from a German cohort of 96 CD and UC patients with active disease, refractory disease, or remission of disease based upon their disease activity index (DAI) and disease history. High pressure liquid chromatography with tandemmass spectrometry was used to measure 5-HT, tryptophan (TRP), and kynurenine (KYN) levels in the serum samples, and Luminex Multiplex ELISA was used to measure cytokine levels. Intestinal mucosal biopsies were obtained from a separate cohort of healthy and CD patients, and the immunoreactivity of the serotonin transporter (SERT) was determined. RESULTS There was no statistically significant difference in TRP or KYN levels between disease categories in either UC or CD. Interestingly, 5-HT levels were significantly elevated in patients with active CD but not active UC when compared with the levels in remission or refractory disease. Serum 5-HT was superior to C-reactive protein and circulating cytokines in differentiating between disease categories in CD. Additionally, SERT immunoreactivity was decreased in the ileum and colon of patients with CD compared to healthy controls. CONCLUSION We have shown that the serum 5-HT can differentiate between active disease and refractory disease or remission among CD patients, emphasizing the potential suitability of serum 5-HT as an auxiliary measure in diagnosing active CD.
Collapse
Affiliation(s)
- Christopher R Manzella
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Dulari Jayawardena
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Wilfredo Pagani
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ye Li
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Waddah A Alrefai
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Jessica Bauer
- Department of Medicine, University of Washington, WA, USA
| | - Barbara Jung
- Department of Medicine, University of Washington, WA, USA
| | | | - Ravinder K Gill
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Manzella CR, Ackerman M, Singhal M, Ticho AL, Ceh J, Alrefai WA, Saksena S, Dudeja PK, Gill RK. Serotonin Modulates AhR Activation by Interfering with CYP1A1-Mediated Clearance of AhR Ligands. Cell Physiol Biochem 2020; 54:126-141. [PMID: 32017483 PMCID: PMC7050772 DOI: 10.33594/000000209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/AIMS Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter and hormone with important physiological functions in many organs, including the intestine. We have previously shown that 5-HT activates the aryl hydrocarbon receptor (AhR) in intestinal epithelial cells (IECs) via a serotonin transporter (SERT)-dependent mechanism. AhR is a nuclear receptor that binds a variety of molecules including tryptophan (TRP) metabolites to regulate physiological processes in the intestine including xenobiotic detoxification and immune modulation. We hypothesized that 5-HT activates AhR indirectly by interfering with metabolic clearance of AhR ligands by cytochrome P450 1A1 (CYP1A1). METHODS Inhibition of CYP1A1 activity by 5-HT was assessed in the human intestinal epithelial cell line Caco-2 and recombinant CYP1A1 microsomes using both luciferase and LC-MS/MS. Degradation of 5-HT by recombinant CYP1A1 was measured by LC-MS/MS. For in vitro studies, CYP1A1 and CYP1B1 mRNA expression levels were measured by RT-PCR and CYP1A1 activity was measured by ethoxyresorufin-O-deethylase (EROD) assays. For in vivo studies, AhR ligands were administered to SERT KO mice and WT littermates and intestinal mucosa CYP1A1 mRNA was measured. RESULTS We show that 5-HT inhibits metabolism of both the pro-luciferin CYP1A1 substrate Luc-CEE as well as the high affinity AhR ligand 6-formylindolo[3,2-b] carbazole (FICZ). Recombinant CYP1A1 assays revealed that 5-HT is metabolized by CYP1A1 in an NADPH dependent manner. Treatment with 5-HT in TRP-free medium, which is devoid of trace AhR ligands, showed that 5-HT requires the presence of AhR ligands to activate AhR. Cotreatment with 5-HT and FICZ confirmed that 5-HT potentiates induction of AhR target genes by AhR ligands. However, this was only true for ligands which are CYP1A1 substrates such as FICZ. Administration of β-napthoflavone by gavage or indole-3-carbinol via diet to SERT KO mice revealed that lack of SERT impairs intestinal AhR activation. CONCLUSION Our studies provide novel evidence of crosstalk between serotonergic and AhR signaling where 5-HT can influence the ability of AhR ligands to activate the receptor in the intestine.
Collapse
Affiliation(s)
- Christopher R Manzella
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Max Ackerman
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Megha Singhal
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexander L Ticho
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Justin Ceh
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Waddah A Alrefai
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Seema Saksena
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Pradeep K Dudeja
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Ravinder K Gill
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA,
| |
Collapse
|
5
|
Xu H, Ghishan FK, Kiela PR. SLC9 Gene Family: Function, Expression, and Regulation. Compr Physiol 2018; 8:555-583. [PMID: 29687889 DOI: 10.1002/cphy.c170027] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Slc9 family of Na+ /H+ exchangers (NHEs) plays a critical role in electroneutral exchange of Na+ and H+ in the mammalian intestine as well as other absorptive and secretory epithelia of digestive organs. These transport proteins contribute to the transepithelial Na+ and water absorption, intracellular pH and cellular volume regulation as well as the electrolyte, acid-base, and fluid volume homeostasis at the systemic level. They also influence the function of other membrane transport mechanisms, affect cellular proliferation and apoptosis as well as cell migration, adherence to the extracellular matrix, and tissue repair. Additionally, they modulate the extracellular milieu to facilitate other nutrient absorption and to regulate the intestinal microbial microenvironment. Na+ /H+ exchange is inhibited in selected gastrointestinal diseases, either by intrinsic factors (e.g., bile acids, inflammatory mediators) or infectious agents and associated bacterial toxins. Disrupted NHE activity may contribute not only to local and systemic electrolyte imbalance but also to the disease severity via multiple mechanisms. In this review, we describe the cation proton antiporter superfamily of Na+ /H+ exchangers with a particular emphasis on the eight SLC9A isoforms found in the digestive tract, followed by a more integrative description in their roles in each of the digestive organs. We discuss regulatory mechanisms that determine the function of Na+ /H+ exchangers as pertinent to the digestive tract, their regulation in pathological states of the digestive organs, and reciprocally, the contribution of dysregulated Na+ /H+ exchange to the disease pathogenesis and progression. © 2018 American Physiological Society. Compr Physiol 8:555-583, 2018.
Collapse
Affiliation(s)
- Hua Xu
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Fayez K Ghishan
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Pawel R Kiela
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA.,Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
6
|
Inhibition of EV71 by curcumin in intestinal epithelial cells. PLoS One 2018; 13:e0191617. [PMID: 29370243 PMCID: PMC5784943 DOI: 10.1371/journal.pone.0191617] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/08/2018] [Indexed: 01/26/2023] Open
Abstract
EV71 is a positive-sense single-stranded RNA virus that belongs to the Picornaviridae family. EV71 infection may cause various symptoms ranging from hand-foot-and-mouth disease to neurological pathological conditions such as aseptic meningitis, ataxia, and acute transverse myelitis. There is currently no effective treatment or vaccine available. Various compounds have been examined for their ability to restrict EV71 replication. However, most experiments have been performed in rhabdomyosarcoma or Vero cells. Since the gastrointestinal tract is the entry site for this pathogen, we anticipated that orally ingested agents may exert beneficial effects by decreasing virus replication in intestinal epithelial cells. In this study, curcumin (diferuloylmethane, C21H20O6), an active ingredient of turmeric (Curcuma longa Linn) with anti-cancer properties, was investigated for its anti-enterovirus activity. We demonstrate that curcumin treatment inhibits viral translation and increases host cell viability. Curcumin does not exert its anti-EV71 effects by modulating virus attachment or virus internal ribosome entry site (IRES) activity. Furthermore, curcumin-mediated regulation of mitogen-activated protein kinase (MAPK) signaling pathways is not involved. We found that protein kinase C delta (PKCδ) plays a role in virus translation in EV71-infected intestinal epithelial cells and that curcumin treatment decreases the phosphorylation of this enzyme. In addition, we show evidence that curcumin also limits viral translation in differentiated human intestinal epithelial cells. In summary, our data demonstrate the anti-EV71 properties of curcumin, suggesting that ingestion of this phytochemical may protect against enteroviral infections.
Collapse
|
7
|
Kim CK, He P, Bialkowska AB, Yang VW. SP and KLF Transcription Factors in Digestive Physiology and Diseases. Gastroenterology 2017; 152:1845-1875. [PMID: 28366734 PMCID: PMC5815166 DOI: 10.1053/j.gastro.2017.03.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/14/2022]
Abstract
Specificity proteins (SPs) and Krüppel-like factors (KLFs) belong to the family of transcription factors that contain conserved zinc finger domains involved in binding to target DNA sequences. Many of these proteins are expressed in different tissues and have distinct tissue-specific activities and functions. Studies have shown that SPs and KLFs regulate not only physiological processes such as growth, development, differentiation, proliferation, and embryogenesis, but pathogenesis of many diseases, including cancer and inflammatory disorders. Consistently, these proteins have been shown to regulate normal functions and pathobiology in the digestive system. We review recent findings on the tissue- and organ-specific functions of SPs and KLFs in the digestive system including the oral cavity, esophagus, stomach, small and large intestines, pancreas, and liver. We provide a list of agents under development to target these proteins.
Collapse
Affiliation(s)
- Chang-Kyung Kim
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY
| | - Ping He
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY
| | - Agnieszka B. Bialkowska
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY,Corresponding Authors: Vincent W. Yang & Agnieszka B. Bialkowska, Department of Medicine, Stony Brook University School of Medicine, HSC T-16, Rm. 020; Stony Brook, NY, USA. Tel: (631) 444-2066; Fax: (631) 444-3144; ;
| | - Vincent W. Yang
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY,Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY,Corresponding Authors: Vincent W. Yang & Agnieszka B. Bialkowska, Department of Medicine, Stony Brook University School of Medicine, HSC T-16, Rm. 020; Stony Brook, NY, USA. Tel: (631) 444-2066; Fax: (631) 444-3144; ;
| |
Collapse
|
8
|
Soares-da-Silva P, Cabral JM, Magalhães D, Fraga S, Magro F. Amine neurotransmitters, inflammation and epithelial sodium transport. Exp Physiol 2015; 101:459-64. [PMID: 26548358 DOI: 10.1113/ep085284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/02/2015] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the topic of this review? The present work reviews the roles of renal and intestinal dopamine and 5-HT in the maintenance of fluid and electrolyte homeostasis. The role of inflammatory agents at the intestinal level that affect fluid and electrolyte homeostasis is also addressed. What advances does it highlight? General mechanisms of epithelial cell ion transport in the gastrointestinal tract and kidney share considerable similarities, particularly with regard to basolateral Na(+) ,K(+-) ATPase as a driving force for the movement of numerous substrates across the cell membrane. The physiological importance of the renal actions of monoamines (dopamine, noradrenaline and 5-HT) mainly depends on the sources of the amines in the kidney and on their availability to activate the amine-specific receptors. Dopamine and 5-HT are also relatively abundant in the mucosal cell layer of the intestine, and recent evidence suggests their physiological relevance in regulating electrolyte transport. The gastrointestinal tract can be an important site for the loss of water and electrolytes, in the presence of intestinal inflammation. General mechanisms of epithelial cell ion transport in the gastrointestinal tract and kidney share considerable similarities with regard to basolateral Na(+) ,K(+) -ATPase as a driving force for the movement of numerous substrates across the cell membrane. The present work reviews the roles of renal and intestinal dopamine and 5-HT in the maintenance of fluid and electrolyte homeostasis. The role of inflammatory agents at the intestinal level that affect fluid and electrolyte homeostasis is also addressed.
Collapse
Affiliation(s)
- Patrício Soares-da-Silva
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - José Miguel Cabral
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Diogo Magalhães
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Sónia Fraga
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - Fernando Magro
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Abstract
Tightly coupled exchange of Na(+) for H(+) occurs across the surface membrane of virtually all living cells. For years, the underlying molecular entity was unknown and the full physiological significance of the exchange process was not appreciated, but much knowledge has been gained in the last two decades. We now realize that, unlike most of the other transporters that specialize in supporting one specific function, Na(+)/H(+) exchangers (NHE) participate in a remarkable assortment of physiological processes, ranging from pH homeostasis and epithelial salt transport, to systemic and cellular volume regulation. In parallel, we have learned a great deal about the biochemistry and molecular biology of Na(+)/H(+) exchange. Indeed, it has now become apparent that exchange is mediated not by one, but by a diverse family of related yet distinct carriers (antiporters) sometimes present in different cell types and located in various intracellular compartments. Each one of these has unique structural features that dictate its functional role and mode of regulation. The biological relevance of Na(+)/H(+) exchange is emphasized by its evolutionary conservation; analogous exchangers are present from bacteria to man. Because of its wide distribution and versatile function, Na(+)/H(+) exchange has attracted an enormous amount of interest and therefore generated a vast literature. The vastness and complexity of the field has been compounded by the multiplicity of NHE isoforms. For reasons of space and in the spirit of this series, this overview is restricted to the family of mammalian NHEs.
Collapse
Affiliation(s)
- John Orlowski
- Department of Physiology, McGill University, Montreal, Canada
| | | |
Collapse
|
10
|
Muthusamy S, Shukla S, Amin MR, Cheng M, Orenuga T, Dudeja PK, Malakooti J. PKCδ-dependent activation of ERK1/2 leads to upregulation of the human NHE2 transcriptional activity in intestinal epithelial cell line C2BBe1. Am J Physiol Gastrointest Liver Physiol 2012; 302:G317-25. [PMID: 22052014 PMCID: PMC3287399 DOI: 10.1152/ajpgi.00363.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The apical Na+/H+ exchanger (NHE) isoform NHE2 is involved in transepithelial Na+ absorption in the intestine. Our earlier studies have shown that mitogenic agent phorbol 12-myristate 13-acetate (PMA) induces the expression of NHE2 through activation of transcription factor early growth response-1 (Egr-1) and its interactions with the NHE2 promoter. However, the signaling pathways involved in transcriptional stimulation of NHE2 in response to PMA in the intestinal epithelial cells are not known. Chemical inhibitors and genetic approaches were used to investigate the signaling pathways responsible for the stimulation of NHE2 expression by PMA via Egr-1 induction. We show that, in response to PMA, PKCδ, a member of novel PKC isozymes, and MEK-ERK1/2 pathway of mitogen-activated protein kinases stimulate the NHE2 expression in C2BBe1 intestinal epithelial cells. PMA rapidly and transiently induced activation of PKCδ. Small inhibitory RNA-mediated knockdown of PKCδ blocked the stimulatory effect of PMA on the NHE2 promoter activity. In addition, blockade of PKCδ by rottlerin, a PKCδ-specific inhibitor, and ERK1/2 by U0126, a MEK-ERK inhibitor, abrogated PMA-induced Egr-1 expression. Immunofluorescence studies revealed that inhibition of ERK1/2 activation prevents translocation of PMA-induced Egr-1 into the nucleus. Consistent with these data, PMA-induced Egr-1 interaction with the NHE2 promoter region was prevented in nuclear extracts from U0126-pretreated cells. In conclusion, our data provide the first evidence that the stimulatory effect of PMA on NHE2 expression is mediated through the initial activation of PKCδ, subsequent PKCδ-dependent activation of MEK-ERK1/2 signaling pathway, and stimulation of Egr-1 expression. Furthermore, we show that transcription factor Egr-1 acts as an intermediate effector molecule that links the upstream signaling cues to the long-term stimulation of NHE2 expression by PMA in C2BBe1 cells.
Collapse
Affiliation(s)
- Saminathan Muthusamy
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Sagar Shukla
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Md. Ruhul Amin
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ming Cheng
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Temitope Orenuga
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Pradeep K. Dudeja
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jaleh Malakooti
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
11
|
Abstract
The epithelial apical membrane Na+/H+ exchangers [NHE (sodium hydrogen exchanger)2 and NHE3] and Cl-/HCO3- exchangers [DRA (down-regulated in adenoma) and PAT-1 (putative anion transporter 1)] are key luminal membrane transporters involved in electroneutral NaCl absorption in the mammalian intestine. During the last decade, there has been a surge of studies focusing on the short-term regulation of these electrolyte transporters, particularly for NHE3 regulation. However, the long-term regulation of the electrolyte transporters, involving transcriptional mechanisms and transcription factors that govern their basal regulation or dysregulation in diseased states, has only now started to unfold with the cloning and characterization of their gene promoters. The present review provides a detailed analysis of the core promoters of NHE2, NHE3, DRA and PAT-1 and outlines the transcription factors involved in their basal regulation as well as in response to both physiological (butyrate, protein kinases and probiotics) and pathophysiological (cytokines and high levels of serotonin) stimuli. The information available on the transcriptional regulation of the recently identified NHE8 isoform is also highlighted. Therefore the present review bridges a gap in our knowledge of the transcriptional mechanisms underlying the alterations in the gene expression of intestinal epithelial luminal membrane Na+ and Cl- transporters involved in electroneutral NaCl absorption. An understanding of the mechanisms of the modulation of gene expression of these transporters is important for a better assessment of the pathophysiology of diarrhoea associated with inflammatory and infectious diseases and may aid in designing better management protocols.
Collapse
|
12
|
Queiroz-Leite GD, Peruzzetto MC, Neri EA, Rebouças NA. Transcriptional regulation of the Na⁺/H⁺ exchanger NHE3 by chronic exposure to angiotensin II in renal epithelial cells. Biochem Biophys Res Commun 2011; 409:470-6. [PMID: 21600882 DOI: 10.1016/j.bbrc.2011.05.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 11/27/2022]
Abstract
Angiotensin II (Ang II) exerts an acute bimodal effect on proximal tubule NHE3: while low doses stimulate the exchanger, high doses inhibit it. In the present study, we have investigated the chronic effects of Ang II on NHE3 expression and transcriptional regulation. Treatment of a tubular epithelial cell line, OKP, with Ang II 10(-11)M significantly increased NHE protein expression and mRNA levels, without evidence of bimodal effect. No change in mRNA half-life was detected, but transient transfection studies showed a significant increase in NHE3 promoter activity. Binding sites for Sp1/Egr-1 and AP2 transcription factors of the NHE3 proximal promoter were mutated and we observed that the Sp1/Egr-1 binding site integrity is necessary for Ang II stimulatory effects. Inhibition of cytochrome P450, PI3K, PKA and MAPK pathways prevented the Ang II stimulatory effect on the NHE3 promoter activity. Taking all the results together, our data reveal that chronic Ang II treatment exerts a stimulatory effect on NHE3 expression and promoter activity. The Ang II up-regulation of the NHE3 promoter activity appears to involve the Sp1/Egr-1 binding site and the interplay of several intracellular signaling pathways.
Collapse
Affiliation(s)
- Gabriella D Queiroz-Leite
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
13
|
Liu Z, Zhang P, Zhou Y, Qin H, Shen T. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3. Braz J Med Biol Res 2010; 43:451-9. [PMID: 20490432 DOI: 10.1590/s0100-879x2010007500036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 04/06/2010] [Indexed: 11/21/2022] Open
Abstract
Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithelial cells, while endothelin-3 was added to stimulate their growth. By adding endothelin-3, the achievement ratio (viable cell cultures/total cultures) was enhanced to 60% of a total of 10 cultures (initiated from 8 distinct fetal small intestines), allowing the generation of viable epithelial cell cultures. Western blot, real-time PCR and immunofluorescent staining showed that cytokeratins 8, 18 and mouse intestinal mucosa-1/39 had high expression levels in human intestinal epithelial cells. Differentiated markers such as sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV also showed high expression levels in human intestinal epithelial cells. Differentiated human intestinal epithelial cells, with the expression of surface markers (cytokeratins 8, 18 and mouse intestinal mucosa-1/39) and secretion of cytokines (sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV), may be cultured by the thermolysin and endothelin-3 method and maintained for at least 20 passages. This is relatively simple, requiring no sophisticated techniques or instruments, and may have a number of varied applications.
Collapse
Affiliation(s)
- Z Liu
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China
| | | | | | | | | |
Collapse
|
14
|
Saksena S, Singla A, Goyal S, Katyal S, Bansal N, Gill RK, Alrefai WA, Ramaswamy K, Dudeja PK. Mechanisms of transcriptional modulation of the human anion exchanger SLC26A3 gene expression by IFN-{gamma}. Am J Physiol Gastrointest Liver Physiol 2010; 298:G159-66. [PMID: 19940027 PMCID: PMC2822505 DOI: 10.1152/ajpgi.00374.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two members of the SLC26 gene family, SLC26A3 or DRA (downregulated in adenoma) and SLC26A6 (putative anion transporter 1, PAT1), are known to play a major role in apical Cl(-)/OH(-) (HCO(3)(-)) exchange process in the human intestine. We have previously shown the inhibitory effects of IFN-gamma (30 ng/ml, 24 h) on both SLC26A3 and A6 expression and promoter activity. We also demonstrated that the effects of IFN-gamma on SLC26A6 gene expression were mediated via IRF-1 transcription factor. However, the molecular mechanisms underlying the transcriptional modulation of SLC26A3 gene expression by IFN-gamma in the intestine are not known. The present studies were, therefore, designed to elucidate the signaling mechanisms and transcription factor(s) involved in mediating the inhibitory effects of IFN-gamma on DRA promoter (p--1183/+114) activity. Deletion analysis indicated that the IFN-gamma response element is located within the -1183 to -790 region, and sequence analysis of this region revealed the presence of potential gamma-activated site (GAS), a binding site (-933/-925 bp) for signal transducer and activator of transcription factor 1 (STAT1). Mutations in the potential GAS element abrogated the inhibitory effects of IFN-gamma. These studies provide evidence for the involvement of STAT1 in the inhibition of SLC26A3 gene expression by IFN-gamma in the human intestine.
Collapse
Affiliation(s)
- Seema Saksena
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Amika Singla
- 2Department of Physiology and Biophysics, University of Illinois at Chicago and
| | - Sonia Goyal
- 1Section of Digestive Diseases and Nutrition, Department of Medicine and
| | - Shivani Katyal
- 1Section of Digestive Diseases and Nutrition, Department of Medicine and
| | - Nikhil Bansal
- 1Section of Digestive Diseases and Nutrition, Department of Medicine and
| | - Ravinder K. Gill
- 1Section of Digestive Diseases and Nutrition, Department of Medicine and
| | - Waddah A. Alrefai
- 1Section of Digestive Diseases and Nutrition, Department of Medicine and ,3Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Krishnamurthy Ramaswamy
- 1Section of Digestive Diseases and Nutrition, Department of Medicine and ,3Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Pradeep K. Dudeja
- 1Section of Digestive Diseases and Nutrition, Department of Medicine and ,3Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|