1
|
Cannarella R, Crafa A, Curto R, Mongioì LM, Garofalo V, Cannarella V, Condorelli RA, La Vignera S, Calogero AE. Human sperm RNA in male infertility. Nat Rev Urol 2024:10.1038/s41585-024-00920-9. [PMID: 39256514 DOI: 10.1038/s41585-024-00920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 09/12/2024]
Abstract
The function and value of specific sperm RNAs in apparently idiopathic male infertility are currently poorly understood. Whether differences exist in the sperm RNA profile between patients with infertility and fertile men needs clarification. Similarly, the utility of sperm RNAs in predicting successful sperm retrieval and assisted reproductive technique (ART) outcome is unknown. Patients with infertility and fertile individuals seem to have differences in the expression of non-coding RNAs that regulate genes controlling spermatogenesis. Several RNAs seem to influence embryo quality and development. Also, RNA types seem to predict successful sperm retrieval in patients with azoospermia. These findings suggest that sperm RNAs could influence decision-making during the management of patients with infertility. This evidence might help to identify possible therapeutic approaches aimed at modulating the expression of dysregulated genes in patients with infertility. Performing prospective studies with large sample sizes is necessary to investigate cost-effective panels consisting of proven molecular targets to ensure that this evidence can be translated to clinical practice.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura M Mongioì
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Vincenzo Garofalo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Vittorio Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
2
|
Centola CL, Dasso ME, Soria JD, Riera MF, Meroni SB, Galardo MN. Glycolysis as key regulatory step in FSH-induced rat Sertoli cell proliferation: Role of the mTORC1 pathway. Biochimie 2023; 214:145-156. [PMID: 37442535 DOI: 10.1016/j.biochi.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
The definitive number of Sertoli cells (SCs), achieved during the proliferative periods, defines the spermatogenic capacity in adulthood. It is recognized that FSH is the main mitogen targeting SC and that it exerts its action, at least partly, through the activation of the PI3K/Akt/mTORC1 pathway. mTORC1 controls a large number of cellular functions, including glycolysis and cell proliferation. Interestingly, recent evidence revealed that the glycolytic flux might modulate mTORC1 activity and, consequently, cell cycle progression. Although mature SC metabolism has been thoroughly studied, several aspects of metabolism regulation in proliferating SC are still to be elucidated. The objective of this study was to explore whether aerobic glycolysis is regulated by FSH through mTORC1 pathway in proliferating SC, and to assess the involvement of glycolysis in the regulation of SC proliferation. The present study was carried out utilizing 8-day-old rat SC cultures. The results obtained show that FSH enhances glycolytic flux through the induction of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) and lactate dehydrogenase A (LDHA) in an mTORC1 dependent manner. In addition, PFKFB3 and LDH inhibitors prevent FSH from activating mTORC1 and stimulating SC proliferation and glycolysis, presumably through mTORC1 pathway inhibition. In summary, FSH simultaneously regulates SC proliferation and glycolysis in an mTORC1 dependent manner, and glycolysis seems to cooperate with FSH in the stimulation of both cellular functions through the modulation of the same signalling pathway. Therefore, a positive feedback between the mTORC1 pathway and glycolysis triggered by FSH is hypothesized.
Collapse
Affiliation(s)
- Cecilia Lucia Centola
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marina Ercilia Dasso
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julio Daniel Soria
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Fernanda Riera
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvina Beatriz Meroni
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Noel Galardo
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
3
|
Wang H, Li T, Shi H, Su M, Liu Z, Zhang Y, Ma Y. Analyses of widely targeted metabolic profiling reveals mechanisms of metabolomic variations during Tibetan sheep (Ovis aries) testis development. Theriogenology 2023; 197:116-126. [PMID: 36502589 DOI: 10.1016/j.theriogenology.2022.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
In mammals, the testis is the organ with the highest transcriptional activity. After gene transcription, translation, and post-translational protein modification, the transcriptional results are finally presented at the metabolic level. Metabolites not only essential for cell signaling and energy transfer, but also directly influenced by the physiological and pathological changes in tissues and accurately reflect the physiological changes. The fact that the testes are oxygen-deprived organs can explain why Sertoli cells and germ cells may use distinctive metabolic pathways to obtain energy in their different stages of development. Therefore, studying metabolic changes during testis development can better elucidate metabolic profile of the testis, which is essential to revealing characteristic metabolic pathways. The present study applied a widely targeted UPLC-MS/MS-based metabolomics approach with large-scale detection, identification and quantification to investigate the widespread metabolic changes during Tibetan sheep testis development. Firstly, a total of 847 metabolites were detected in the sheep testis, and their changes along with the three testis-development stages were further investigated. The results indicated that those metabolites were clustered into amino acids and their derivatives, carbohydrates and their derivatives, organic acids and their derivatives, benzene and substituted derivatives, alcohols and amines, lipids, nucleotides and their derivatives, bile acids, coenzymes and vitamins, hormones and hormone-related compounds, etc. Among them, the most abundant metabolites in the testis were amino acids and lipid metabolites. The results showed that most of the lipids, carbohydrates with their derivatives, as well as alcohol and amines metabolites were high in sexually immature sheep while organic acids, amino acids and nucleotides showed a continuously increasing trend along with testis development stages. Among them, the content of metabolites with antioxidant effects increased along with testis development, while those related with energy synthesis was downregulated with age. Further correlation analyses of each metabolite-metabolite pair emphasized the cross talk between differential metabolisms across testis development, suggesting a significant correlation between lipids and other metabolites. Finally, based on KEGG pathway analysis, we found that the metabolic pathways in Tibetan sheep testis development were mainly clustered into energy metabolism, gonadal development, and anti-oxidative stress. Reactive oxygen species (ROS) are by-products of normal cellular metabolism and are inevitable during testicular energy metabolism. Thus, the anti-oxidative stress function is a key process in maintaining the normal physiological function of testis. These results contributed to a broader view of the testis metabolome and a comprehensive analysis on metabolomic variation among different testis-development stages, providing a theoretical basis for us to understand the sheep testis metabolic mechanism.
Collapse
Affiliation(s)
- Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huibin Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Manchun Su
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zilong Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yong Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China; College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China.
| |
Collapse
|
4
|
Ureña I, González C, Ramón M, Gòdia M, Clop A, Calvo JH, Carabaño MJ, Serrano M. Exploring the ovine sperm transcriptome by RNAseq techniques. I Effect of seasonal conditions on transcripts abundance. PLoS One 2022; 17:e0264978. [PMID: 35286314 PMCID: PMC8920283 DOI: 10.1371/journal.pone.0264978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/21/2022] [Indexed: 01/20/2023] Open
Abstract
Understanding the cell molecular changes occurring as a results of climatic circumstances is crucial in the current days in which climate change and global warming are one of the most serious challenges that living organisms have to face. Sperm are one of the mammals’ cells most sensitive to heat, therefore evaluating the impact of seasonal changes in terms of its transcriptional activity can contribute to elucidate how these cells cope with heat stress events. We sequenced the total sperm RNA from 64 ejaculates, 28 collected in summer and 36 collected in autumn, from 40 Manchega rams. A highly rich transcriptome (11,896 different transcripts) with 90 protein coding genes that exceed an average number of 5000 counts were found. Comparing transcriptome in the summer and autumn ejaculates, 236 significant differential abundance genes were assessed, most of them (228) downregulated. The main functions that these genes are related to sexual reproduction and negative regulation of protein metabolic processes and kinase activity. Sperm response to heat stress supposes a drastic decrease of the transcriptional activity, and the upregulation of only a few genes related with the basic functions to maintain the organisms’ homeostasis and surviving. Rams’ spermatozoids carry remnant mRNAs which are retrospectively indicators of events occurring along the spermatogenesis process, including abiotic factors such as environmental temperature.
Collapse
Affiliation(s)
- Irene Ureña
- Departamento de Mejora Genética Animal, CSIC-INIA, Madrid, Spain
| | - Carmen González
- Departamento de Mejora Genética Animal, CSIC-INIA, Madrid, Spain
| | | | - Marta Gòdia
- Animal Genomics Group, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Catalonia, Spain
| | - Alex Clop
- Animal Genomics Group, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Catalonia, Spain
| | - Jorge H. Calvo
- Unidad de Tecnología en Producción Animal, CITA, Zaragoza, Spain
| | | | - Magdalena Serrano
- Departamento de Mejora Genética Animal, CSIC-INIA, Madrid, Spain
- * E-mail:
| |
Collapse
|
5
|
Lin S, Qiao N, Chen H, Tang Z, Han Q, Mehmood K, Fazlani SA, Hameed S, Li Y, Zhang H. Integration of transcriptomic and metabolomic data reveals metabolic pathway alteration in mouse spermatogonia with the effect of copper exposure. CHEMOSPHERE 2020; 256:126974. [PMID: 32470726 DOI: 10.1016/j.chemosphere.2020.126974] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 05/15/2023]
Abstract
Copper is a widespread heavy metal in environment and has toxic effects when exposed. However, study of copper-induced male reproductive toxicity is still insufficient to report, and the underlying mechanisms are unknown. Keeping in view, RNA-Seq and metabolomic were performed to identify metabolic pathways that were distressed in mouse spermatogonia with the effect of copper sulfate, and the integrated analysis of the mechanism of copper administered GC-1 cells from metabolomic and transcriptomic data. Our results demonstrated that many genes and metabolites were regulated in the copper sulfate-treated cells. The differential metabolites analysis showed that 49 and 127 metabolites were significantly different in ESI+ and ESI- mode, respectively. Meanwhile, a total of 2813 genes were up-regulated and 2488 genes were down-regulated in the treatment groups compared to those in the control groups. Interestingly, ophthalmic acid and gamma glutamylleucine were markedly increased by copper treatment in two modes. By integrating with transcriptomic and metabolomic data, we revealed that 37 and 22 most related pathways were over-enriched in ESI+ and ESI- mode, respectively. Whereas, amino acid biosynthesis and metabolism play essential role in the potential relationship between DEGs and metabolites, which suggests that amino acid biosynthesis and metabolism may be the major metabolic pathways disturbed by copper in GC-1 cells. This study provides important clues and evidence for understanding the mechanisms responsible for copper-induced male spermatogenesis toxicity, and useful biomarkers indicative of copper exposure could be discovered from present study.
Collapse
Affiliation(s)
- Shuai Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Department of Histology and Embryology, Anhui Medicial University, Hefei, 230032, China
| | - Na Qiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hanming Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Khalid Mehmood
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Sarfaraz Ali Fazlani
- Lasbela University of Agriculture Water & Marine Sciences, Uthal Balochistan Pakistan, Pakistan
| | - Sajid Hameed
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Abu-Halima M, Ayesh BM, Hart M, Alles J, Fischer U, Hammadeh M, Keller A, Huleihel M, Meese E. Differential expression of miR-23a/b-3p and its target genes in male patients with subfertility. Fertil Steril 2019; 112:323-335.e2. [PMID: 31056312 DOI: 10.1016/j.fertnstert.2019.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/10/2019] [Accepted: 03/18/2019] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To elucidate the potential regulatory function of miR-23a/b-3p on spermatogenesis-specific genes. DESIGN Reverse transcription quantitative polymerase chain reaction (RT-qPCR) validation, Northern blot, dual luciferase assay, and Western blot confirmation. SETTING University research and clinical institutes. PATIENT(S) A total of 115 men presenting at an infertility clinic. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Significant higher abundance levels of miR-23a/b-3p and lower abundance levels of PFKFB4, HMMR, SPATA6, and TEX15 in oligoasthenozoospermic men compared with those in normozoospermic men. RESULT(S) In oligoasthenozoospermic men, the abundance levels of miR-23a/b-3p were significantly higher when compared with controls as determined by RT-qPCR. After in silico prediction of potential targets of miR-23a/b-3p, PFKFB4, HMMR, SPATA6, and TEX15 have been identified as direct targets by dual luciferase assays. Mutations in the miR-23a/b-3p binding site within the 3'UTRs resulted in abrogated responsiveness to miR-23a/b-3p. PFKFB4, HMMR, SPATA6, and TEX15 mRNA and HMMR and SPATA6 protein levels were significantly lower in oligoasthenozoospermic men compared with in normozoospermic men. Correlation analysis showed that the sperm count, motility, and morphology were negatively correlated with miR-23a/b-3p and positively correlated with PFKFB4, HMMR, SPATA6, and TEX15 abundance levels (lower ΔCt, the higher abundance levels). CONCLUSION(S) This study establishes a link between up-regulation of miR-23a/b-3p and the coincident down-regulation of four expressed genes in the sperm of men with oligoasthenozoospermia, compared with men with normozoospermia. This study provides a novel insight into some of the mechanisms leading to male subfertility, offering a possible therapeutic target for treatment, or even for male contraception.
Collapse
Affiliation(s)
- Masood Abu-Halima
- Institute of Human Genetics, Saarland University, Homburg/Saar, Germany.
| | - Basim M Ayesh
- Department of Laboratory Medical Sciences, Alaqsa University, Gaza, Palestine
| | - Martin Hart
- Institute of Human Genetics, Saarland University, Homburg/Saar, Germany
| | - Julia Alles
- Institute of Human Genetics, Saarland University, Homburg/Saar, Germany
| | - Ulrike Fischer
- Institute of Human Genetics, Saarland University, Homburg/Saar, Germany
| | - Mohamad Hammadeh
- Department of Obstetrics and Gynecology, IVF and Andrology Laboratory, Saarland University, Homburg/Saar, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Mahmoud Huleihel
- Shraga Segal Department of Microbiology, Immunology, and Genetics and the Center of Advanced Research and Education in Reproduction, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
7
|
Bartrons R, Rodríguez-García A, Simon-Molas H, Castaño E, Manzano A, Navarro-Sabaté À. The potential utility of PFKFB3 as a therapeutic target. Expert Opin Ther Targets 2018; 22:659-674. [PMID: 29985086 DOI: 10.1080/14728222.2018.1498082] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION It has been known for over half a century that tumors exhibit an increased demand for nutrients to fuel their rapid proliferation. Interest in targeting cancer metabolism to treat the disease has been renewed in recent years with the discovery that many cancer-related pathways have a profound effect on metabolism. Considering the recent increase in our understanding of cancer metabolism and the enzymes and pathways involved, the question arises as to whether metabolism is cancer's Achilles heel. Areas covered: This review summarizes the role of 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in glycolysis, cell proliferation, and tumor growth, discussing PFKFB3 gene and isoenzyme regulation and the changes that occur in cancer and inflammatory diseases. Pharmacological options currently available for selective PFKFB3 inhibition are also reviewed. Expert opinion: PFKFB3 plays an important role in sustaining the development and progression of cancer and might represent an attractive target for therapeutic strategies. Nevertheless, clinical trials are needed to follow up on the promising results from preclinical studies with PFKFB3 inhibitors. Combination therapies with PFKFB3 inhibitors, chemotherapeutic drugs, or radiotherapy might improve the efficacy of cancer treatments targeting PFKFB3.
Collapse
Affiliation(s)
- Ramon Bartrons
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| | - Ana Rodríguez-García
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| | - Helga Simon-Molas
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| | - Esther Castaño
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| | - Anna Manzano
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| | - Àurea Navarro-Sabaté
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| |
Collapse
|
8
|
Abstract
Splicing can be epigenetically regulated and involved in cellular differentiation in somatic cells, but the interplay of epigenetic factors and the splicing machinery during spermatogenesis remains unclear. To study these interactions in vivo, we generated a germline deletion of MORF-related gene on chromosome 15 (MRG15), a multifunctional chromatin organizer that binds to methylated histone H3 lysine 36 (H3K36) in introns of transcriptionally active genes and has been implicated in regulation of histone acetylation, homology-directed DNA repair, and alternative splicing in somatic cells. Conditional KO (cKO) males lacking MRG15 in the germline are sterile secondary to spermatogenic arrest at the round spermatid stage. There were no significant alterations in meiotic division and histone acetylation. Specific mRNA sequences disappeared from 66 germ cell-expressed genes in the absence of MRG15, and specific intronic sequences were retained in mRNAs of 4 genes in the MRG15 cKO testes. In particular, introns were retained in mRNAs encoding the transition proteins that replace histones during sperm chromatin condensation. In round spermatids, MRG15 colocalizes with splicing factors PTBP1 and PTBP2 at H3K36me3 sites between the exons and single intron of transition nuclear protein 2 (Tnp2). Thus, our results reveal that MRG15 is essential for pre-mRNA splicing during spermatogenesis and that epigenetic regulation of pre-mRNA splicing by histone modification could be useful to understand not only spermatogenesis but also, epigenetic disorders underlying male infertile patients.
Collapse
|
9
|
Regueira M, Artagaveytia SL, Galardo MN, Pellizzari EH, Cigorraga SB, Meroni SB, Riera MF. Novel molecular mechanisms involved in hormonal regulation of lactate production in Sertoli cells. Reproduction 2015. [PMID: 26224098 DOI: 10.1530/rep-15-0093] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of the study was to analyze molecular mechanisms involved in FSH and basic fibroblast growth factor (bFGF) regulation of lactate production in rat Sertoli cells. The regulation of the availability of pyruvate, which is converted to lactate, could be a mechanism utilized by hormones to ensure lactate supply to germ cells. On one hand, the regulation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) expression could result in increased glycolysis, while an increase in pyruvate availability may also result from a lower conversion to acetyl-CoA by negative regulation of pyruvate dehydrogenase complex (PDC) activity by phosphorylation. Sertoli cell cultures obtained from 20-day-old rats were used. Stimulation of the cultures with FSH or bFGF showed that FSH increases Pfkfb1 and Pfkfb3 expression while bFGF increases Pfkfb1 mRNA levels. Additionally, we observed that FSH-stimulated lactate production was inhibited in the presence of a PFKFB3 inhibitor, revealing the physiological relevance of this mechanism. As for the regulation of PDC, analysis of pyruvate dehydrogenase kinase (Pdk) expression showed that FSH increases Pdk3 and decreases Pdk4 mRNA levels while bFGF increases the expression of all Pdks. In addition, we showed that bFGF increases phosphorylated PDC levels and that bFGF-stimulated lactate production is partially inhibited in the presence of a PDK inhibitor. Altogether, these results add new information regarding novel molecular mechanisms involved in hormonal regulation of lactate production in Sertoli cells. Considering that lactate is essential for the production of energy in spermatocytes and spermatids, these mechanisms might be relevant in maintaining spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Mariana Regueira
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE/CONICET-FEI-GCBA)Hospital de Niños R Gutiérrez, Gallo 1330, C1425EDF Buenos Aires, Argentina
| | - Silvana Lucía Artagaveytia
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE/CONICET-FEI-GCBA)Hospital de Niños R Gutiérrez, Gallo 1330, C1425EDF Buenos Aires, Argentina
| | - María Noel Galardo
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE/CONICET-FEI-GCBA)Hospital de Niños R Gutiérrez, Gallo 1330, C1425EDF Buenos Aires, Argentina
| | - Eliana Herminia Pellizzari
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE/CONICET-FEI-GCBA)Hospital de Niños R Gutiérrez, Gallo 1330, C1425EDF Buenos Aires, Argentina
| | - Selva Beatriz Cigorraga
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE/CONICET-FEI-GCBA)Hospital de Niños R Gutiérrez, Gallo 1330, C1425EDF Buenos Aires, Argentina
| | - Silvina Beatriz Meroni
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE/CONICET-FEI-GCBA)Hospital de Niños R Gutiérrez, Gallo 1330, C1425EDF Buenos Aires, Argentina
| | - María Fernanda Riera
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá' (CEDIE/CONICET-FEI-GCBA)Hospital de Niños R Gutiérrez, Gallo 1330, C1425EDF Buenos Aires, Argentina
| |
Collapse
|
10
|
Oliveira PF, Martins AD, Moreira AC, Cheng CY, Alves MG. The Warburg effect revisited--lesson from the Sertoli cell. Med Res Rev 2014; 35:126-51. [PMID: 25043918 DOI: 10.1002/med.21325] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Otto Warburg observed that cancerous cells prefer fermentative instead of oxidative metabolism of glucose, although the former is in theory less efficient. Since Warburg's pioneering works, special attention has been given to this difference in cell metabolism. The Warburg effect has been implicated in cell transformation, immortalization, and proliferation during tumorigenesis. Cancer cells display enhanced glycolytic activity, which is correlated with high proliferation, and thus, glycolysis appears to be an excellent candidate to target cancer cells. Nevertheless, little attention has been given to noncancerous cells that exhibit a "Warburg-like" metabolism with slight, but perhaps crucial, alterations that may provide new directions to develop new and effective anticancer therapies. Within the testis, the somatic Sertoli cell (SC) presents several common metabolic features analogous to cancer cells, and a clear "Warburg-like" metabolism. Nevertheless, SCs actively proliferate only during a specific time period, ceasing to divide in most species after puberty, when they become terminally differentiated. The special metabolic features of SC, as well as progression from the immature but proliferative state, to the mature nonproliferative state, where a high glycolytic activity is maintained, make these cells unique and a good model to discuss new perspectives on the Warburg effect. Herein we provide new insight on how the somatic SC may be a source of new and exciting information concerning the Warburg effect and cell proliferation.
Collapse
Affiliation(s)
- Pedro F Oliveira
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | | | | | | |
Collapse
|
11
|
Gómez M, Manzano A, Figueras A, Viñals F, Ventura F, Rosa JL, Bartrons R, Navarro-Sabaté À. Sertoli-secreted FGF-2 induces PFKFB4 isozyme expression in mouse spermatogenic cells by activation of the MEK/ERK/CREB pathway. Am J Physiol Endocrinol Metab 2012; 303:E695-707. [PMID: 22811469 DOI: 10.1152/ajpendo.00381.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sertoli cells play a central role in the control and maintenance of spermatogenesis by secreting growth factors, in response to hormonal stimulation, that participate in the paracrine regulation of this process. In this study, we investigated how the hormonal regulation of spermatogenesis modulates 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB) isozyme expression in two mouse spermatogenic cell lines, GC-1 spg and GC-2 spd (ts). For this purpose, TM4 Sertoli cells were used to obtain conditioned medium that was treated or not with dihydrotestosterone for 2 days [dihydrotestosterone conditioned medium (TCM) and basal conditioned medium (BCM), respectively]. We observed an increase in the expression of PFKFB4 along with a decrease in PFKFB3 in spermatogenic cell lines treated with TCM. These effects were inhibited by the antiandrogen drug flutamide and by heat-inactivated TCM, indicating the protein nature of the TCM mediator and its dependence on Sertoli cell stimulation by dihydrotestosterone. In addition, adult rat testes treated with the GnRH antagonist Degarelix exhibited a reduction in the expression of PFKFB4 in germ cells. Addition of exogenous FGF-2 mimicked the changes in the Pfkfb gene expression, whereas neutralizing antibodies against FGF-2 abolished them. Interestingly, similar effects on Pfkfb gene expression were observed using different MAPK inhibitors (U-0126, PD-98059, and H-89). Luciferase analysis of Pfkfb4 promoter constructs demonstrated that a putative CRE-binding sequence located at -1,463 relative to the transcription start site is required to control Pfkfb4 gene expression after TCM treatment. Pulldown assays showed the binding of the CREB transcription factor to this site. Altogether, these results show how the paracrine regulation orchestrated by Sertoli cells in response to testosterone controls glycolysis in germ cells.
Collapse
Affiliation(s)
- Marta Gómez
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Universitat de Barcelona, Feixa Llarga s/n, E-08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Male factor infertility is increasing in developed countries, and several factors linked to lifestyle have been shown to negatively affect spermatogenesis. Sertoli cells are pivotal to spermatogenesis, providing nutritional support to germ cells throughout their development. Sertoli cells display atypical features in their cellular metabolism; they can metabolize various substrates, preferentially glucose, the majority of which is converted to lactate and not oxidized via the tricarboxylic acid cycle. Why Sertoli cells preferentially export lactate for germ cells is not entirely understood. However, lactate is utilized as the main energy substrate by developing germ cells and has an antiapoptotic effect on these cells. Several biochemical mechanisms contribute to the modulation of lactate secretion by Sertoli cells. These include the transport of glucose through the plasma membrane, mediated by glucose transporters; the interconversion of pyruvate to lactate by lactate dehydrogenase; and the release of lactate mediated by monocarboxylate transporters. Several factors that modulate Sertoli cell metabolism have been identified, including sex steroid hormones, which are crucial for maintenance of energy homeostasis, influencing the metabolic balance of the whole body. In fact, energy status is essential for normal reproductive function, since the reproductive axis has the capacity to respond to metabolic cues.
Collapse
|
13
|
Rovira J, Irimia JM, Guerrero M, Cadefau JA, Cussó R. Upregulation of heart PFK-2/FBPase-2 isozyme in skeletal muscle after persistent contraction. Pflugers Arch 2012; 463:603-13. [DOI: 10.1007/s00424-011-1068-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 11/28/2022]
|