1
|
Wang N, Chai T, Wang XR, Zheng YD, Sang CY, Yang JL. Pin1: Advances in pancreatic cancer therapeutic potential and inhibitors research. Bioorg Chem 2024; 153:107869. [PMID: 39418844 DOI: 10.1016/j.bioorg.2024.107869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/18/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
The peptidyl-prolyl cis/trans isomerase NIMA-interaction 1 (Pin1) catalyzes the transition of the proline ring from the cis to trans conformation, resulting in conformational and functional changes in proteins that are regulated by proline-guided serine/threonine phosphorylation. In recent years, Pin1 has emerged as a novel molecular target for the diagnosis and treatment of various malignant tumors. Notably, it has been found that Pin1 is highly expressed in pancreatic cancer. This article focuses on the mechanisms by which Pin1 orchestrates multiple oncogenic functions in the development of pancreatic cancer. By exploring the intricate interactions between Pin1 and the pancreatic tumor microenvironment, we provide an overview of Pin1's role in modifying glycolytic metabolism, redox balance, and the hypoxic microenvironment of pancreatic cancer. Furthermore, we summarize the potential anticancer effects of Pin1 inhibitors, aiming to elucidate Pin1's promise as a potential anticancer agent, particularly in the context of pancreatic cancer.
Collapse
Affiliation(s)
- Nan Wang
- College of Pharmacy, Gansu University of Chinese Medicine; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Tian Chai
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Xing-Rong Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Yi-Dan Zheng
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Chun-Yan Sang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Jun-Li Yang
- College of Pharmacy, Gansu University of Chinese Medicine; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China.
| |
Collapse
|
2
|
Stewart R, Sharma S, Wu T, Okuda S, Xie G, Zhou XZ, Shilton B, Lu KP. The role of the master cancer regulator Pin1 in the development and treatment of cancer. Front Cell Dev Biol 2024; 12:1343938. [PMID: 38745861 PMCID: PMC11091292 DOI: 10.3389/fcell.2024.1343938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024] Open
Abstract
This review examines the complex role of Pin1 in the development and treatment of cancer. Pin1 is the only peptidyl-prolyl isomerase (PPIase) that can recognize and isomerize phosphorylated Ser/Thr-Pro peptide bonds. Pin1 catalyzes a structural change in phosphorylated Ser/Thr-Pro motifs that can modulate protein function and thereby impact cell cycle regulation and tumorigenesis. The molecular mechanisms by which Pin1 contributes to oncogenesis are reviewed, including Pin1 overexpression and its correlation with poor cancer prognosis, and the contribution of Pin1 to aggressive tumor phenotypes involved in therapeutic resistance is discussed, with an emphasis on cancer stem cells, the epithelial-to-mesenchymal transition (EMT), and immunosuppression. The therapeutic potential of Pin1 inhibition in cancer is discussed, along with the promise and the difficulties in identifying potent, drug-like, small-molecule Pin1 inhibitors. The available evidence supports the efficacy of targeting Pin1 as a novel cancer therapeutic by analyzing the role of Pin1 in a complex network of cancer-driving pathways and illustrating the potential of synergistic drug combinations with Pin1 inhibitors for treating aggressive and drug-resistant tumors.
Collapse
Affiliation(s)
- Robert Stewart
- Department of Biochemistry, Western University, London, ON, Canada
| | - Shaunik Sharma
- Department of Biochemistry, Western University, London, ON, Canada
| | - Timothy Wu
- Department of Biochemistry, Western University, London, ON, Canada
| | - Sho Okuda
- Department of Biochemistry, Western University, London, ON, Canada
| | - George Xie
- Department of Biochemistry, Western University, London, ON, Canada
| | - Xiao Zhen Zhou
- Department of Biochemistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Brian Shilton
- Department of Biochemistry, Western University, London, ON, Canada
| | - Kun Ping Lu
- Department of Biochemistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Lawson Health Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
| |
Collapse
|
3
|
Bai Y, Yuan Z, Yuan S, He Z. Recent advances of Pin1 inhibitors as potential anticancer agents. Bioorg Chem 2024; 144:107171. [PMID: 38325131 DOI: 10.1016/j.bioorg.2024.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Pin1 (proline isomerase peptidyl-prolyl isomerase NIMA-interacting-1), as a member of PPIase family, catalyzes cis-trans isomerization of pThr/Ser-Pro amide bonds of its substrate proteins, further regulating cell proliferation, division, apoptosis, and transformation. Pin1 is overexpressed in various cancers and is positively correlated with tumor initiation and progression. Pin1 inhibition can effectively reduce tumor growth and cancer stem cell expansion, block metastatic spread, and restore chemosensitivity, suggesting that targeting Pin1 may be an effective strategy for cancer treatment. Considering the promising therapeutic effects of Pin1 inhibitors on cancers, we herein are intended to comprehensively summarize the reported Pin1 inhibitors, mainly highlighting their structures, biological functions and binding modes, in hope of providing a reference for the future drug discovery.
Collapse
Affiliation(s)
- Yiru Bai
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China.
| | - Zhangxu He
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, China.
| |
Collapse
|
4
|
Zadran B, Sudhindar PD, Wainwright D, Bury Y, Luli S, Howarth R, McCain MV, Watson R, Huet H, Palinkas F, Berlinguer-Palmini R, Casement J, Mann DA, Oakley F, Lunec J, Reeves H, Faulkner GJ, Shukla R. Impact of retrotransposon protein L1 ORF1p expression on oncogenic pathways in hepatocellular carcinoma: the role of cytoplasmic PIN1 upregulation. Br J Cancer 2023; 128:1236-1248. [PMID: 36707636 PMCID: PMC10050422 DOI: 10.1038/s41416-023-02154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Molecular characterisation of hepatocellular carcinoma (HCC) is central to the development of novel therapeutic strategies for the disease. We have previously demonstrated mutagenic consequences of Long-Interspersed Nuclear Element-1 (LINE1s/L1) retrotransposition. However, the role of L1 in HCC, besides somatic mutagenesis, is not well understood. METHODS We analysed L1 expression in the TCGA-HCC RNAseq dataset (n = 372) and explored potential relationships between L1 expression and clinical features. The findings were confirmed by immunohistochemical (IHC) analysis of an independent human HCC cohort (n = 48) and functional mechanisms explored using in vitro and in vivo model systems. RESULTS We observed positive associations between L1 and activated TGFβ-signalling, TP53 mutation, alpha-fetoprotein and tumour invasion. IHC confirmed a positive association between pSMAD3, a surrogate for TGFβ-signalling status, and L1 ORF1p (P < 0.0001, n = 32). Experimental modulation of L1 ORF1p levels revealed an influence of L1 ORF1p on key hepatocarcinogenesis-related pathways. Reduction in cell migration and invasive capacity was observed upon L1 ORF1 knockdown, both in vitro and in vivo. In particular, L1 ORF1p increased PIN1 cytoplasmic localisation. Blocking PIN1 activity abrogated L1 ORF1p-induced NF-κB-mediated inflammatory response genes while further activated TGFβ-signalling confirming differential alteration of PIN1 activity in cellular compartments by L1 ORF1p. DISCUSSION Our data demonstrate a causal link between L1 ORF1p and key oncogenic pathways mediated by PIN1, presenting a novel therapeutic avenue.
Collapse
Affiliation(s)
- Bassier Zadran
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Praveen Dhondurao Sudhindar
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Daniel Wainwright
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Yvonne Bury
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Saimir Luli
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Rachel Howarth
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Misti Vanette McCain
- Newcastle University Centre for Cancer, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Robyn Watson
- Newcastle University Centre for Cancer, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Hannah Huet
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Fanni Palinkas
- Newcastle University Centre for Cancer, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | | | - John Casement
- Bioinformatics Support Unit, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Derek A Mann
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
- Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey
| | - Fiona Oakley
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - John Lunec
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Helen Reeves
- Newcastle University Centre for Cancer, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
- Hepatopancreatobiliary Multidisciplinary Team, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS foundation, Newcastle-upon-Tyne, UK
| | - Geoffrey J Faulkner
- Mater Research Institute-University of Queensland, TRI Building, Woolloongabba, QLD, 4102, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ruchi Shukla
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK.
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, Tyne and Wear, NE1 8ST, UK.
| |
Collapse
|
5
|
Chen XR, Igumenova TI. Regulation of eukaryotic protein kinases by Pin1, a peptidyl-prolyl isomerase. Adv Biol Regul 2023; 87:100938. [PMID: 36496344 PMCID: PMC9992314 DOI: 10.1016/j.jbior.2022.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
The peptidyl-prolyl isomerase Pin1 cooperates with proline-directed kinases and phosphatases to regulate multiple oncogenic pathways. Pin1 specifically recognizes phosphorylated Ser/Thr-Pro motifs in proteins and catalyzes their cis-trans isomerization. The Pin1-catalyzed conformational changes determine the stability, activity, and subcellular localization of numerous protein substrates. We conducted a survey of eukaryotic protein kinases that are regulated by Pin1 and whose Pin1 binding sites have been identified. Our analyses reveal that Pin1 target sites in kinases do not fall exclusively within the intrinsically disordered regions of these enzymes. Rather, they fall into three groups based on their location: (i) within the catalytic kinase domain, (ii) in the C-terminal kinase region, and (iii) in regulatory domains. Some of the kinases downregulated by Pin1 activity are tumor-suppressing, and all kinases upregulated by Pin1 activity are functionally pro-oncogenic. These findings further reinforce the rationale for developing Pin1-specific inhibitors as attractive pharmaceuticals for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Ru Chen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
6
|
Abstract
Regulated cell death predominantly involves apoptosis, autophagy, and regulated necrosis. It is vital that we understand how key regulatory signals can control the process of cell death. Pin1 is a cis-trans isomerase that catalyzes the isomerization of phosphorylated serine or threonine-proline motifs of a protein, thereby acting as a crucial molecular switch and regulating the protein functionality and the signaling pathways involved. However, we know very little about how Pin1-associated pathways might play a role in regulated cell death. In this paper, we review the role of Pin1 in regulated cell death and related research progress and summarize Pin1-related pathways in regulated cell death. Aside from the involvement of Pin1 in the apoptosis that accompanies neurodegenerative diseases, accumulating evidence suggests that Pin1 also plays a role in regulated necrosis and autophagy, thereby exhibiting distinct effects, including both neurotoxic and neuroprotective effects. Gaining an enhanced understanding of Pin1 in neuronal death may provide us with new options for the development of therapeutic target for neurodegenerative disorders.
Collapse
|
7
|
Du L, Wang X, Cui G, Xu B. Design, synthesis and biological evaluation of novel thiazole-based derivatives as human Pin1 inhibitors. Bioorg Med Chem 2021; 29:115878. [PMID: 33246256 DOI: 10.1016/j.bmc.2020.115878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/24/2022]
Abstract
Pin1 is a peptidyl prolyl cis-trans isomerase (PPIase) and inhibiting Pin1 is a potential way for discovering anti-tumor agents. With an aim to find potent Pin1 inhibitors with a novel scaffold, a series of thiazole derivatives with an alicyclic heterocycles on the 2-position were designed, synthesized and tested against human Pin1. Compound 9p bearing a 2-oxa-6-azaspiro [3,3] heptane moiety on the thiazole scaffold was identified as the most potent Pin1 inhibitor of this series with an IC50 value of 0.95 μM. The structure-activity relationship (SAR) and molecular modeling study indicated that introducing an alicyclic ring with an H-bond acceptor would be a viable way to improve the binding affinity.
Collapse
Affiliation(s)
- Lifei Du
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Wang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Guonan Cui
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bailing Xu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
8
|
Wang X, Wu C, Li Y, Dong Z. Three‐Component Synthesis of 2‐Substituted Thiobenzoazoles Using Tetramethyl Thiuram Monosulfide (TMTM) as Thiocarbonyl Surrogate. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xi Wang
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology 430205 Wuhan China
| | - Chun‐Yan Wu
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology 430205 Wuhan China
| | - Yue‐Sheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials School of Nuclear Technology and Chemistry & Biology Hubei University of Science and Technology 437100 Xianning China
| | - Zhi‐Bing Dong
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology 430205 Wuhan China
- School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang China
- Key Laboratory of Green Chemical Process Ministry of Education Wuhan Institute of Technology 430205 Wuhan China
- Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology Wuhan Institute of Technology 430205 Wuhan China
| |
Collapse
|
9
|
Scheuplein NJ, Bzdyl NM, Kibble EA, Lohr T, Holzgrabe U, Sarkar-Tyson M. Targeting Protein Folding: A Novel Approach for the Treatment of Pathogenic Bacteria. J Med Chem 2020; 63:13355-13388. [PMID: 32786507 DOI: 10.1021/acs.jmedchem.0c00911] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Infectious diseases are a major cause of morbidity and mortality worldwide, exacerbated by increasing antibiotic resistance in many bacterial species. The development of drugs with new modes of action is essential. A leading strategy is antivirulence, with the aim to target bacterial proteins that are important in disease causation and progression but do not affect growth, resulting in reduced selective pressure for resistance. Immunophilins, a superfamily of peptidyl-prolyl cis-trans isomerase (PPIase) enzymes have been shown to be important for virulence in a broad-spectrum of pathogenic bacteria. This Perspective will provide an overview of the recent advances made in understanding the role of each immunophilin family, cyclophilins, FK506 binding proteins (FKBPs), and parvulins in bacteria. Inhibitor design and medicinal chemistry strategies for development of novel drugs against bacterial FKBPs will be discussed. Furthermore, drugs against human cyclophilins and parvulins will be reviewed in their current indication as antiviral and anticancer therapies.
Collapse
Affiliation(s)
- Nicolas J Scheuplein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nicole M Bzdyl
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
| | - Emily A Kibble
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia.,School of Veterinary and Life Sciences, Murdoch University, 6150 Murdoch, Australia
| | - Theresa Lohr
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
| |
Collapse
|
10
|
Kim WJ, Shin HL, Kim BS, Kim HJ, Ryoo HM. RUNX2-modifying enzymes: therapeutic targets for bone diseases. Exp Mol Med 2020; 52:1178-1184. [PMID: 32788656 PMCID: PMC8080656 DOI: 10.1038/s12276-020-0471-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 01/01/2023] Open
Abstract
RUNX2 is a master transcription factor of osteoblast differentiation. RUNX2 expression in the bone and osteogenic front of a suture is crucial for cranial suture closure and membranous bone morphogenesis. In this manner, the regulation of RUNX2 is precisely controlled by multiple posttranslational modifications (PTMs) mediated by the stepwise recruitment of multiple enzymes. Genetic defects in RUNX2 itself or in its PTM regulatory pathways result in craniofacial malformations. Haploinsufficiency in RUNX2 causes cleidocranial dysplasia (CCD), which is characterized by open fontanelle and hypoplastic clavicles. In contrast, gain-of-function mutations in FGFRs, which are known upstream stimulating signals of RUNX2 activity, cause craniosynostosis (CS) characterized by premature suture obliteration. The identification of these PTM cascades could suggest suitable drug targets for RUNX2 regulation. In this review, we will focus on the mechanism of RUNX2 regulation mediated by PTMs, such as phosphorylation, prolyl isomerization, acetylation, and ubiquitination, and we will summarize the therapeutics associated with each PTM enzyme for the treatment of congenital cranial suture anomalies.
Collapse
Affiliation(s)
- Woo-Jin Kim
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hye-Lim Shin
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Bong-Soo Kim
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hyun-Jung Kim
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hyun-Mo Ryoo
- Basic Research Lab for "Epigenetic Regeneration of Aged Skeleto-Muscular System (ERASMUS)", Department of Molecular Genetics and Dental Pharmacology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
11
|
Seo J, Park M. Molecular crosstalk between cancer and neurodegenerative diseases. Cell Mol Life Sci 2020; 77:2659-2680. [PMID: 31884567 PMCID: PMC7326806 DOI: 10.1007/s00018-019-03428-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
The progression of cancers and neurodegenerative disorders is largely defined by a set of molecular determinants that are either complementarily deregulated, or share remarkably overlapping functional pathways. A large number of such molecules have been demonstrated to be involved in the progression of both diseases. In this review, we particularly discuss our current knowledge on p53, cyclin D, cyclin E, cyclin F, Pin1 and protein phosphatase 2A, and their implications in the shared or distinct pathways that lead to cancers or neurodegenerative diseases. In addition, we focus on the inter-dependent regulation of brain cancers and neurodegeneration, mediated by intercellular communication between tumor and neuronal cells in the brain through the extracellular microenvironment. Finally, we shed light on the therapeutic perspectives for the treatment of both cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jiyeon Seo
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- Department of Neuroscience, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
12
|
Cheng CW, Tse E. Targeting PIN1 as a Therapeutic Approach for Hepatocellular Carcinoma. Front Cell Dev Biol 2020; 7:369. [PMID: 32010690 PMCID: PMC6974617 DOI: 10.3389/fcell.2019.00369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
PIN1 is a peptidyl-prolyl cis/trans isomerase that specifically binds and catalyzes the cis/trans isomerization of the phosphorylated serine or threonine residue preceding a proline (pSer/Thr-Pro) motif of its interacting proteins. Through this phosphorylation-dependent prolyl isomerization, PIN1 is involved in the regulation of various important cellular processes including cell cycle progression, cell proliferation, apoptosis and microRNAs biogenesis; hence its dysregulation contributes to malignant transformation. PIN1 is highly expressed in hepatocellular carcinoma (HCC). By fine-tuning the functions of its interacting proteins such as cyclin D1, x-protein of hepatitis B virus and exportin 5, PIN1 plays an important role in hepatocarcinogenesis. Growing evidence supports that targeting PIN1 is a potential therapeutic approach for HCC by inhibiting cell proliferation, inducing cellular apoptosis, and restoring microRNAs biogenesis. Novel formulation of PIN1 inhibitors that increases in vivo bioavailability of PIN1 inhibitors represents a promising future direction for the therapeutic strategy of HCC treatment. In this review, the mechanisms underlying PIN1 over-expression in HCC are explored. Furthermore, we also discuss the roles of PIN1 in HCC tumorigenesis and metastasis through its interaction with various phosphoproteins. Finally, recent progress in the therapeutic options targeting PIN1 for HCC treatment is examined and summarized.
Collapse
Affiliation(s)
- Chi-Wai Cheng
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Eric Tse
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
13
|
Ieda N, Itoh K, Inoue Y, Izumiya Y, Kawaguchi M, Miyata N, Nakagawa H. An irreversible inhibitor of peptidyl-prolyl cis/trans isomerase Pin1 and evaluation of cytotoxicity. Bioorg Med Chem Lett 2018; 29:353-356. [PMID: 30585173 DOI: 10.1016/j.bmcl.2018.12.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022]
Abstract
Pin1 (protein interacting with never in mitosis A-1) is a member of the peptidyl prolyl isomerase (PPIase) family, and catalyzes cis-trans isomerization of pThr/Ser-Pro amide bonds. Because Pin1 is overexpressed in various cancer cell lines and promotes cell growth, it is considered a target for anticancer agents. Here, we designed and synthesized a covalently binding Pin1 inhibitor (S)-2 to target Pin1's active site. This compound inhibited Pin1 in protease-coupled assay, and formed a covalent bond with Cys113 of Pin1, as determined by ESI-MS. The acetoxymethyl ester of (S)-2, i.e., 6, suppressed cyclin D1 expression in human prostate cancer PC-3 cells, and exhibited cytotoxicity. Pin1-knockdown experiments indicated that a target for the cytotoxicity of 6 is Pin1.
Collapse
Affiliation(s)
- Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya Citi University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Kaoru Itoh
- Graduate School of Pharmaceutical Sciences, Nagoya Citi University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Yasumichi Inoue
- Graduate School of Pharmaceutical Sciences, Nagoya Citi University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Yusuke Izumiya
- Faculty of Pharmaceutical Sciences, Nagoya Citi University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Mitusyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya Citi University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Naoki Miyata
- Graduate School of Pharmaceutical Sciences, Nagoya Citi University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya Citi University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.
| |
Collapse
|
14
|
Fan G, Wang L, Xu J, Jiang P, Wang W, Huang Y, Lv M, Liu S. Knockdown of the prolyl isomerase Pin1 inhibits Hep-2 cell growth, migration, and invasion by targeting the β-catenin signaling pathway. Biochem Cell Biol 2018; 96:734-741. [PMID: 29768138 DOI: 10.1139/bcb-2017-0334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is increasing evidence indicating that peptidylprolyl cis/trans isomerase, NIMA-interacting 1 (Pin1) plays a decisive role in a variety of cancers. Nevertheless, its function in laryngeal squamous cell carcinoma (LSCC) has not been elaborated. The aim of this study is to determine the role of Pin1 in LSCC. Here, we established stably transfected Hep-2 cells with low expression of Pin1. Intriguingly, cell proliferation, migration, and invasion was significantly inhibited in Pin1-silenced Hep-2 cells. Similarly, knockdown of Pin1 induced apoptosis of Hep-2 cells, as evidenced by increased expression of cleaved-caspase-3, cleaved-PARP, and bax, and decreased expression of bcl2. We also demonstrated that silencing of Pin1 down-regulated β-catenin and cyclin D1 expression. Inversely, over-expression of β-catenin reversed the inhibiting effect of Pin1 silencing on Hep-2 cells. Moreover, we proved that knockdown of Pin1 inhibited tumorigenesis of Hep-2 cells in vivo. Taken together, we demonstrate that silencing of Pin1 effectively suppresses the growth of Hep-2 cells through β-catenin, indicating that Pin1 possess the potential to serve as a therapeutic target for the treatment of LSCC.
Collapse
Affiliation(s)
- Guoliang Fan
- Department of Otolaryngology, Harbin First Hospital, Harbin, People’s Republic of China
| | - Lin Wang
- Department of Otolaryngology, Harbin First Hospital, Harbin, People’s Republic of China
| | - Jia Xu
- Department of Otolaryngology, Harbin First Hospital, Harbin, People’s Republic of China
| | - Ping Jiang
- Department of Pathology, Harbin First Hospital, Harbin, People’s Republic of China
| | - Wei Wang
- Department of Otolaryngology, Harbin First Hospital, Harbin, People’s Republic of China
| | - Ying Huang
- Department of Pathology, Harbin First Hospital, Harbin, People’s Republic of China
| | - Minggang Lv
- Department of Otolaryngology, Harbin First Hospital, Harbin, People’s Republic of China
| | - Shaoting Liu
- Department of Otolaryngology, Harbin First Hospital, Harbin, People’s Republic of China
| |
Collapse
|
15
|
Abstract
Cell cycle progression is tightly controlled by many cell cycle-regulatory proteins that are in turn regulated by a family of cyclin-dependent kinases (CDKs) through protein phosphorylation. The peptidyl-prolyl cis/trans isomerase PIN1 provides a further post-phosphorylation modification and functional regulation of these CDK-phosphorylated proteins. PIN1 specifically binds the phosphorylated serine or threonine residue preceding a proline (pSer/Thr-Pro) motif of its target proteins and catalyzes the cis/trans isomerization on the pSer/Thr-Pro peptide bonds. Through this phosphorylation-dependent prolyl isomerization, PIN1 fine-tunes the functions of various cell cycle-regulatory proteins including retinoblastoma protein (Rb), cyclin D1, cyclin E, p27, Cdc25C, and Wee1. In this review, we discussed the essential roles of PIN1 in regulating cell cycle progression through modulating the functions of these cell cycle-regulatory proteins. Furthermore, the mechanisms underlying PIN1 overexpression in cancers were also explored. Finally, we examined and summarized the therapeutic potential of PIN1 inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Chi-Wai Cheng
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Eric Tse
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
16
|
Lee YM, Liou YC. Gears-In-Motion: The Interplay of WW and PPIase Domains in Pin1. Front Oncol 2018; 8:469. [PMID: 30460195 PMCID: PMC6232885 DOI: 10.3389/fonc.2018.00469] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/04/2018] [Indexed: 01/22/2023] Open
Abstract
Pin1 belongs to the family of the peptidyl-prolyl cis-trans isomerase (PPIase), which is a class of enzymes that catalyze the cis/trans isomerization of the Proline residue. Pin1 is unique and only catalyzes the phosphorylated Serine/Threonine-Proline (S/T-P) motifs of a subset of proteins. Since the discovery of Pin1 as a key protein in cell cycle regulation, it has been implicated in numerous diseases, ranging from cancer to neurodegenerative diseases. The main features of Pin1 lies in its two main domains: the WW (two conserved tryptophan) domain and the PPIase domain. Despite extensive studies trying to understand the mechanisms of Pin1 functions, how these two domains contribute to the biological roles of Pin1 in cellular signaling requires more investigations. The WW domain of Pin1 is known to have a higher affinity to its substrate than that of the PPIase domain. Yet, the WW domain seems to prefer the trans configuration of phosphorylated S/T-P motif, while the PPIase catalyzes the cis to trans isomerasion. Such contradicting information has generated much confusion as to the actual mechanism of Pin1 function. In addition, dynamic allostery has been suggested to be important for Pin1 function. Henceforth, in this review, we will be looking at the progress made in understanding the function of Pin1, and how these understandings can aid us in overcoming the diseases implicated by Pin1 such as cancer during drug development.
Collapse
Affiliation(s)
- Yew Mun Lee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Hidaka M, Okabe E, Hatakeyama K, Zook H, Uchida C, Uchida T. Fluorescent resonance energy transfer -based biosensor for detecting conformational changes of Pin1. Biochem Biophys Res Commun 2018; 505:399-404. [DOI: 10.1016/j.bbrc.2018.09.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 01/27/2023]
|
18
|
Islam R, Yoon H, Shin HR, Bae HS, Kim BS, Yoon WJ, Woo KM, Baek JH, Lee YS, Ryoo HM. Peptidyl-prolyl cis-trans isomerase NIMA interacting 1 regulates skeletal muscle fusion through structural modification of Smad3 in the linker region. J Cell Physiol 2018; 233:9390-9403. [PMID: 30132832 PMCID: PMC6686165 DOI: 10.1002/jcp.26774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
Abstract
Myoblast fusion is critical for muscle growth, regeneration, and repair. We previously reported that the enzyme peptidyl‐prolyl cis–trans isomerase NIMA interacting 1 (Pin1) is involved in osteoclast fusion. The objective of this study was to investigate the possibility that Pin1 also inhibits myoblast fusion. Here, we show the increased number of nuclei in the Pin1+/− mice muscle fiber compared to that in wild‐type mice. Moreover, we show that low dose of the Pin1 inhibitor dipentamethylene thiuram monosulfide treatment caused enhanced fusion in C2C12 cells. The R‐Smads are well‐known mediators of muscle hypertrophy and hyperplasia as well as being substrates of Pin1. We found that Pin1 is crucial for maintaining the stability of Smad3 (homologues of the Drosophila protein, mothers against decapentaplegic (Mad) and the Caenorhabditis elegans protein Sma). Our results show that serine 204 within Smad3 is the key Pin1‐binding site during inhibition of myoblast fusion and that both the transforming growth factor‐β receptor and extracellular signal‐regulated kinase (ERK)‐mediated phosphorylation are required for the interaction of Pin1 with Smad3. These findings suggest that a precise level of Pin1 activity is essential for regulating myoblast fusion during myogenesis and muscle regeneration.
Collapse
Affiliation(s)
- Rabia Islam
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Heein Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hye-Rim Shin
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Han-Sol Bae
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Bong-Soo Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Won-Joon Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Hidaka M, Kosaka K, Tsushima S, Uchida C, Takahashi K, Takahashi N, Tsubuki M, Hara Y, Uchida T. Food polyphenols targeting peptidyl prolyl cis/trans isomerase Pin1. Biochem Biophys Res Commun 2018; 499:681-687. [PMID: 29608894 DOI: 10.1016/j.bbrc.2018.03.212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
We searched for inhibitors against prolyl isomerase Pin1 in order to develop functional foods to prevent and cure various Pin1 related diseases such as cancer, diabetes, cardiovascular disease, Alzheimers's disease, and so on. We created a polyphenol library consisting of ingredients in healthy foods and beverages, since polyphenols like epigallocatechin gallate (EGCG) in green tea and 974B in brown algae had been identified as its Pin1 inhibitors. Several polyphenols such as EGCG derivatives, caffeic acid derivatives and tannic acid inhibited Pin1 activity. These results provide a first step in development of the functional foods and beverage targeting Pin1 and its related diseases.
Collapse
Affiliation(s)
- Masafumi Hidaka
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba, Sendai, Miyagi, 980-0845, Japan
| | - Keita Kosaka
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba, Sendai, Miyagi, 980-0845, Japan
| | - Saori Tsushima
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba, Sendai, Miyagi, 980-0845, Japan
| | - Chiyoko Uchida
- Department of Human Development and Culture, Fukushima University, Fukushima, Fukushima, 960-1296, Japan
| | - Katsuhiko Takahashi
- Laboratory of Biochemistry, Hoshi University, 2-4-41, Ebara, Shinagawa, Tokyo, 142-8501, Japan
| | - Noriko Takahashi
- Laboratory of Bioorganic Chemistry, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo, 142-8501, Japan
| | - Masayoshi Tsubuki
- Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, 2-4-41, Ebara, Shinagawa, Tokyo, 142-8501, Japan
| | - Yukihiko Hara
- Tea Solutions, Hara Office Inc., 1-18-15-510, Taihei, Sumida-Ku, Tokyo 130-0012, Japan
| | - Takafumi Uchida
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba, Sendai, Miyagi, 980-0845, Japan.
| |
Collapse
|
20
|
Matena A, Rehic E, Hönig D, Kamba B, Bayer P. Structure and function of the human parvulins Pin1 and Par14/17. Biol Chem 2018; 399:101-125. [PMID: 29040060 DOI: 10.1515/hsz-2017-0137] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/29/2017] [Indexed: 12/16/2022]
Abstract
Parvulins belong to the family of peptidyl-prolyl cis/trans isomerases (PPIases) assisting in protein folding and in regulating the function of a broad variety of proteins in all branches of life. The human representatives Pin1 and Par14/17 are directly involved in processes influencing cellular maintenance and cell fate decisions such as cell-cycle progression, metabolic pathways and ribosome biogenesis. This review on human parvulins summarizes the current knowledge of these enzymes and intends to oppose the well-studied Pin1 to its less well-examined homolog human Par14/17 with respect to structure, catalytic and cellular function.
Collapse
Affiliation(s)
- Anja Matena
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, D-45117 Essen, Germany
| | - Edisa Rehic
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, D-45117 Essen, Germany
| | - Dana Hönig
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, D-45117 Essen, Germany
| | - Bianca Kamba
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, D-45117 Essen, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Center for Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, D-45117 Essen, Germany
| |
Collapse
|
21
|
Wu KJ, Zhong HJ, Yang G, Wu C, Huang JM, Li G, Ma DL, Leung CH. Small Molecule Pin1 Inhibitor Blocking NF-κB Signaling in Prostate Cancer Cells. Chem Asian J 2018; 13:275-279. [DOI: 10.1002/asia.201701216] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/24/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences; University of Macau; Macao China
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences; University of Macau; Macao China
| | - Guanjun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences; University of Macau; Macao China
| | - Chun Wu
- Department of Chemistry; Hong Kong Baptist University; Kowloon Tong Hong Kong China
| | - Jie-Min Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences; University of Macau; Macao China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences; University of Macau; Macao China
| | - Dik-Lung Ma
- Department of Chemistry; Hong Kong Baptist University; Kowloon Tong Hong Kong China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences; University of Macau; Macao China
| |
Collapse
|
22
|
D'Artista L, Bisso A, Piontini A, Doni M, Verrecchia A, Kress TR, Morelli MJ, Del Sal G, Amati B, Campaner S. Pin1 is required for sustained B cell proliferation upon oncogenic activation of Myc. Oncotarget 2017; 7:21786-98. [PMID: 26943576 PMCID: PMC5008323 DOI: 10.18632/oncotarget.7846] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 02/21/2016] [Indexed: 12/23/2022] Open
Abstract
The c-myc proto-oncogene is activated by translocation in Burkitt's lymphoma and substitutions in codon 58 stabilize the Myc protein or augment its oncogenic potential. In wild-type Myc, phosphorylation of Ser 62 and Thr 58 provides a landing pad for the peptidyl prolyl-isomerase Pin1, which in turn promotes Ser 62 dephosphorylation and Myc degradation. However, the role of Pin1 in Myc-induced lymphomagenesis remains unknown. We show here that genetic ablation of Pin1 reduces lymphomagenesis in Eμ-myc transgenic mice. In both Pin1-deficient B-cells and MEFs, the proliferative response to oncogenic Myc was selectively impaired, with no alterations in Myc-induced apoptosis or mitogen-induced cell cycle entry. This proliferative defect wasn't attributable to alterations in either Ser 62 phosphorylation or Myc-regulated transcription, but instead relied on the activity of the ARF-p53 pathway. Pin1 silencing in lymphomas retarded disease progression in mice, making Pin1 an attractive therapeutic target in Myc-driven tumors.
Collapse
Affiliation(s)
- Luana D'Artista
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy.,Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Andrea Bisso
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Andrea Piontini
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Mirko Doni
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Alessandro Verrecchia
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Theresia R Kress
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Marco J Morelli
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy.,Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Bruno Amati
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy.,Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| |
Collapse
|
23
|
Islam R, Yoon WJ, Ryoo HM. Pin1, the Master Orchestrator of Bone Cell Differentiation. J Cell Physiol 2017; 232:2339-2347. [PMID: 27225727 DOI: 10.1002/jcp.25442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 12/25/2022]
Abstract
Pin1 is an enzyme that specifically recognizes the peptide bond between phosphorylated serine or threonine (pS/pT-P) and proline. This recognition causes a conformational change of its substrate, which further regulates downstream signaling. Pin1-/- mice show developmental bone defects and reduced mineralization. Pin1 targets RUNX2 (Runt-Related Transcription Factor 2), SMAD1/5, and β-catenin in the FGF, BMP, and WNT pathways, respectively. Pin1 has multiple roles in the crosstalk between different anabolic bone signaling pathways. For example, it controls different aspects of osteoblastogenesis and increases the transcriptional activity of Runx2, both directly and indirectly. Pin1 also influences osteoclastogenesis at different stages by targeting PU.1 (Purine-rich nucleic acid binding protein 1), C-FOS, and DC-STAMP. The phenotype of Pin1-/- mice has led to the recent identification of multiple roles of Pin1 in different molecular pathways in bone cells. These roles suggest that Pin1 can be utilized as an efficient drug target in congenital and acquired bone diseases. J. Cell. Physiol. 232: 2339-2347, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rabia Islam
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Won-Joon Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Cheng CW, Leong KW, Tse E. Understanding the role of PIN1 in hepatocellular carcinoma. World J Gastroenterol 2016; 22:9921-9932. [PMID: 28018099 PMCID: PMC5143759 DOI: 10.3748/wjg.v22.i45.9921] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/26/2016] [Accepted: 10/30/2016] [Indexed: 02/06/2023] Open
Abstract
PIN1 is a peptidyl-prolyl cis/trans isomerase that binds and catalyses isomerization of the specific motif comprising a phosphorylated serine or threonine residue preceding a proline (pSer/Thr-Pro) in proteins. PIN1 can therefore induce conformational and functional changes of its interacting proteins that are regulated by proline-directed serine/threonine phosphorylation. Through this phosphorylation-dependent prolyl isomerization, PIN1 fine-tunes the functions of key phosphoproteins (e.g., cyclin D1, survivin, β-catenin and x-protein of hepatitis B virus) that are involved in the regulation of cell cycle progression, apoptosis, proliferation and oncogenic transformation. PIN1 has been found to be over-expressed in many cancers, including human hepatocellular carcinoma (HCC). It has been shown previously that overexpression of PIN1 contributes to the development of HCC in-vitro and in xenograft mouse model. In this review, we first discussed the aberrant transcription factor expression, miRNAs dysregulation, PIN1 gene promoter polymorphisms and phosphorylation of PIN1 as potential mechanisms underlying PIN1 overexpression in cancers. Furthermore, we also examined the role of PIN1 in HCC tumourigenesis by reviewing the interactions between PIN1 and various cellular and viral proteins that are involved in β-catenin, NOTCH, and PI3K/Akt/mTOR pathways, apoptosis, angiogenesis and epithelial-mesenchymal transition. Finally, the potential of PIN1 inhibitors as an anti-cancer therapy was explored and discussed.
Collapse
|
25
|
The role of Pin1 in the development and treatment of cancer. Arch Pharm Res 2016; 39:1609-1620. [PMID: 27572155 DOI: 10.1007/s12272-016-0821-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022]
Abstract
Protein phosphorylation and post-phosphorylation events regulate many cellular signaling pathways. Peptidyl-prolyl isomerase (Pin1) is the only peptidyl-prolyl cis/trans isomerase that interacts with numerous oncogenic or tumor suppressive phosphorylated proteins, causes conformational changes in target proteins, and eventually regulates the activities of such proteins. These alterations in activity play a pivotal role in tumorigenesis. Since Pin1 is overexpressed and/or activated in various types of cancers, and the dysregulation of proline-directed phosphorylation contributes to tumorigenesis, Pin1 represents an attractive target for cancer therapy. This review will describe the role of Pin1 in cancer and the current status of Pin1 inhibitor development.
Collapse
|
26
|
Jiang L, Chu H, Zheng H. Pin1 is related with clinical stage of papillary thyroid carcinoma. World J Surg Oncol 2016; 14:95. [PMID: 27029791 PMCID: PMC4815147 DOI: 10.1186/s12957-016-0847-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/24/2016] [Indexed: 11/17/2022] Open
Abstract
Background The context and aim of this article was to investigate whether the expression level of Pin1 was in association with the clinical stage of papillary thyroid carcinomas. Methods Seventy-two patients who had been treated at the Affiliated Hospital of Qingdao University – Yantai YuHuangDing Hospital during January 2013 to December 2014 were rolled in. The expression levels of Pin1 using immunohistochemistry were tested and were divided into four groups according to the different clinical stages and final scores based on multiplying intensity and percentage value of IHC results. Data was analyzed with SPSS 20.0, and P value <0.05 had been chosen as significant. Results Considered from analysis result, the Pin1 expression status statistically significantly correlated with the PTC clinical stages (χ2 = 8.128, P = 0.043); as the clinical stage proceeded, the intensity of Pin1 in PTC cells had been increased. But we did not find any relationships between immunohistochemical staining results and other clinicopathological characteristics. Conclusions The PTC cells’ intensity of Pin1 was in association with the clinical stage. The role played by Pin1 in PTC has been studied, and we need to further investigate the application of Pin1 in the treatment of PTC.
Collapse
Affiliation(s)
- Lixin Jiang
- Gastrointestinal Surgery Ward I, Thyroid Surgery Ward, Affiliated Hospital of Qingdao University - Yantai YuHuangDing Hospital, Yantai, Shandong, China
| | - Haidi Chu
- Gastrointestinal Surgery Ward I, Thyroid Surgery Ward, Affiliated Hospital of Qingdao University - Yantai YuHuangDing Hospital, Yantai, Shandong, China.
| | - Haitao Zheng
- Gastrointestinal Surgery Ward I, Thyroid Surgery Ward, Affiliated Hospital of Qingdao University - Yantai YuHuangDing Hospital, Yantai, Shandong, China
| |
Collapse
|
27
|
Prolyl isomerase Pin1 regulates doxorubicin-inducible P-glycoprotein level by reducing Foxo3 stability. Biochem Biophys Res Commun 2016; 471:328-33. [DOI: 10.1016/j.bbrc.2016.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 02/05/2016] [Indexed: 11/23/2022]
|
28
|
Naveen V, Chu CH, Chen BW, Tsai YC, Hsiao CD, Sun YJ. Helicobacter pylori cell binding factor 2: Insights into domain motion. J Struct Biol 2016; 194:90-101. [PMID: 26850168 DOI: 10.1016/j.jsb.2016.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/22/2015] [Accepted: 02/02/2016] [Indexed: 12/18/2022]
Abstract
Helicobacter pylori cell binding factor 2 (HpCBF2) is an antigenic virulence factor belonging to the SurA-like peptidyl-prolyl cis-trans isomerase family with implications for pathogenicity in the human gastrointestinal tract. HpCBF2 possesses PPIase activity and could act as a periplasmic chaperone to regulate outer membrane protein assembly. Here, we measured the isomerization and chaperone activity of HpCBF2, and determined the crystal structure of HpCBF2 in complex with an inhibitor, indole-2-carboxylic acid (I2CA), at 2.4Å resolution. HpCBF2-I2CA forms a homodimer encasing a large central hydrophobic cavity with a basket-like structure, and each monomer contains a PPIase and a chaperone domain. In the HpCBF2-I2CA dimer, the two PPIase domains separate by a distance of 22.8Å, while the two chaperone domains arrange in a domain-swap manner. The PPIase domains bound with I2CA ligand face towards the chaperone domains and are shielded by surrounding hydrophobic residues. With the aid of SAXS experiments, we also revealed domain motion between the apo- and I2CA-bound states of HpCBF2. The domain motion in HpCBF2 might be necessary for the isomerization activity of PPIase and the accommodation of the unfolded and partially folded peptides to refold by chaperone domain.
Collapse
Affiliation(s)
- Vankadari Naveen
- Molecular Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica, Taipei 115, Taiwan; Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chen-Hsi Chu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Bo-Wei Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yen-Chun Tsai
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chwan-Deng Hsiao
- Molecular Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica, Taipei 115, Taiwan; Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan.
| | - Yuh-Ju Sun
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
29
|
Arda M, Ozturk II, Banti CN, Kourkoumelis N, Manoli M, Tasiopoulos AJ, Hadjikakou SK. Novel bismuth compounds: synthesis, characterization and biological activity against human adenocarcinoma cells. RSC Adv 2016. [DOI: 10.1039/c6ra01181k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Novel bismuth(iii) halide compounds were synthesized. Molecules with lower H-all atoms inter-molecular interactions tend to exhibit the higher activity against MCF-7 and HeLa cells.
Collapse
Affiliation(s)
- M. Arda
- Department of Chemistry
- Namık Kemal University
- Tekirdag
- Turkey
| | - I. I. Ozturk
- Department of Chemistry
- Namık Kemal University
- Tekirdag
- Turkey
| | - C. N. Banti
- Section of Inorganic and Analytical Chemistry
- Department of Chemistry
- University of Ioannina
- 45110 Ioannina
- Greece
| | - N. Kourkoumelis
- Medical Physics Laboratory
- Medical School
- University of Ioannina
- Ioannina
- Greece
| | - M. Manoli
- Department of Chemistry
- University of Cyprus
- Nicosia
- Cyprus
| | | | - S. K. Hadjikakou
- Section of Inorganic and Analytical Chemistry
- Department of Chemistry
- University of Ioannina
- 45110 Ioannina
- Greece
| |
Collapse
|
30
|
Tanaka Y, Amano A, Morisaki M, Sato Y, Sasaki T. Cellular peptidyl-prolyl cis/trans isomerase Pin1 facilitates replication of feline coronavirus. Antiviral Res 2015; 126:1-7. [PMID: 26675666 PMCID: PMC7113879 DOI: 10.1016/j.antiviral.2015.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/18/2015] [Accepted: 11/29/2015] [Indexed: 01/23/2023]
Abstract
Although feline coronavirus (FCoV) causes feline infectious peritonitis (FIP), which is a fatal infectious disease, there are no effective therapeutic medicines or vaccines. Previously, in vitro studies have shown that cyclosporin (CsA) and FK506 inhibit virus replication in diverse coronaviruses. CsA and FK506 are targets of clinically relevant immunosuppressive drugs and bind to cellular cyclophilins (Cyps) or FK506 binding proteins (FKBPs), respectively. Both Cyp and FKBP have peptidyl-prolyl cis-trans isomerase (PPIase) activity. However, protein interacting with NIMA (Pin1), a member of the parvulin subfamily of PPIases that differs from Cyps and FKBPs, is essential for various signaling pathways. Here we demonstrated that genetic silencing or knockout of Pin1 resulted in decreased FCoV replication in vitro. Dipentamethylene thiuram monosulfide, a specific inhibitor of Pin1, inhibited FCoV replication. These data indicate that Pin1 modulates FCoV propagation. Pin1 facilitates FCoV replication in vitro. RNA interference experiments for Pin1 reduced FCoV replication and viral protein expression. The Pin1 inhibitor DTM results in the reduction of FCoV replication and protein expression. Knockout of the Pin1 gene inhibits FCoV replication and protein expression.
Collapse
Affiliation(s)
- Yoshikazu Tanaka
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary and Life Science University, 1-7-1 Kyounan, Musashino, Tokyo 180-8602, Japan.
| | - Arisa Amano
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary and Life Science University, 1-7-1 Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Masateru Morisaki
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary and Life Science University, 1-7-1 Kyounan, Musashino, Tokyo 180-8602, Japan
| | - Yuka Sato
- Department of Microbiology and Immunology, Division of Molecular Virology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takashi Sasaki
- Department of Bacteriology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
31
|
Nakagawa H, Seike S, Sugimoto M, Ieda N, Kawaguchi M, Suzuki T, Miyata N. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety. Bioorg Med Chem Lett 2015; 25:5619-24. [PMID: 26508545 DOI: 10.1016/j.bmcl.2015.10.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 11/19/2022]
Abstract
Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity.
Collapse
Affiliation(s)
- Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Suguru Seike
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Masatoshi Sugimoto
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Takayoshi Suzuki
- Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoki Miyata
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| |
Collapse
|
32
|
Huang KY, Horng JC. Modulating the Affinities of Phosphopeptides for the Human Pin1 WW Domain Using 4-Substituted Proline Derivatives. Biochemistry 2015; 54:6186-94. [DOI: 10.1021/acs.biochem.5b00880] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kuei-Yen Huang
- Department
of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC
- Frontier
Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC
| | - Jia-Cherng Horng
- Department
of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC
- Frontier
Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC
| |
Collapse
|
33
|
Urgut OS, Ozturk II, Banti CN, Kourkoumelis N, Manoli M, Tasiopoulos AJ, Hadjikakou SK. New antimony(III) halide complexes with dithiocarbamate ligands derived from thiuram degradation: The effect of the molecule's close contacts on in vitro cytotoxic activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 58:396-408. [PMID: 26478326 DOI: 10.1016/j.msec.2015.08.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/04/2015] [Accepted: 08/21/2015] [Indexed: 01/06/2023]
Abstract
Antimony(III) halide complexes of the formulae {[SbBr(Me2DTC)2]n} (1), {[SbI(Me2DTC)2]n} (2) and {[(Me2DTC)2Sb(μ2-I)Sb(Me2DTC)2](+).I3(-)} (3) (Me2DTC = dimethyldithiocarbomate) were synthesized from SbX3, (X = Br or I) and tetramethylthiuram monosulfide (Me4tms) or tetramethylthiuram disulfide (Me4tds). The complexes were characterized by melting point (m.p.), elemental analysis (e.a.), Fourier-transform Infra-Red (FT-IR), Fourier-transform Raman (FT-Raman), Nuclear Magnetic Resonance ((1)H,(13)C-NMR) spectroscopy and Thermogravimetric-Differential Thermal Analysis (TG-DTA). Crystal structures of complexes 1-3 were determined with single crystal X-ray diffraction analysis. Complexes 1 and 2 are polymers with distorted square pyramidal (SP) geometry in each monomeric unit, whereas complex 3 is ionic, containing an iodonium linkage Sb-I(+)-Sb and an I3(-) counter anion; to the best of our knowledge, this is the first ionic antimony(III) iodide complex. The in vitro cytotoxic activity of 1-3 against human adenocarcinoma cells: breast (MCF-7) and cervix (HeLa) cells and non-cancerous cells: MRC-5 (normal human fetal lung fibroblast cells) was evaluated with trypan blue (TB) and sulforhodamine B (SRB) assays. Among antimony(III) compounds with sulfur containing ligand, those of dithiocarbamates exhibit significant cytotoxic activity. Hirshfeld surface volumes were analyzed to clarify the nature of the intermolecular interactions by the 2D fingerprint plot. Molecules with lower H-all atoms inter-molecular interactions exhibit the higher activity against MCF-7 cells. The in vivo genotoxicity of 1-3 was evaluated by the mean of Allium cepa test. Alterations in the mitotic index values due to the chromosomal aberrations were observed in the case of complexes 2 and 3. Since, no such alteration is caused by 1, it makes this compound candidate for further study as potential drug.
Collapse
Affiliation(s)
- O S Urgut
- Department of Chemistry, Namık Kemal University, 59030, Tekirdag, Turkey
| | - I I Ozturk
- Department of Chemistry, Namık Kemal University, 59030, Tekirdag, Turkey.
| | - C N Banti
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| | - N Kourkoumelis
- Medical Physics Laboratory, Medical School, University of Ioannina, Ioannina, 45110, Greece.
| | - M Manoli
- Department of Chemistry, University of Cyprus, Nicosia, Cyprus
| | - A J Tasiopoulos
- Department of Chemistry, University of Cyprus, Nicosia, Cyprus
| | - S K Hadjikakou
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
34
|
Jiang B, Pei D. A Selective, Cell-Permeable Nonphosphorylated Bicyclic Peptidyl Inhibitor against Peptidyl-Prolyl Isomerase Pin1. J Med Chem 2015; 58:6306-12. [PMID: 26196061 PMCID: PMC4594195 DOI: 10.1021/acs.jmedchem.5b00411] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pin1 regulates the levels and functions of phosphoproteins by catalyzing phosphorylation-dependent cis/trans isomerization of peptidyl-prolyl bonds. Previous Pin1 inhibitors contained phosphoamino acids, which are metabolically unstable and have poor membrane permeability. In this work, we report a cell-permeable and metabolically stable nonphosphorylated bicyclic peptide as a potent and selective Pin1 inhibitor, which inhibited the intracellular Pin1 activity in cultured mammalian cells but had little effect on other isomerases such as Pin4, FKBP12, or cyclophilin A.
Collapse
Affiliation(s)
- Bisheng Jiang
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43220
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43220
| |
Collapse
|
35
|
Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation. Nature 2015; 520:378-82. [PMID: 25624101 PMCID: PMC4401560 DOI: 10.1038/nature14044] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/05/2014] [Indexed: 01/08/2023]
Abstract
Infectious agents develop intricate mechanisms to interact with host cell pathways and hijack the genetic and epigenetic machinery to change phenotypic states. Amongst the Apicomplexa phylum of obligate intracellular parasites which cause veterinary and human diseases, Theileria is the only genus which transforms its mammalian host cells1. Theileria infection of bovine leukocytes induces proliferative and invasive phenotypes associated with activated signalling pathways, notably JNK and AP-12. The transformed phenotypes are reversed by treatment with the theilericidal drug Buparvaquone3. We used comparative genomics to identify a homologue of the Peptidyl Prolyl Isomerase Pin1 (designated TaPin1) in T. annulata which is secreted into the host cell and modulates oncogenic signalling pathways. Here we show that TaPin1 is a bona fide prolyl isomerase and that it interacts with the host ubiquitin ligase FBW7 leading to its degradation and subsequent stabilization of c-Jun which promotes transformation. We performed in vitro analysis and in vivo zebrafish xenograft experiments to demonstrate that TaPin1 is directly inhibited by the anti-parasite drug Buparvaquone (and other known Pin1 inhibitors) and is mutated in a drug-resistant strain. Prolyl isomerisation is thus a conserved mechanism which is important in cancer and is used by Theileria parasites to manipulate host oncogenic signaling.
Collapse
|
36
|
Sowole MA, Innes BT, Amunugama M, Litchfield DW, Brandl CJ, Shilton BH, Konermann L. Noncovalent binding of a cyclic peptide inhibitor to the peptidyl-prolyl isomerase Pin1, explored by hydrogen exchange mass spectrometry. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pin1 is a peptidyl-prolyl isomerase (PPIase) that plays a central role in eukaryotic cell cycle regulation, making this protein an interesting target for cancer therapy. Pin1 exhibits high specificity for substrates where proline is preceded by phosphoserine or phosphothreonine. The protein comprises an N-terminal WW (tryptophan–tryptophan) domain and a C-terminal PPIase domain. The cyclic peptide [CRYPEVEIC] (square brackets are used to denote the cyclic structure) represents a lead compound for a new class of nonphosphorylated Pin1 inhibitors. Unfortunately, it has not been possible thus far to characterize the Pin1–[CRYPEVEIC] complex by X-ray crystallography. Thus, the exact binding mode remains unknown. The current work employs hydrogen/deuterium exchange mass spectrometry for gaining insights into the Pin1–[CRYPEVEIC] interactions. The WW domain shows extensive conformational dynamics, both in the presence and in the absence of ligand. In contrast, profound changes in deuteration kinetics are observed in the PPIase domain after the addition of [CRYPEVEIC]. The secondary structure elements β2, α3, and α4 exhibit markedly reduced deuteration, consistent with their postulated involvement in ligand binding. Unexpectedly, [CRYPEVEIC] destabilizes the range of residues 61–86, a segment that comprises basic side chains that normally interact with the substrate phosphate. This destabilization is likely caused by steric clashes with Y3 or E5 of the inhibitor. Ligand-induced destabilization has previously been reported for a few other proteins, but effects of this type are not very common. Our findings suggest that future crystallization trials on Pin1 variants deleted for residues in the 61–86 range might provide a path towards high-resolution X-ray structures of Pin1 bound to cyclic peptide inhibitors.
Collapse
Affiliation(s)
- Modupeola A. Sowole
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Brendan T. Innes
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mahasilu Amunugama
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - David W. Litchfield
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Christopher J. Brandl
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Brian H. Shilton
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
37
|
Islam R, Bae HS, Yoon WJ, Woo KM, Baek JH, Kim HH, Uchida T, Ryoo HM. Pin1 regulates osteoclast fusion through suppression of the master regulator of cell fusion DC-STAMP. J Cell Physiol 2014; 229:2166-74. [PMID: 24891219 DOI: 10.1002/jcp.24679] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 05/20/2014] [Indexed: 12/25/2022]
Abstract
Cell fusion is a fundamental biological event that is essential for the development of multinucleated cells such as osteoclasts. Fusion failure leads to the accumulation of dense bone such as in osteopetrosis, demonstrating the importance of fusion in osteoclast maturity and bone remodeling. In a recent study, we reported that Pin1 plays a role in the regulation of bone formation and Runx2 regulation. In this study, we explored the role of Pin1 in osteoclast formation and bone resorption. Pin1 null mice have low bone mass and increased TRAP staining in histological sections of long bones, compared to Pin1 wild-type mice. In vitro osteoclast forming assays with bone marrow-derived monocyte/macrophage revealed that Pin1-deficient osteoclasts are larger than wild-type osteoclasts and have higher nuclei numbers, indicating greater extent of fusion. Pin1 deficiency also highly enhanced foreign body giant cell formation both in vitro and in vivo. Among the known fusion proteins, only DC-STAMP was significantly increased in Pin1(-/-) osteoclasts. Immunohistochemistry showed that DC-STAMP expression was also significantly increased in tibial metaphysis of Pin1 KO mice. We found that Pin1 binds and isomerizes DC-STAMP and affects its expression levels and localization at the plasma membrane. Taken together, our data indicate that Pin1 is a determinant of bone mass through the regulation of the osteoclast fusion protein DC-STAMP. The identification of Pin1 as a factor involved in cell fusion contributes to the understanding of osteoclast-associated diseases, including osteoporosis, and opens new avenues for therapeutic targets.
Collapse
Affiliation(s)
- Rabia Islam
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Mori T, Hidaka M, Ikuji H, Yoshizawa I, Toyohara H, Okuda T, Uchida C, Asano T, Yotsu-Yamashita M, Uchida T. A high-throughput screen for inhibitors of the prolyl isomerase, Pin1, identifies a seaweed polyphenol that reduces adipose cell differentiation. Biosci Biotechnol Biochem 2014; 78:832-8. [DOI: 10.1080/09168451.2014.905189] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
The peptidyl prolyl cis/trans isomerase Pin1 enhances the uptake of triglycerides and the differentiation of fibroblasts into adipose cells in response to insulin stimulation. Pin1 downregulation could be a potential approach to prevent and treat obesity-related disorders. In order to identify an inhibitor of Pin1 that exhibited minimal cytotoxicity, we established a high-throughput screen for Pin1 inhibitors and used this method to identify an inhibitor from 1,056 crude fractions of two natural product libraries. The candidate, a phlorotannin called 974-B, was isolated from the seaweed, Ecklonia kurome. 974-B inhibited the differentiation of mouse embryonic fibroblasts and 3T3-L1 cells into adipose cells without inducing cytotoxicity. We discovered the Pin1 inhibitor, 974-B, from the seaweed, E. kurome, and showed that it blocks the differentiation of fibroblasts into adipose cells, suggesting that 974-B could be a lead drug candidate for obesity-related disorders.
Collapse
Affiliation(s)
- Tadashi Mori
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Masafumi Hidaka
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hiroko Ikuji
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ibuki Yoshizawa
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | - Toru Okuda
- Tamagawa University, Research Center, Tokyo, Japan
| | - Chiyoko Uchida
- Department of Human Development and Culture, Fukushima University, Fukushima, Japan
| | - Tomoichiro Asano
- Department of Medical Science, Graduate School of Medicine, University of Hiroshima, Hiroshima, Japan
| | - Mari Yotsu-Yamashita
- Bioorganic Chemistry of Natural Products, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takafumi Uchida
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
39
|
Yoon WJ, Islam R, Cho YD, Woo KM, Baek JH, Uchida T, Komori T, van Wijnen A, Stein JL, Lian JB, Stein GS, Choi JY, Bae SC, Ryoo HM. Pin1-mediated Runx2 modification is critical for skeletal development. J Cell Physiol 2014; 228:2377-85. [PMID: 23702614 DOI: 10.1002/jcp.24403] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 12/23/2022]
Abstract
Runx2 is the master transcription factor for bone formation. Haploinsufficiency of RUNX2 is the genetic cause of cleidocranial dysplasia (CCD) that is characterized by hypoplastic clavicles and open fontanels. In this study, we found that Pin1, peptidyl prolyl cis-trans isomerase, is a critical regulator of Runx2 in vivo and in vitro. Pin1 mutant mice developed CCD-like phenotypes with hypoplastic clavicles and open fontanels as found in the Runx2+/- mice. In addition Runx2 protein level was significantly reduced in Pin1 mutant mice. Moreover Pin1 directly interacts with the Runx2 protein in a phosphorylation-dependent manner and subsequently stabilizes Runx2 protein. In the absence of Pin1, Runx2 is rapidly degraded by the ubiquitin-dependent protein degradation pathway. However, Pin1 overexpression strongly attenuated uniquitin-dependent Runx2 degradation. Collectively conformational change of Runx2 by Pin1 is essential for its protein stability and possibly enhances the level of active Runx2 in vivo.
Collapse
Affiliation(s)
- Won-Joon Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yoon WJ, Cho YD, Kim WJ, Bae HS, Islam R, Woo KM, Baek JH, Bae SC, Ryoo HM. Prolyl isomerase Pin1-mediated conformational change and subnuclear focal accumulation of Runx2 are crucial for fibroblast growth factor 2 (FGF2)-induced osteoblast differentiation. J Biol Chem 2014; 289:8828-38. [PMID: 24509851 DOI: 10.1074/jbc.m113.516237] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) signaling plays a pivotal role in bone growth/differentiation through the activation of osteogenic master transcription factor Runx2, which is mediated by the ERK/MAPK-dependent phosphorylation and the p300-dependent acetylation of Runx2. In this study, we found that Pin1-dependent isomerization of Runx2 is the critical step for FGF2-induced Runx2 transactivation function. We identified four serine or threonine residues in the C-terminal domain of Runx2 that are responsible for Pin1 binding and structural modification. Confocal imaging studies indicated that FGF2 treatment strongly stimulated the focal accumulation of Pin1 in the subnuclear area, which recruited Runx2. In addition, active forms of RNA polymerase-II also colocalized in the same subnuclear compartment. Dipentamethylene thiuram monosulfide, a Pin1 inhibitor, strongly attenuated their focal accumulation as well as Runx2 transactivation activity. The Pin1-mediated structural modification of Runx2 is an indispensable step connecting phosphorylation and acetylation and, consequently, transcriptional activation of Runx2 by FGF signaling. Thus, the modulation of Pin1 activity may be a target for the regulation of bone formation.
Collapse
Affiliation(s)
- Won-Joon Yoon
- From the Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749 and
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Krishnan N, Titus MA, Thapar R. The prolyl isomerase pin1 regulates mRNA levels of genes with short half-lives by targeting specific RNA binding proteins. PLoS One 2014; 9:e85427. [PMID: 24416409 PMCID: PMC3887067 DOI: 10.1371/journal.pone.0085427] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 12/04/2013] [Indexed: 01/13/2023] Open
Abstract
The peptidyl-prolyl isomerase Pin1 is over-expressed in several cancer tissues is a potential prognostic marker in prostate cancer, and Pin1 ablation can suppress tumorigenesis in breast and prostate cancers. Pin1 can co-operate with activated ErbB2 or Ras to enhance tumorigenesis. It does so by regulating the activity of proteins that are essential for gene expression and cell proliferation. Several targets of Pin1 such as c-Myc, the Androgen Receptor, Estrogen Receptor-alpha, Cyclin D1, Cyclin E, p53, RAF kinase and NCOA3 are deregulated in cancer. At the posttranscriptional level, emerging evidence indicates that Pin1 also regulates mRNA decay of histone mRNAs, GM-CSF, Pth, and TGFβ mRNAs by interacting with the histone mRNA specific protein SLBP, and the ARE-binding proteins AUF1 and KSRP, respectively. To understand how Pin1 may affect mRNA abundance on a genome-wide scale in mammalian cells, we used RNAi along with DNA microarrays to identify genes whose abundance is significantly altered in response to a Pin1 knockdown. Functional scoring of differentially expressed genes showed that Pin1 gene targets control cell adhesion, leukocyte migration, the phosphatidylinositol signaling system and DNA replication. Several mRNAs whose abundance was significantly altered by Pin1 knockdown contained AU-rich element (ARE) sequences in their 3' untranslated regions. We identified HuR and AUF1 as Pin1 interacting ARE-binding proteins in vivo. Pin1 was also found to stabilize all core histone mRNAs in this study, thereby validating our results from a previously published study. Statistical analysis suggests that Pin1 may target the decay of essential mRNAs that are inherently unstable and have short to medium half-lives. Thus, this study shows that an important biological role of Pin1 is to regulate mRNA abundance and stability by interacting with specific RNA-binding proteins that may play a role in cancer progression.
Collapse
Affiliation(s)
- Nithya Krishnan
- Hauptman-Woodward Medical Research Institute, SUNY at Buffalo, New York, United States of America
| | - Mark A. Titus
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Roopa Thapar
- Hauptman-Woodward Medical Research Institute, SUNY at Buffalo, New York, United States of America
- Department of Structural Biology, SUNY at Buffalo, New York, United States of America
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| |
Collapse
|
42
|
Synthesis, characterization and biological activity of antimony(III) or bismuth(III) chloride complexes with dithiocarbamate ligands derived from thiuram degradation. Polyhedron 2014. [DOI: 10.1016/j.poly.2013.08.052] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
ISLAM RABIA, YOON WONJOON, WOO KYUNGMI, BAEK JEONGHWA, RYOO HYUNMO. Pin1-Mediated Prolyl Isomerization of Runx1 Affects PU.1 Expression in Pre-Monocytes. J Cell Physiol 2013; 229:443-52. [DOI: 10.1002/jcp.24462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 08/27/2013] [Indexed: 01/08/2023]
Affiliation(s)
- RABIA ISLAM
- Department of Molecular Genetics; School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| | - WON-JOON YOON
- Department of Molecular Genetics; School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| | - KYUNG-MI WOO
- Department of Molecular Genetics; School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| | - JEONG-HWA BAEK
- Department of Molecular Genetics; School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| | - HYUN-MO RYOO
- Department of Molecular Genetics; School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| |
Collapse
|
44
|
Focusing on the structure and the function of Pin1: New insights into the opposite effects of fever on cancers and Alzheimer’s disease. Med Hypotheses 2013; 81:282-4. [DOI: 10.1016/j.mehy.2013.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 12/22/2022]
|
45
|
Moore JD, Potter A. Pin1 inhibitors: Pitfalls, progress and cellular pharmacology. Bioorg Med Chem Lett 2013; 23:4283-91. [PMID: 23796453 DOI: 10.1016/j.bmcl.2013.05.088] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/24/2013] [Accepted: 05/28/2013] [Indexed: 01/12/2023]
Abstract
Compelling data supports the hypothesis that Pin1 inhibitors will be useful for the therapy of cancer: Pin1 deficient mice resist the induction of breast cancers normally evoked by expression of MMTV-driven Ras or Erb2 alleles. While Pin1 poses challenges for drug discovery, several groups have identified potent antagonists by structure based drug design, significant progress has been made designing peptidic inhibitors and a number of natural products have been found that blockade Pin1, notably epigallocatchechin gallate (EGCG), a major flavonoid in green tea. Here we critically discuss the modes of action and likely specificity of these compounds, concluding that a suitable chemical biology tool for probing the function of Pin1 has yet to be found. We conclude by outlining some open questions regarding the target validation of Pin1 and the prospects for identification of improved inhibitors in the future.
Collapse
Affiliation(s)
- Jonathan D Moore
- Horizon Discovery, Cambridge Research Park, Cambridge CB25 9TL, UK.
| | | |
Collapse
|
46
|
Kim JH, Jung JH, Kim SH, Jeong SJ. Decursin exerts anti-cancer activity in MDA-MB-231 breast cancer cells via inhibition of the Pin1 activity and enhancement of the Pin1/p53 association. Phytother Res 2013; 28:238-44. [PMID: 23580332 DOI: 10.1002/ptr.4986] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/25/2013] [Accepted: 03/05/2013] [Indexed: 01/09/2023]
Abstract
The peptidyl-prolyl cis/trans isomerase Pin1 is overexpressed in a wide variety of cancer cells and thus considered as an important target molecule for cancer therapy. This study demonstrates that decursin, a bioactive compound from Angelica gigas, exert the anti-cancer effect against breast cancer cells via regulation of Pin1 and its related signaling molecules. We observed that decursin induced G1 arrest with decrease in cyclin D1 level in Pin1-expressing breast cancer cells MDA-MB-231, but not Pin1-non-expressing breast cancer cells MDA-MB-157. In addition, decursin significantly reduced protein expression and enzymatic activity of Pin1 in MDA-MB-231 cells. Further, we found that decursin treatment enhanced the p53 expression level and failed to down-regulate Pin1 in the cells transfected with p53 siRNA, indicating the importance of p53 in the decursin-mediated Pin1 inhibition in MDA-MB-231 cells. Decursin stimulated association between Pin1 to p53. Moreover, decursin facilitated p53 transcription in MDA-MB-231 cells. Overall, our current study suggests the potential of decursin as an attractive cancer therapeutic agent for breast cancer by targeting Pin1 protein.
Collapse
Affiliation(s)
- Ji-Hyun Kim
- College of Oriental Medicine, Kyung Hee University, Seoul, 130-701, South Korea
| | | | | | | |
Collapse
|
47
|
Hediger T, Frank W, Schumann M, Fischer G, Braun M. Aryl Hetaryl Ketones and Thioketones as Efficient Inhibitors of Peptidyl-Prolylcis-transIsomerases. Chem Biodivers 2012; 9:2618-34. [DOI: 10.1002/cbdv.201200275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Indexed: 01/29/2023]
|
48
|
Uchida T, Furumai K, Fukuda T, Akiyama H, Takezawa M, Asano T, Fujimori F, Uchida C. Prolyl isomerase Pin1 regulates mouse embryonic fibroblast differentiation into adipose cells. PLoS One 2012; 7:e31823. [PMID: 22412843 PMCID: PMC3296696 DOI: 10.1371/journal.pone.0031823] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 01/12/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A peptidyl prolyl cis/trans isomerase, Pin1, regulates insulin signal transduction. Pin1 reduces responses to insulin stimulation by binding CRTC2 (CREB-regulated transcriptional co-activator 2) and PPARγ (peroxisome prolifereator- activated receptor γ), but conversely enhances insulin signaling by binding IRS-1 (insulin receptor substrate-1), Akt kinase, and Smad3. Therefore, it is still unclear whether Pin1 inhibits or enhances adipose cell differentiation. METHODOLOGY/PRINCIPAL FINDINGS Pin1(-/-) and wild-type mice were fed with high fat diets and adipose tissue weight was measured. Compared to wild-type mice, Pin1(-/-) mice had lower adipose tissue weight, while the weight of other tissues was similar. Mouse embryo fibroblasts (MEFs), prepared from both groups of mice, were induced to differentiate into adipose cells by stimulation with insulin. However, the rate of differentiation of MEFs from Pin1(-/-) mice was less than that of MEFs from wild-type mice. The rate of insulin-induced MEF cell differentiation in Pin1(-/-) mice was restored by increasing expression of Pin1. We found that Pin1 binds to phosphoThr172- and phosphoSer271-Pro sites in CREB suppress the activity in COS-7 cells. CONCLUSION AND SIGNIFICANCE Pin1 enhanced the uptake of triglycerides and the differentiation of MEF cells into adipose cells in response to insulin stimulation. Results of this study suggest that Pin1 down-regulation could be a potential approach in obesity-related dysfunctions, such as high blood pressure, diabetes, non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Takafumi Uchida
- Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Duncan KE, Dempsey BR, Killip LE, Adams J, Bailey ML, Lajoie GA, Litchfield DW, Brandl CJ, Shaw GS, Shilton BH. Discovery and Characterization of a Nonphosphorylated Cyclic Peptide Inhibitor of the Peptidylprolyl Isomerase, Pin1. J Med Chem 2011; 54:3854-65. [DOI: 10.1021/jm200156c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kelly E. Duncan
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Brian R. Dempsey
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Lauren E. Killip
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Jarrett Adams
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Melanie L. Bailey
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Gilles A. Lajoie
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - David W. Litchfield
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Christopher J. Brandl
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Gary S. Shaw
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Brian H. Shilton
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
50
|
Mori T, Hidaka M, Lin YC, Yoshizawa I, Okabe T, Egashira S, Kojima H, Nagano T, Koketsu M, Takamiya M, Uchida T. A dual inhibitor against prolyl isomerase Pin1 and cyclophilin discovered by a novel real-time fluorescence detection method. Biochem Biophys Res Commun 2011; 406:439-43. [DOI: 10.1016/j.bbrc.2011.02.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 02/12/2011] [Indexed: 01/08/2023]
|