1
|
Komarova NL, Rignot C, Fleischman AG, Wodarz D. Dynamically adjusted cell fate decisions and resilience to mutant invasion during steady-state hematopoiesis revealed by an experimentally parameterized mathematical model. Proc Natl Acad Sci U S A 2024; 121:e2321525121. [PMID: 39250660 PMCID: PMC11420203 DOI: 10.1073/pnas.2321525121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/17/2024] [Indexed: 09/11/2024] Open
Abstract
A major next step in hematopoietic stem cell (HSC) biology is to enhance our quantitative understanding of cellular and evolutionary dynamics involved in undisturbed hematopoiesis. Mathematical models have been and continue to be key in this respect, and are most powerful when parameterized experimentally and containing sufficient biological complexity. In this paper, we use data from label propagation experiments in mice to parameterize a mathematical model of hematopoiesis that includes homeostatic control mechanisms as well as clonal evolution. We find that nonlinear feedback control can drastically change the interpretation of kinetic estimates at homeostasis. This suggests that short-term HSC and multipotent progenitors can dynamically adjust to sustain themselves temporarily in the absence of long-term HSCs, even if they differentiate more often than they self-renew in undisturbed homeostasis. Additionally, the presence of feedback control in the model renders the system resilient against mutant invasion. Invasion barriers, however, can be overcome by a combination of age-related changes in stem cell differentiation and evolutionary niche construction dynamics based on a mutant-associated inflammatory environment. This helps us understand the evolution of e.g., TET2 or DNMT3A mutants, and how to potentially reduce mutant burden.
Collapse
Affiliation(s)
- Natalia L. Komarova
- Department of Mathematics, University of California San Diego, La Jolla, CA92093
| | - Chiara Rignot
- Department of Mathematics, University of California Irvine, Irvine, CA92697
| | | | - Dominik Wodarz
- Department of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
2
|
Hérault L, Poplineau M, Remy E, Duprez E. Single Cell Transcriptomics to Understand HSC Heterogeneity and Its Evolution upon Aging. Cells 2022; 11:3125. [PMID: 36231086 PMCID: PMC9563410 DOI: 10.3390/cells11193125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Single-cell transcriptomic technologies enable the uncovering and characterization of cellular heterogeneity and pave the way for studies aiming at understanding the origin and consequences of it. The hematopoietic system is in essence a very well adapted model system to benefit from this technological advance because it is characterized by different cellular states. Each cellular state, and its interconnection, may be defined by a specific location in the global transcriptional landscape sustained by a complex regulatory network. This transcriptomic signature is not fixed and evolved over time to give rise to less efficient hematopoietic stem cells (HSC), leading to a well-documented hematopoietic aging. Here, we review the advance of single-cell transcriptomic approaches for the understanding of HSC heterogeneity to grasp HSC deregulations upon aging. We also discuss the new bioinformatics tools developed for the analysis of the resulting large and complex datasets. Finally, since hematopoiesis is driven by fine-tuned and complex networks that must be interconnected to each other, we highlight how mathematical modeling is beneficial for doing such interconnection between multilayered information and to predict how HSC behave while aging.
Collapse
Affiliation(s)
- Léonard Hérault
- I2M, CNRS, Aix Marseille University, 13009 Marseille, France
- Epigenetic Factors in Normal and Malignant Hematopoiesis Lab., CRCM, CNRS, INSERM, Institut Paoli Calmettes, Aix Marseille University, 13009 Marseille, France
| | - Mathilde Poplineau
- Epigenetic Factors in Normal and Malignant Hematopoiesis Lab., CRCM, CNRS, INSERM, Institut Paoli Calmettes, Aix Marseille University, 13009 Marseille, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Elisabeth Remy
- I2M, CNRS, Aix Marseille University, 13009 Marseille, France
| | - Estelle Duprez
- Epigenetic Factors in Normal and Malignant Hematopoiesis Lab., CRCM, CNRS, INSERM, Institut Paoli Calmettes, Aix Marseille University, 13009 Marseille, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, 75013 Paris, France
| |
Collapse
|
3
|
Stover PJ, Field MS, Brawley HN, Angelin B, Iversen PO, Frühbeck G. Nutrition and stem cell integrity in aging. J Intern Med 2022; 292:587-603. [PMID: 35633146 DOI: 10.1111/joim.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adult stem cells (SCs) represent the regenerative capacity of organisms throughout their lifespan. The maintenance of robust SC populations capable of renewing organs and physiological systems is one hallmark of healthy aging. The local environment of SCs, referred to as the niche, includes the nutritional milieu, which is essential to maintain the quantity and quality of SCs available for renewal and regeneration. There is increased recognition that SCs have unique metabolism and conditional nutrient needs compared to fully differentiated cells. However, the contribution of SC nutrition to overall human nutritional requirements is an understudied and underappreciated area of investigation. Nutrient needs vary across the lifespan and are modified by many factors including individual health, disease, physiological states including pregnancy, age, sex, and during recovery from injury. Although current nutrition guidance is generally derived for apparently healthy populations and to prevent nutritional deficiency diseases, there are increased efforts to establish nutrient-based and food-based recommendations based on reducing chronic disease. Understanding the dynamics of SC nutritional needs throughout the life span, including the role of nutrition in extending biological age by blunting biological systems decay, is fundamental to establishing food and nutrient guidance for chronic disease reduction and health maintenance. This review summarizes a 3-day symposium of the Marabou Foundation (www.marabousymposium.org) held to examine the metabolic properties and unique nutritional needs of adult SCs and their role in healthy aging and age-related chronic disease.
Collapse
Affiliation(s)
- P J Stover
- Texas A&M AgriLife Institute for Advancing Health through Agriculture, Texas A&M University, College Station, Texas, USA
| | - M S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - H N Brawley
- Texas A&M AgriLife Institute for Advancing Health through Agriculture, Texas A&M University, College Station, Texas, USA
| | - B Angelin
- Cardiometabolic Unit, Clinical Department of Endocrinology, and Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Stockholm, Sweden
| | - P O Iversen
- Department of Nutrition, University of Oslo, Oslo, Norway
| | - G Frühbeck
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, CIBEROBN, IdiSNA, Pamplona, Navarra, Spain
| |
Collapse
|
4
|
Kulkarni R. Early Growth Response Factor 1 in Aging Hematopoietic Stem Cells and Leukemia. Front Cell Dev Biol 2022; 10:925761. [PMID: 35923847 PMCID: PMC9340249 DOI: 10.3389/fcell.2022.925761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is associated with various hematological disorders and a higher risk of myeloproliferative disorders. An aged hematopoietic system can be characterized by decreased immune function and increased myeloid cell production. Hematopoietic stem cells (HSCs) regulate the production of blood cells throughout life. The self-renewal and regenerative potential of HSCs determine the quality and quantity of the peripheral blood cells. External signals from the microenvironment under different conditions determine the fate of the HSCs to proliferate, self-renew, differentiate, or remain quiescent. HSCs respond impromptu to a vast array of extracellular signaling cascades such as cytokines, growth factors, or nutrients, which are crucial in the regulation of HSCs. Early growth response factor 1 (EGR1) is one of the key transcription factors controlling HSC proliferation and their localization in the bone marrow (BM) niche. Downregulation of Egr1 activates and recruits HSCs for their proliferation and differentiation to produce mature blood cells. Increased expression of Egr1 is implicated in immuno-aging of HSCs. However, dysregulation of Egr1 is associated with hematological malignancies such as acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and chronic myelogenous leukemia (CML). Here, we summarize the current understanding of the role of EGR1 in the regulation of HSC functionality and the manifestation of leukemia. We also discuss the alternative strategies to rejuvenate the aged HSCs by targeting EGR1 in different settings.
Collapse
|
5
|
Poisa-Beiro L, Landry JJM, Raffel S, Tanaka M, Zaugg J, Gavin AC, Ho AD. Glucose Metabolism and Aging of Hematopoietic Stem and Progenitor Cells. Int J Mol Sci 2022; 23:ijms23063028. [PMID: 35328449 PMCID: PMC8955027 DOI: 10.3390/ijms23063028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
Comprehensive proteomics studies of human hematopoietic stem and progenitor cells (HSPC) have revealed that aging of the HSPC compartment is characterized by elevated glycolysis. This is in addition to deregulations found in murine transcriptomics studies, such as an increased differentiation bias towards the myeloid lineage, alterations in DNA repair, and a decrease in lymphoid development. The increase in glycolytic enzyme activity is caused by the expansion of a more glycolytic HSPC subset. We therefore developed a method to isolate HSPC into three distinct categories according to their glucose uptake (GU) levels, namely the GUhigh, GUinter and GUlow subsets. Single-cell transcriptomics studies showed that the GUhigh subset is highly enriched for HSPC with a differentiation bias towards myeloid lineages. Gene set enrichment analysis (GSEA) demonstrated that the gene sets for cell cycle arrest, senescence-associated secretory phenotype, and the anti-apoptosis and P53 pathways are significantly upregulated in the GUhigh population. With this series of studies, we have produced a comprehensive proteomics and single-cell transcriptomics atlas of molecular changes in human HSPC upon aging. Although many of the molecular deregulations are similar to those found in mice, there are significant differences. The most unique finding is the association of elevated central carbon metabolism with senescence. Due to the lack of specific markers, the isolation and collection of senescent cells have yet to be developed, especially for human HSPC. The GUhigh subset from the human HSPC compartment possesses all the transcriptome characteristics of senescence. This property may be exploited to accurately enrich, visualize, and trace senescence development in human bone marrow.
Collapse
Affiliation(s)
- Laura Poisa-Beiro
- Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (L.P.-B.); (S.R.)
- Molecular Medicine Partnership Unit Heidelberg, European Molecular Biology Laboratory (EMBL) & Heidelberg University, 69120 Heidelberg, Germany; (J.Z.); (A.-C.G.)
| | - Jonathan J. M. Landry
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany;
| | - Simon Raffel
- Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (L.P.-B.); (S.R.)
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Inst, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany;
| | - Judith Zaugg
- Molecular Medicine Partnership Unit Heidelberg, European Molecular Biology Laboratory (EMBL) & Heidelberg University, 69120 Heidelberg, Germany; (J.Z.); (A.-C.G.)
- European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Anne-Claude Gavin
- Molecular Medicine Partnership Unit Heidelberg, European Molecular Biology Laboratory (EMBL) & Heidelberg University, 69120 Heidelberg, Germany; (J.Z.); (A.-C.G.)
- Department for Cell Physiology and Metabolism, Centre Medical Universitaire, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Anthony D. Ho
- Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (L.P.-B.); (S.R.)
- Molecular Medicine Partnership Unit Heidelberg, European Molecular Biology Laboratory (EMBL) & Heidelberg University, 69120 Heidelberg, Germany; (J.Z.); (A.-C.G.)
- Correspondence:
| |
Collapse
|
6
|
A comprehensive transcriptome signature of murine hematopoietic stem cell aging. Blood 2021; 138:439-451. [PMID: 33876187 DOI: 10.1182/blood.2020009729] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/02/2021] [Indexed: 01/11/2023] Open
Abstract
We surveyed 16 published and unpublished data sets to determine whether a consistent pattern of transcriptional deregulation in aging murine hematopoietic stem cells (HSC) exists. Despite substantial heterogeneity between individual studies, we uncovered a core and robust HSC aging signature. We detected increased transcriptional activation in aged HSCs, further confirmed by chromatin accessibility analysis. Unexpectedly, using two independent computational approaches, we established that deregulated aging genes consist largely of membrane-associated transcripts, including many cell surface molecules previously not associated with HSC biology. We show that Selp, the most consistent deregulated gene, is not merely a marker for aged HSCs but is associated with HSC functional decline. Additionally, single-cell transcriptomics analysis revealed increased heterogeneity of the aged HSC pool. We identify the presence of transcriptionally "young-like" HSCs in aged bone marrow. We share our results as an online resource and demonstrate its utility by confirming that exposure to sympathomimetics, and deletion of Dnmt3a/b, molecularly resembles HSC rejuvenation or aging, respectively.
Collapse
|
7
|
Discrimination of Dormant and Active Hematopoietic Stem Cells by G0 Marker Reveals Dormancy Regulation by Cytoplasmic Calcium. Cell Rep 2019; 29:4144-4158.e7. [DOI: 10.1016/j.celrep.2019.11.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/09/2019] [Accepted: 11/14/2019] [Indexed: 12/27/2022] Open
|
8
|
Buisman SC, de Haan G. Epigenetic Changes as a Target in Aging Haematopoietic Stem Cells and Age-Related Malignancies. Cells 2019; 8:E868. [PMID: 31405121 PMCID: PMC6721661 DOI: 10.3390/cells8080868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is associated with multiple molecular and functional changes in haematopoietic cells. Most notably, the self-renewal and differentiation potential of hematopoietic stem cells (HSCs) are compromised, resulting in myeloid skewing, reduced output of red blood cells and decreased generation of immune cells. These changes result in anaemia, increased susceptibility for infections and higher prevalence of haematopoietic malignancies. In HSCs, age-associated global epigenetic changes have been identified. These epigenetic alterations in aged HSCs can occur randomly (epigenetic drift) or are the result of somatic mutations in genes encoding for epigenetic proteins. Mutations in loci that encode epigenetic modifiers occur frequently in patients with haematological malignancies, but also in healthy elderly individuals at risk to develop these. It may be possible to pharmacologically intervene in the aberrant epigenetic program of derailed HSCs to enforce normal haematopoiesis or treat age-related haematopoietic diseases. Over the past decade our molecular understanding of epigenetic regulation has rapidly increased and drugs targeting epigenetic modifications are increasingly part of treatment protocols. The reversibility of epigenetic modifications renders these targets for novel therapeutics. In this review we provide an overview of epigenetic changes that occur in aging HSCs and age-related malignancies and discuss related epigenetic drugs.
Collapse
Affiliation(s)
- Sonja C Buisman
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, 9700 Groningen, The Netherlands.
| | - Gerald de Haan
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, 9700 Groningen, The Netherlands
| |
Collapse
|
9
|
Klose M, Florian MC, Gerbaulet A, Geiger H, Glauche I. Hematopoietic Stem Cell Dynamics Are Regulated by Progenitor Demand: Lessons from a Quantitative Modeling Approach. Stem Cells 2019; 37:948-957. [PMID: 30897261 DOI: 10.1002/stem.3005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/08/2019] [Accepted: 03/02/2019] [Indexed: 12/18/2022]
Abstract
The prevailing view on murine hematopoiesis and on hematopoietic stem cells (HSCs) in particular derives from experiments that are related to regeneration after irradiation and HSC transplantation. However, over the past years, different experimental techniques have been developed to investigate hematopoiesis under homeostatic conditions, thereby providing access to proliferation and differentiation rates of hematopoietic stem and progenitor cells in the unperturbed situation. Moreover, it has become clear that hematopoiesis undergoes distinct changes during aging with large effects on HSC abundance, lineage contribution, asymmetry of division, and self-renewal potential. However, it is currently not fully resolved how stem and progenitor cells interact to respond to varying demands and how this balance is altered by an aging-induced shift in HSC polarity. Aiming toward a conceptual understanding, we introduce a novel in silico model to investigate the dynamics of HSC response to varying demand. By introducing an internal feedback within a heterogeneous HSC population, the model is suited to consistently describe both hematopoietic homeostasis and regeneration, including the limited regulation of HSCs in the homeostatic situation. The model further explains the age-dependent increase in phenotypic HSCs as a consequence of the cells' inability to preserve divisional asymmetry. Our model suggests a dynamically regulated population of intrinsically asymmetrically dividing HSCs as suitable control mechanism that adheres with many qualitative and quantitative findings on hematopoietic recovery after stress and aging. The modeling approach thereby illustrates how a mathematical formalism can support both the conceptual and the quantitative understanding of regulatory principles in HSC biology.
Collapse
Affiliation(s)
- Markus Klose
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Maria Carolina Florian
- Center for Regenerative Medicine in Barcelona (CMRB), Bellvitge Biomedical Research Institute (IDIBELL), Hospital Duran i Reynals, Barcelona, Spain.,Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Ulm, Germany
| | - Alexander Gerbaulet
- Institute for Immunology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Ulm, Germany.,Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
10
|
Yao Y, Liang X, Shi Y, Lin Y, Yang J. Osthole Delays Tert-Butyl Hydroperoxide-Induced Premature Senescence in Neural Stem Cells. Cell Reprogram 2018; 20:268-274. [PMID: 29989446 DOI: 10.1089/cell.2018.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In our previous study, we found that osthole could promote the ability of proliferation and differentiation in normal neural stem cells (NSCs) under normal condition. Then, we used tert-butyl hydroperoxide (t-BHP) to establish the model of senescence NSCs to detect the effects of osthole. Interestingly, the immunofluorescence results showed that osthole (100 μM) could enhance the ability of proliferation and differentiation, and CCK-8 assay results showed that osthole could also enhance the cell viabilities. Then, SA-β-gal assay results showed that osthole could decrease the positive of senescence cells. Flow cytometric analysis results showed that osthole could decrease the mixture of G0 and G1 phase. Reverse transcriptase (RT)-polymerase chain reaction results showed that osthole could downregulate the expression of p16 mRNA, and western blot analysis results showed that the expressions of the target protein decreased in p16-pRb signaling pathway with osthole treatment. In conclusion, these results indicated that osthole could probably delay cells senescence through p16-pRb signaling pathway.
Collapse
Affiliation(s)
- Yingjia Yao
- Department of Pharmacology and Research, School of Pharmacy, Liaoning University of Traditional Chinese Medicine , Dalian, China
| | - Xicai Liang
- Department of Pharmacology and Research, School of Pharmacy, Liaoning University of Traditional Chinese Medicine , Dalian, China
| | - Yue Shi
- Department of Pharmacology and Research, School of Pharmacy, Liaoning University of Traditional Chinese Medicine , Dalian, China
| | - Ying Lin
- Department of Pharmacology and Research, School of Pharmacy, Liaoning University of Traditional Chinese Medicine , Dalian, China
| | - Jingxian Yang
- Department of Pharmacology and Research, School of Pharmacy, Liaoning University of Traditional Chinese Medicine , Dalian, China
| |
Collapse
|
11
|
Abstract
Abstract
Hematopoietic stem cells (HSCs) ensure a balanced production of all blood cells throughout life. As they age, HSCs gradually lose their self-renewal and regenerative potential, whereas the occurrence of cellular derailment strongly increases. Here we review our current understanding of the molecular mechanisms that contribute to HSC aging. We argue that most of the causes that underlie HSC aging result from cell-intrinsic pathways, and reflect on which aspects of the aging process may be reversible. Because many hematological pathologies are strongly age-associated, strategies to intervene in aspects of the stem cell aging process may have significant clinical relevance.
Collapse
|
12
|
Repopulation dynamics of single haematopoietic stem cells in mouse transplantation experiments: Importance of stem cell composition in competitor cells. J Theor Biol 2016; 394:57-67. [DOI: 10.1016/j.jtbi.2016.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 10/14/2015] [Accepted: 01/04/2016] [Indexed: 11/24/2022]
|
13
|
Burkhalter MD, Rudolph KL, Sperka T. Genome instability of ageing stem cells--Induction and defence mechanisms. Ageing Res Rev 2015; 23:29-36. [PMID: 25668152 PMCID: PMC4504031 DOI: 10.1016/j.arr.2015.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 01/25/2023]
Abstract
Stem cell function is declining with increasing age. DNA lesions and mutations accumulate in ageing stem cells. Inability to repair DNA can lead to premature depletion of stem cell pools. Checkpoint function preserves genomic integrity at young age. Enforced checkpoint induction contributes to stem cell ageing.
The mammalian organism is comprised of tissue types with varying degrees of self-renewal and regenerative capacity. In most organs self-renewing tissue-specific stem and progenitor cells contribute to organ maintenance, and it is vital to maintain a functional stem cell pool to preserve organ homeostasis. Various conditions like tissue injury, stress responses, and regeneration challenge the stem cell pool to re-establish homeostasis (Fig. 1). However, with increasing age the functionality of adult stem cells declines and genomic mutations accumulate. These defects affect different cellular response pathways and lead to impairments in regeneration, stress tolerance, and organ function as well as to an increased risk for the development of ageing associated diseases and cancer. Maintenance of the genome appears to be of utmost importance to preserve stem cell function and to reduce the risk of ageing associated dysfunctions and pathologies. In this review, we discuss the causal link between stem cell dysfunction and DNA damage accrual, different strategies how stem cells maintain genome integrity, and how these processes are affected during ageing.
Collapse
|
14
|
Wahlestedt M, Pronk CJ, Bryder D. Concise review: hematopoietic stem cell aging and the prospects for rejuvenation. Stem Cells Transl Med 2014; 4:186-94. [PMID: 25548388 DOI: 10.5966/sctm.2014-0132] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Because of the continuous increases in lifetime expectancy, the incidence of age-related diseases will, unless counteracted, represent an increasing problem at both the individual and socioeconomic levels. Studies on the processes of blood cell formation have revealed several shortcomings as a consequence of chronological age. They include a reduced ability to mount adaptive immune responses and a blood cell composition skewed toward myeloid cells, with the latter coinciding with a dramatically increased incidence of myelogenous diseases, including cancer. Conversely, the dominant forms of acute leukemia affecting children associate with the lymphoid lineages. A growing body of evidence has suggested that aging of various organs and cellular systems, including the hematopoietic system, associates with a functional demise of tissue-resident stem cell populations. Mechanistically, DNA damage and/or altered transcriptional landscapes appear to be major drivers of the hematopoietic stem cell aging state, with recent data proposing that stem cell aging phenotypes are characterized by at least some degree of reversibility. These findings suggest the possibility of rejuvenating, or at least dampening, stem cell aging phenotypes in the elderly for therapeutic benefit.
Collapse
Affiliation(s)
- Martin Wahlestedt
- Immunology Section, Institution for Experimental Medical Science, Lund University, Lund, Sweden; Department of Pediatric Oncology/Hematology, Skåne University Hospital, Lund, Sweden
| | - Cornelis Jan Pronk
- Immunology Section, Institution for Experimental Medical Science, Lund University, Lund, Sweden; Department of Pediatric Oncology/Hematology, Skåne University Hospital, Lund, Sweden
| | - David Bryder
- Immunology Section, Institution for Experimental Medical Science, Lund University, Lund, Sweden; Department of Pediatric Oncology/Hematology, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
15
|
Adler BJ, Green DE, Pagnotti GM, Chan ME, Rubin CT. High fat diet rapidly suppresses B lymphopoiesis by disrupting the supportive capacity of the bone marrow niche. PLoS One 2014; 9:e90639. [PMID: 24595332 PMCID: PMC3942453 DOI: 10.1371/journal.pone.0090639] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 02/03/2014] [Indexed: 12/15/2022] Open
Abstract
The bone marrow (BM) niche is the primary site of hematopoiesis, and cues from this microenvironment are critical to maintain hematopoiesis. Obesity increases lifetime susceptibility to a host of chronic diseases, and has been linked to defective leukogenesis. The pressures obesity exerts on hematopoietic tissues led us to study the effects of a high fat diet (HFD: 60% Kcal from fat) on B cell development in BM. Seven week old male C57Bl/6J mice were fed either a high fat (HFD) or regular chow (RD) diet for periods of 2 days, 1 week and 6 weeks. B-cell populations (B220+) were not altered after 2 d of HFD, within 1 w B-cell proportions were reduced by −10%, and by 6 w by −25% as compared to RD (p<0.05). BM RNA was extracted to track the expression of B-cell development markers Il-7, Ebf-1 and Pax-5. At 2 d, the expression of Il-7 and Ebf-1 were reduced by −20% (p = 0.08) and −11% (p = 0.06) whereas Pax-5 was not significantly impacted. At one week, however, the expressions of Il-7, Ebf-1, and Pax-5 in HFD mice fell by -19%, −20% and −16%, and by six weeks were further reduced to −23%, −29% and −34% as compared to RD (p<0.05 for all), a suppression paralleled by a +363% increase in adipose encroachment within the marrow space (p<0.01). Il-7 is a critical factor in the early B-cell lineage which is secreted by supportive cells in the BM niche, and is necessary for B-cell commitment. These data indicate that BM Il-7 expression, and by extension B-cell differentiation, are rapidly impaired by HFD. The trend towards suppressed expression of Il-7 following only 2 d of HFD demonstrates how susceptible the BM niche, and the cells which rely on it, are to diet, which ultimately could contribute to disease susceptibility in metabolic disorders such as obesity.
Collapse
Affiliation(s)
- Benjamin J. Adler
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Danielle E. Green
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Gabriel M. Pagnotti
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - M. Ete Chan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Clinton T. Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Boyette LB, Tuan RS. Adult Stem Cells and Diseases of Aging. J Clin Med 2014; 3:88-134. [PMID: 24757526 PMCID: PMC3992297 DOI: 10.3390/jcm3010088] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/15/2013] [Accepted: 12/17/2013] [Indexed: 02/06/2023] Open
Abstract
Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan.
Collapse
Affiliation(s)
- Lisa B Boyette
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; ; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; ; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA ; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
17
|
Jeannet R, Cai Q, Liu H, Vu H, Kuo YH. Alcam regulates long-term hematopoietic stem cell engraftment and self-renewal. Stem Cells 2014; 31:560-71. [PMID: 23280653 DOI: 10.1002/stem.1309] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 12/29/2022]
Abstract
Hematopoietic stem cells (HSCs) reside in a specialized bone marrow (BM) microenvironment that supports the maintenance and functional integrity of long-term (LT)-HSCs throughout postnatal life. The objective of this work is to study the role of activated leukocyte cell adhesion molecule (Alcam) in HSC differentiation and self-renewal using an Alcam-null (Alcam(-/-) ) mouse model. We show here that Alcam is differentially regulated in adult hematopoiesis and is highly expressed in LT-HSCs where its level progressively increases with age. Young adult Alcam(-/-) mice had normal homeostatic hematopoiesis and normal numbers of phenotypic HSCs. However, Alcam(-/-) HSCs had reduced long-term replating capacity in vitro and reduced long-term engraftment potential upon transplantation. We show that Alcam(-/-) BM contain a markedly lower frequency of long-term repopulating cells than wild type. Further, the long-term repopulating potential and engraftment efficiency of Alcam(-/-) LT-HSCs was greatly compromised despite a progressive increase in phenotypic LT-HSC numbers during long-term serial transplantation. In addition, an age-associated increase in phenotypic LT-HSC cellularity was observed in Alcam(-/-) mice. This increase was predominately within the CD150(hi) fraction and was accompanied by significantly reduced leukocyte output. Consistent with an aging-like phenotype, older Alcam(-/-) LT-HSCs display myeloid-biased repopulation activity upon transplantation. Finally, Alcam(-/-) LT-HSCs display premature elevation of age-associated gene expression, including Selp, Clu, Cdc42, and Foxo3. Together, this study indicates that Alcam regulates functional integrity and self-renewal of LT-HSCs.
Collapse
Affiliation(s)
- Robin Jeannet
- Division of Hematopoietic Stem Cell and Leukemia Research, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | | | | | | | | |
Collapse
|
18
|
Kohler J, Popov C, Klotz B, Alberton P, Prall WC, Haasters F, Müller‐Deubert S, Ebert R, Klein‐Hitpass L, Jakob F, Schieker M, Docheva D. Uncovering the cellular and molecular changes in tendon stem/progenitor cells attributed to tendon aging and degeneration. Aging Cell 2013; 12:988-99. [PMID: 23826660 PMCID: PMC4225469 DOI: 10.1111/acel.12124] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2013] [Indexed: 12/20/2022] Open
Abstract
Although the link between altered stem cell properties and tissue aging has been recognized, the molecular and cellular processes of tendon aging have not been elucidated. As tendons contain stem/progenitor cells (TSPC), we investigated whether the molecular and cellular attributes of TSPC alter during tendon aging and degeneration. Comparing TSPC derived from young/healthy (Y-TSPC) and aged/degenerated human Achilles tendon biopsies (A-TSPC), we observed that A-TSPC exhibit a profound self-renewal and clonogenic deficits, while their multipotency was still retained. Senescence analysis showed a premature entry into senescence of the A-TSPC, a finding accompanied by an upregulation of p16INK4A. To identify age-related molecular factors, we performed microarray and gene ontology analyses. These analyses revealed an intriguing transcriptomal shift in A-TSPC, where the most differentially expressed probesets encode for genes regulating cell adhesion, migration, and actin cytoskeleton. Time-lapse analysis showed that A-TSPC exhibit decelerated motion and delayed wound closure concomitant to a higher actin stress fiber content and a slower turnover of actin filaments. Lastly, based on the expression analyses of microarray candidates, we suggest that dysregulated cell–matrix interactions and the ROCK kinase pathway might be key players in TSPC aging. Taken together, we propose that during tendon aging and degeneration, the TSPC pool is becoming exhausted in terms of size and functional fitness. Thus, our study provides the first fundamental basis for further exploration into the molecular mechanisms behind tendon aging and degeneration as well as for the selection of novel tendon-specific therapeutical targets.
Collapse
Affiliation(s)
- Julia Kohler
- Department of Surgery Experimental Surgery and Regenerative Medicine Ludwig Maximilians University Munich Nussbaumstr. 2080336Munich Germany
| | - Cvetan Popov
- Department of Surgery Experimental Surgery and Regenerative Medicine Ludwig Maximilians University Munich Nussbaumstr. 2080336Munich Germany
| | - Barbara Klotz
- Orthopedic Centre for Musculoskeletal Research Julius Maximilians University Brettreichstr. 11 97074 Wuerzburg Germany
| | - Paolo Alberton
- Department of Surgery Experimental Surgery and Regenerative Medicine Ludwig Maximilians University Munich Nussbaumstr. 2080336Munich Germany
| | - Wolf Christian Prall
- Department of Surgery Experimental Surgery and Regenerative Medicine Ludwig Maximilians University Munich Nussbaumstr. 2080336Munich Germany
| | - Florian Haasters
- Department of Surgery Experimental Surgery and Regenerative Medicine Ludwig Maximilians University Munich Nussbaumstr. 2080336Munich Germany
| | - Sigrid Müller‐Deubert
- Orthopedic Centre for Musculoskeletal Research Julius Maximilians University Brettreichstr. 11 97074 Wuerzburg Germany
| | - Regina Ebert
- Orthopedic Centre for Musculoskeletal Research Julius Maximilians University Brettreichstr. 11 97074 Wuerzburg Germany
| | - Ludger Klein‐Hitpass
- Institute of Cell Biology (Cancer Research) Medical Faculty University of Duisburg‐Essen Virchowstr. 173 45122 Essen Germany
| | - Franz Jakob
- Orthopedic Centre for Musculoskeletal Research Julius Maximilians University Brettreichstr. 11 97074 Wuerzburg Germany
| | - Matthias Schieker
- Department of Surgery Experimental Surgery and Regenerative Medicine Ludwig Maximilians University Munich Nussbaumstr. 2080336Munich Germany
| | - Denitsa Docheva
- Department of Surgery Experimental Surgery and Regenerative Medicine Ludwig Maximilians University Munich Nussbaumstr. 2080336Munich Germany
| |
Collapse
|
19
|
Campaner S, Viale A, De Fazio S, Doni M, De Franco F, D'Artista L, Sardella D, Pelicci PG, Amati B. A non-redundant function of cyclin E1 in hematopoietic stem cells. Cell Cycle 2013; 12:3663-72. [PMID: 24091730 PMCID: PMC3903717 DOI: 10.4161/cc.26584] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A precise balance between quiescence and proliferation is crucial for the lifelong function of hematopoietic stem cells (HSCs). Cyclins E1 and E2 regulate exit from quiescence in fibroblasts, but their role in HSCs remains unknown. Here, we report a non-redundant role for cyclin E1 in mouse HSCs. A long-term culture-initiating cell (LTC-IC) assay indicated that the loss of cyclin E1, but not E2, compromised the colony-forming activity of primitive hematopoietic progenitors. Ccne1−/− mice showed normal hematopoiesis in vivo under homeostatic conditions but a severe impairment following myeloablative stress induced by 5-fluorouracil (5-FU). Under these conditions, Ccne1−/− HSCs were less efficient in entering the cell cycle, resulting in decreased hematopoiesis and reduced survival of mutant mice upon weekly 5-FU treatment. The role of cyclin E1 in homeostatic conditions became apparent in aged mice, where HSC quiescence was increased in Ccne1−/− animals. On the other hand, loss of cyclin E1 provided HSCs with a competitive advantage in bone marrow serial transplantation assays, suggesting that a partial impairment of cell cycle entry may exert a protective role by preventing premature depletion of the HSC compartment. Our data support a role for cyclin E1 in controlling the exit from quiescence in HSCs. This activity, depending on the physiological context, can either jeopardize or protect the maintenance of hematopoiesis.
Collapse
Affiliation(s)
- Stefano Campaner
- Center for Genomic Science of IIT@SEMM; Istituto Italiano di Tecnologia (IIT); Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Stem cell ageing underlies the ageing of tissues, especially those with a high cellular turnover. There is growing evidence that the ageing of the immune system is initiated at the very top of the haematopoietic hierarchy and that the ageing of haematopoietic stem cells (HSCs) directly contributes to changes in the immune system, referred to as immunosenescence. In this Review, we summarize the phenotypes of ageing HSCs and discuss how the cell-intrinsic and cell-extrinsic mechanisms of HSC ageing might promote immunosenescence. Stem cell ageing has long been considered to be irreversible. However, recent findings indicate that several molecular pathways could be targeted to rejuvenate HSCs and thus to reverse some aspects of immunosenescence.
Collapse
|
21
|
An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state. Blood 2013; 121:4257-64. [PMID: 23476050 DOI: 10.1182/blood-2012-11-469080] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aging of hematopoietic stem cells (HSCs) leads to several functional changes, including alterations affecting self-renewal and differentiation. Although it is well established that many of the age-induced changes are intrinsic to HSCs, less is known regarding the stability of this state. Here, we entertained the hypothesis that HSC aging is driven by the acquisition of permanent genetic mutations. To examine this issue at a functional level in vivo, we applied induced pluripotent stem (iPS) cell reprogramming of aged hematopoietic progenitors and allowed the resulting aged-derived iPS cells to reform hematopoiesis via blastocyst complementation. Next, we functionally characterized iPS-derived HSCs in primary chimeras and after the transplantation of re-differentiated HSCs into new hosts, the gold standard to assess HSC function. Our data demonstrate remarkably similar functional properties of iPS-derived and endogenous blastocyst-derived HSCs, despite the extensive chronological and proliferative age of the former. Our results, therefore, favor a model in which an underlying, but reversible, epigenetic component is a hallmark of HSC aging.
Collapse
|
22
|
Henry CJ, Marusyk A, DeGregori J. Aging-associated changes in hematopoiesis and leukemogenesis: what's the connection? Aging (Albany NY) 2011; 3:643-56. [PMID: 21765201 PMCID: PMC3164372 DOI: 10.18632/aging.100351] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aging is associated with a marked increase in a number of diseases, including many types of cancer. Due to the complex and multi-factorial nature of both aging and cancer, accurate deciphering of causative links between aging and cancer remains a major challenge. It is generally accepted that initiation and progression of cancers are driven by a process of clonal evolution. In principle, this somatic evolution should follow the same Darwinian logic as evolutionary processes in populations in nature: diverse heritable types arising as a result of mutations are subjected to selection, resulting in expansion of the fittest clones. However, prevalent paradigms focus primarily on mutational aspects in linking aging and cancer. In this review, we will argue that age-related changes in selective pressures are likely to be equally important. We will focus on aging-related changes in the hematopoietic system, where age-associated alterations are relatively well studied, and discuss the impact of these changes on the development of leukemias and other malignancies.
Collapse
Affiliation(s)
- Curtis J Henry
- Department of Biochemistry and Molecular Genetics, Integrated Department of Immunology, Program in Molecular Biology, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | | | | |
Collapse
|
23
|
Abstract
Pleiotrophin (Ptn) is strongly expressed by stromal cells which maintain HSCs. However, in vivo, Ptn deficiency does not alter steady-state hematopoiesis. However, knockdown of Ptn (Ptn(KD)) in stromal cells increases production of hematopoietic progenitors as well as HSC activity in cocultures, suggesting that Ptn may have a role in HSC activation. Indeed, transplantations of wild-type (Ptn(+/+)) HSCs into Ptn(-/-) mice show increased donor cell production in serial transplantations and dominant myeloid regeneration caused by Ptn-dependent regulation of HSC repopulation behavior. This regulation of Lin(-)Kit(+)Sca1(+) function is associated with increased proliferation and, on a molecular level, with up-regulated expression of cyclin D1 (Ccnd1) and C/EBPα (Cepba), but reduced of PPARγ. The known HSC regulator β-catenin is, however, not altered in the absence of Ptn. In conclusion, our results point to different Ptn-mediated regulatory mechanisms in normal hemostasis and in hematopoietic regeneration and in maintaining the balance of myeloid and lymphoid regeneration. Moreover, our results support the idea that microenvironmental Ptn regulates hematopoietic regeneration through β-catenin-independent regulation of Ccnd1 and Cebpa.
Collapse
|
24
|
Klauke K, de Haan G. Polycomb group proteins in hematopoietic stem cell aging and malignancies. Int J Hematol 2011; 94:11-23. [PMID: 21523335 DOI: 10.1007/s12185-011-0857-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/06/2011] [Indexed: 12/31/2022]
Abstract
Protection of the transcriptional "stemness" network is important to maintain a healthy hematopoietic stem cells (HSCs) compartment during the lifetime of the organism. Recent evidence shows that fundamental changes in the epigenetic status of HSCs might be one of the driving forces behind many age-related HSC changes and might pave the way for HSC malignant transformation and subsequent leukemia development, the incidence of which increases exponentially with age. Polycomb group (PcG) proteins are key epigenetic regulators of HSC cellular fate decisions and are often found to be misregulated in human hematopoietic malignancies. In this review, we speculate that PcG proteins balance HSC aging against the risk of developing cancer, since a disturbance in PcG genes and proteins affects several important cellular processes such as cell fate decisions, senescence, apoptosis, and DNA damage repair.
Collapse
Affiliation(s)
- Karin Klauke
- Department of Cell Biology, Section of Stem Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,European Research Institute on the Biology of Ageing (ERIBA), Groningen, The Netherlands
| | - Gerald de Haan
- Department of Cell Biology, Section of Stem Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands. .,European Research Institute on the Biology of Ageing (ERIBA), Groningen, The Netherlands.
| |
Collapse
|
25
|
Zhou Y, Yang B, Yao X, Wang Y. Establishment of an aging model of Sca-1+ hematopoietic stem cell and studies on its relative biological mechanisms. In Vitro Cell Dev Biol Anim 2010; 47:149-56. [PMID: 21132465 DOI: 10.1007/s11626-010-9372-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 11/04/2010] [Indexed: 02/01/2023]
Abstract
The objective of this study is to establish the aging model of murine hematopoietic stem cell (HSC) ex vitro and investigate its relative biological mechanism, aimed to build the foundation for searching the methods to delaying HSC aging. Sca-1(+)HSC were isolated and purified from murine bone marrow mono-nucleated cell by magnetic-activated cell sorting. The purity of separated cells was analyzed by flow cytometry (FCM) and the expression of Sca-1 was detected by immunofluorescence. Sca-1(+)HSC induced aging by tert-butylhydroperoxide (t-BHP, final concentration of 100 μmol/L) for 6 h to establish the murine HSC aging model in vitro. Biological characteristics of aging HSC were evaluated by mixed hematopoietic progenitor cell culture in vitro, cell cycle assay and senescence-associated β-galactosidase (SA-β-gal) cytochemical staining. Telomere length and telomerase activity were detected by southern blotting and telomere repeat amplification protocol-polymerase chain reaction (TRAP-PCR) augmentation. The expressions of p16(INK4a), P19(Arf), P53, P21(Cip1/Waf1) mRNA were detected by reverse transcription (RT)-PCR. The purity of separated Sca-1(+) HSC was 87.2% and the survival of Sca-1(+) HSC was 96~99%. After 6 h cocultured with 100 μmol/L t-BHP, the ability of aging Sca-1(+) HSC to form mixed hematopoietic progenitor colony, self-renewal and multi-differentiation were decreased significantly. The number of aging Sca-1(+) HSC entered G1 phase of the cell cycle and the percentage of positive cells expressed SA-β-gal increased significantly. The telomere length shortened and the telomerase activity decreased. The expression of p16(INK4a), p19(Arf), p53, P21(Cip1/Waf1) mRNA increased. The t-BHP can induce Sca-1(+) HSC senescence in vitro. The signal transduction pathways of p16(INK4a)-retinoblastoma and P19(Arf)-Mdm2-P53-P21(Cip1/Waf1) may play key roles in the Sca-1(+) HSC senescence induced by t-BHP.
Collapse
Affiliation(s)
- Yue Zhou
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqin, China
| | | | | | | |
Collapse
|
26
|
Corti S, Nizzardo M, Nardini M, Donadoni C, Salani S, Simone C, Falcone M, Riboldi G, Govoni A, Bresolin N, Comi GP. Systemic transplantation of c-kit+ cells exerts a therapeutic effect in a model of amyotrophic lateral sclerosis. Hum Mol Genet 2010; 19:3782-96. [DOI: 10.1093/hmg/ddq293] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
27
|
Inoue SI, Noda S, Kashima K, Nakada K, Hayashi JI, Miyoshi H. Mitochondrial respiration defects modulate differentiation but not proliferation of hematopoietic stem and progenitor cells. FEBS Lett 2010; 584:3402-9. [DOI: 10.1016/j.febslet.2010.06.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 01/11/2023]
|
28
|
Kulkarni S, Ghosh SP, Satyamitra M, Mog S, Hieber K, Romanyukha L, Gambles K, Toles R, Kao TC, Hauer-Jensen M, Kumar KS. Gamma-Tocotrienol Protects Hematopoietic Stem and Progenitor Cells in Mice after Total-Body Irradiation. Radiat Res 2010; 173:738-47. [DOI: 10.1667/rr1824.1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|